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1 Potentials
Let V(r) be a spherically symmetric 3-dimensional potential
V(r) =V(r)

with r = ||7]].

Let’s suppose the potential has the form
Val(r) = kr®

Since the potential depends explicitly only on r = ||7]|, The ¢ and 0 az-
imuthal and polar angle can be done explicitly. The Fourier transform then
depends only on the radial component of the wave vector V = V(g) with

q = |4l



1.1 Fourier transform
The Fourier transform of V is then
o) 1
Valq) = /d3rVa(T)ei‘T’F: 27r/ 2V (r) dr/ ez
0 -1

where z = cos(f) with 6 € [0,7] and the integration on ¢ € [0,27] is al-
ready performed. We used the volume element d®r = rdfrsin(0)d¢dr =
r2d(cos(0))d¢ dr.

Since by following 6, z = cos(f) goes from 1 to —1, reversing the limits
of integration cancels the minus sign from the differential of z.

Doing the z integration we are left with

~ [os] wqr __ ,—iqr 4 0o
Val(q) = 27r/ TQVQ(T)idT -7 Vo (r) sin(gr)dr
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For the central potential mentioned above, we have then

3 4 00
Val(r) = Wﬁ/ pott sin(gr)dr
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1.2 Dirac distribution
The functional form of the Dirac distribution is defined by

f@) = [ 13t~ iy
So the Fourier transform of § is

5(q) = /5(1:)6”93 =0 =1,

1.3 Inverse Fourier transform and Dirac distribution

The inverse Fourier transform of a function is defined as
fo) =5 [ Fajee
2 '

If we apply this definition to the Fourier transform of the Dirac function,
we have
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which does not converge. To make it convergent we can add a term —eq in

the exponential
1/eiqﬂcetzlalq
T



and make ¢ — 0 at the end of the integration. We get then
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As x # 0, in the limit € — 0 we have f(x) = 0.
Before taking the limit € — 0 when x = 0, let’s calculate

& € dx €l N
/Oo f(.f)dl’ = 71_/62_’_:1:2 = ;g arctan(;) . =1.

So that the integral is independent of €. Moreover, when x = 0 we have

This means that f is everywhere nul except in zero where it diverges and
its integral is unity. This looks a lot like the Dirac distribution functional
form.

So, in all generality, we can state that

1 .. €
f(x)—;lg% €2 4 22

=i(z).

1.4 Inverse Fourier transform

The inverse Fourier transform of a Fourier transform V' is given by

V(r) = (271r)3 /dgq V(g)e T,

If f/(q) is the Fourier tranform of V' (r)

Vig) = /d?’rV(r)e"q;%

then the inverse Fourier transform of V is
1 3 3 igi—ige 1 3 3 iq(F—i
(27r)3/d q/d rV(r)e " = (27r)3/d rV(r) | d?qe'TT)
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So, as its name suggests, the inverse Fourier transform gives back the original
function.



2 Coulomb-like potential
In the cas of the Coulomb-like potential we have oo = —1
1
V_ = K—
1(r) =k

and the Fourier transform of V_; is

V—I(Q) = ;;RA (e(iqe)r _ 6(iq+e)r> dr

where € is to be taken as ¢ — 0 at the end of the integration, to make the
integral finite. So we get
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That is
~ ATk
Voilg) =
(q) Z
Clearly, we have also
1 3 ATK _iow K
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3 Constant potential
The constant potential case is given by o = 0
V(r) =k.

Here we have

o) = gow | r<e<@'qe>r_e<m+e>r>dr
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That is
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and with € — 0 we recover

Volq) = ;K{S’(q)

where &' (q) = 24(q).

4 Linear potential

For o« = 1 we have
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where we let € — 0 in the last step.
So we finally get
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5 Yukawa potential
Let us consider
e—a'r
V =
v(r)=—
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We have then, where the e converging factor has been omitted, since the
exponential with « makes the integral converge
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So that
Py (g) =
y\q) = q2+052'

6 Yukawa-like potentials

We can now consider potentials of the form

VYa — r()le—OéT’

for which the Fourier transform is given by

- 4 oo . .
Vrale) = 5 /O et (eliamer _ =Girtor) gy

These are the same integrals found before except that now, we do not take
a— 0.



