Fourier Transforms and potentials

G. Pasa

2017 - 5 - 17

Contents

1	Potentials		1
	1.1	Fourier transform	2
	1.2	Dirac distribution	2
	1.3	Inverse Fourier transform and Dirac distribution	2
	1.4	Inverse Fourier transform	3
2	Coulomb-like potential		4
3	Constant potential		4
4	Linear potential		5
5	Yukawa potential		5
6	Yukawa-like potentials		6

1 Potentials

Let V(r) be a spherically symmetric 3-dimensional potential

$$V(\vec{r}) = V(r)$$

with $r = \|\vec{r}\|$.

Let's suppose the potential has the form

$$V_{\alpha}(r) = \kappa r^{\alpha}$$

Since the potential depends explicitly only on $r = \|\vec{r}\|$, The ϕ and θ azimuthal and polar angle can be done explicitly. The Fourier transform then depends only on the radial component of the wave vector $\tilde{V} = V(q)$ with $q = \|\vec{q}\|$.

1.1 Fourier transform

The Fourier transform of V is then

$$\tilde{V}_{\alpha}(q) = \int d^3 r V_{\alpha}(r) e^{i \vec{q} \cdot \vec{r}} = 2\pi \int_0^\infty r^2 V(r) \, dr \int_{-1}^1 e^{i q r z} dz$$

where $z = \cos(\theta)$ with $\theta \in [0, \pi]$ and the integration on $\phi \in [0, 2\pi]$ is already performed. We used the volume element $d^3r = rd\theta r \sin(\theta) d\phi dr = r^2 d(\cos(\theta)) d\phi dr$.

Since by following θ , $z = \cos(\theta)$ goes from 1 to -1, reversing the limits of integration cancels the minus sign from the differential of z.

Doing the z integration we are left with

$$\tilde{V}_{\alpha}(q) = 2\pi \int_0^\infty r^2 V_{\alpha}(r) \frac{e^{iqr} - e^{-iqr}}{iqr} dr = \frac{4\pi}{q} \int_0^\infty r V_{\alpha}(r) \sin(qr) dr$$

For the central potential mentioned above, we have then

$$\tilde{V}_{\alpha}(r) = \frac{4\pi}{q} \kappa \int_{0}^{\infty} r^{\alpha+1} \sin(qr) dr$$

1.2 Dirac distribution

The functional form of the Dirac distribution is defined by

$$f(x) = \int f(y)\delta(x-y)dy$$

So the Fourier transform of δ is

$$\tilde{\delta}(q) = \int \delta(x)e^{iqx} = e^{iq0} = 1$$

1.3 Inverse Fourier transform and Dirac distribution

The inverse Fourier transform of a function is defined as

$$f(x) = \frac{1}{2\pi} \int \tilde{f}(q) e^{-iqx}.$$

If we apply this definition to the Fourier transform of the Dirac function, we have $1 - c^{\infty}$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iqx} dq$$

which does not converge. To make it convergent we can add a term $-\epsilon q$ in the exponential

$$\frac{1}{\pi} \int e^{-iqx - \epsilon|q|} dq$$

and make $\epsilon \to 0$ at the end of the integration. We get then

$$f(x) = \frac{1}{2\pi} \left[\frac{e^{-iqx-\epsilon q}}{-ix-\epsilon} \right]_0^\infty + \frac{1}{2\pi} \left[\frac{e^{-iqx+\epsilon q}}{-ix+\epsilon} \right]_{-\infty}^0$$
$$= \frac{1}{2\pi} \left(\frac{1}{ix+\epsilon} + \frac{1}{\epsilon-ix} \right)$$
$$= \frac{1}{2\pi} \frac{2\epsilon}{\epsilon^2 + x^2}$$
$$= \frac{1}{\pi} \frac{\epsilon}{\epsilon^2 + x^2}.$$

As $x \neq 0$, in the limit $\epsilon \to 0$ we have f(x) = 0.

Before taking the limit $\epsilon \to 0$ when x = 0, let's calculate

$$\int_{-\infty}^{\infty} f(x)dx = \frac{\epsilon}{\pi} \int \frac{dx}{\epsilon^2 + x^2} = \frac{\epsilon}{\pi} \frac{1}{\epsilon} \arctan(\frac{x}{\epsilon}) \Big|_{-\infty}^{\infty} = 1$$

So that the integral is independent of ϵ . Moreover, when x = 0 we have

$$f(0) = \lim_{\epsilon \to 0} \frac{1}{\epsilon \pi} = \infty$$

This means that f is everywhere nul except in zero where it diverges and its integral is unity. This looks a lot like the Dirac distribution functional form.

So, in all generality, we can state that

$$f(x) = \frac{1}{\pi} \lim_{\epsilon \to 0} \frac{\epsilon}{\epsilon^2 + x^2} = \delta(x).$$

1.4 Inverse Fourier transform

The inverse Fourier transform of a Fourier transform \tilde{V} is given by

$$V(r) = \frac{1}{(2\pi)^3} \int d^3q \, V(q) e^{-i\vec{q}\cdot\vec{r}}.$$

If $\tilde{V}(q)$ is the Fourier transform of V(r)

$$\tilde{V}(q) = \int d^3 r V(r) e^{i \vec{\vec{q}r}}$$

then the inverse Fourier transform of \tilde{V} is

$$\begin{aligned} \frac{1}{(2\pi)^3} \int d^3q \int d^3r V(r) e^{i\vec{q}\cdot\vec{r} - i\vec{q}\cdot\vec{r}'} &= \frac{1}{(2\pi)^3} \int d^3r V(r) \int d^3q e^{i\vec{q}\cdot(\vec{r} - \vec{r}')} \\ &= \int d^3r V(r) \delta^3(\vec{r} - \vec{r}') \\ &= V(r') \end{aligned}$$

So, as its name suggests, the inverse Fourier transform gives back the original function.

2 Coulomb-like potential

In the cas of the Coulomb-like potential we have $\alpha = -1$

$$V_{-1}(r) = \kappa \frac{1}{r}$$

and the Fourier transform of V_{-1} is

$$\tilde{V}_{-1}(q) = \frac{4\pi}{2iq} \kappa \int_0^\infty \left(e^{(iq-\epsilon)r} - e^{-(iq+\epsilon)r} \right) dr$$

where ϵ is to be taken as $\epsilon \to 0$ at the end of the integration, to make the integral finite. So we get

$$\tilde{V}_{-1}(q) = \frac{4\pi\kappa}{2iq} \left[\frac{e^{(iq-\epsilon)r}}{iq-\epsilon} + \frac{e^{-(iq+\epsilon)r}}{iq+\epsilon} \right]_0^\infty$$
$$= \frac{4\pi\kappa}{2iq} \left(-\frac{1}{iq} - \frac{1}{iq} \right)$$
$$= -\frac{4\pi\kappa}{2iq} \frac{2}{iq}$$

That is

$$\tilde{V}_{-1}(q) = \frac{4\pi\kappa}{q^2}.$$

Clearly, we have also

$$V_{-1}(r) = \frac{1}{(2\pi)^3} \int d^3q \frac{4\pi\kappa}{q^2} e^{-i\vec{q}\cdot\vec{r}} = \frac{\kappa}{r}.$$

3 Constant potential

The constant potential case is given by $\alpha = 0$

$$V(r) = \kappa.$$

Here we have

$$\begin{split} \tilde{V}_0(q) &= \frac{4\pi}{2iq} \kappa \int_0^\infty r \bigg(e^{(iq-\epsilon)r} - e^{-(iq+\epsilon)r} \bigg) dr \\ &= \frac{4\pi}{2iq} \kappa \int_0^\infty \frac{1}{i} \frac{\partial}{\partial q} \bigg(e^{(iq-\epsilon)r} + e^{-(iq+\epsilon)r} \bigg) dr \\ &= \frac{4\pi}{2iq} \kappa \frac{1}{i} \frac{\partial}{\partial q} \left[\frac{e^{(iq-\epsilon)r}}{iq-\epsilon} - \frac{e^{-(iq+\epsilon)r}}{iq+\epsilon} \right]_0^\infty \end{split}$$

That is

$$\begin{split} \tilde{V}_0(q) &= \frac{4\pi}{2iq} \kappa \frac{1}{i} \frac{\partial}{\partial q} \left[-\frac{1}{iq-\epsilon} + \frac{1}{iq+\epsilon} \right] \\ &= \frac{4\pi}{2iq} \kappa \frac{1}{i} \frac{\partial}{\partial q} \frac{-2\epsilon}{q^2+\epsilon^2} \end{split}$$

and with $\epsilon \to 0$ we recover

$$\widetilde{V}_0(q) = \frac{4\pi}{q} \kappa \delta'(q)$$

where $\delta'(q) = \frac{\partial}{\partial q} \delta(q)$.

4 Linear potential

For $\alpha = 1$ we have

$$\begin{split} \tilde{V}_1(q) &= \frac{4\pi}{2iq} \kappa \int_0^\infty r^2 \bigg(e^{(iq-\epsilon)r} - e^{-(iq+\epsilon)r} \bigg) dr \\ &= \frac{4\pi}{2iq} \kappa \int_0^\infty \frac{1}{i^2} \frac{\partial^2}{\partial q^2} \bigg(e^{(iq-\epsilon)r} - e^{-(iq+\epsilon)r} \bigg) dr \\ &= \frac{4\pi}{2iq} \kappa \frac{\partial^2}{\partial q^2} \bigg[\frac{1}{iq-\epsilon} + \frac{1}{iq+\epsilon} \bigg]_0^\infty \\ &= -\frac{4\pi}{2iq} \kappa \frac{\partial^2}{\partial q^2} \frac{2iq}{q^2+\epsilon^2} \\ &= -\frac{4\pi}{q} \kappa \frac{\partial^2}{\partial q^2} \frac{1}{q} \end{split}$$

where we let $\epsilon \to 0$ in the last step.

So we finally get

$$\tilde{V}_1(q) = -\frac{8\pi}{q^4}\kappa.$$

5 Yukawa potential

Let us consider

$$V_Y(r) = \frac{e^{-\alpha r}}{r}$$

We have then, where the ϵ converging factor has been omitted, since the exponential with α makes the integral converge

$$\begin{split} \tilde{V}_Y(q) &= \frac{4\pi}{2iq} \int_0^\infty \left(e^{(iq-\alpha)r} - e^{-(iq+\alpha)r} \right) dr \\ &= \frac{4\pi}{2iq} \left[\frac{e^{(iq-\alpha)r}}{iq-\alpha} + \frac{e^{-(iq+\alpha)}}{iq+\alpha} \right]_0^\infty \\ &= -\frac{4\pi}{2iq} \left(\frac{1}{iq-\alpha} + \frac{1}{iq+\alpha} \right) \\ &= \frac{4\pi}{2iq} \frac{2iq}{q^2 + \alpha^2} \end{split}$$

So that

$$\tilde{V}_Y(q) = \frac{4\pi}{q^2 + \alpha^2}.$$

6 Yukawa-like potentials

We can now consider potentials of the form

$$V_{Y\alpha} = r^{\alpha} e^{-\alpha r}$$

for which the Fourier transform is given by

$$\tilde{V}_{Y\alpha}(q) = \frac{4\pi}{2iq} \int_0^\infty r^{\alpha+1} \left(e^{(iq-\alpha)r} - e^{-(iq+\alpha)r} \right) dr$$

These are the same integrals found before except that now, we do not take $\alpha \to 0$.