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Chapitre 1

Introduction

1.1 Liquid Drop

1.1.1 The origin

The liquid drop model of the atomic nucleus assumes that nuclear matter is a kind of liquid in
which we find volume forces, surface tension forces as well as pair-force between the particles of the
liquid nuclear matter.

The atomic mass is a number A in atomic units which is the number of nucleons (protons and
nuetrons) into the nucleus, so it is a whole integer. The number of protons in a nucleus is Z. The
number of neutron into a nucleus is N . We have then

A = Z +N.

In atomic physics, A and N have rather limited consequences, except for the stability of the nucleus.
The whole of chemistry is determined by Z, since the coupling of the electrons to the nucleus is due
to the electromagnetic field generated by the protons. On a second approximation, neutrons also have
an importance due to their magnetic moment and their impact on the reduced mass of the system.

In nuclear physics, the electrons are neglected, since they can seldom interact with nuclear matter
with regular atomic energies, except for very heavy nuclei, for which the electron are very close to
the nucleus and can be captured.

One of the main assumption is that nuclear matter is incompressible, as experiments shows that
nuclear density is quite constant into the nucleus and that the nuclear radius increases such that

A ∝ R3 ⇔ R ∝ A
1
3

Surface-tension forces varies as the surface of the drop so the force is proportional to R2 ∝ A
2
3 .

1.2 Square well

1.3 Rounded square well

1.4 Spin-orbit coupling
Spin-orbit coupling gives the Fine structure in the atomic spectra. The degeneracies in n` levels

of the H atom are then split into nj with j = `+ 1
2
and j = `− 1

2
.
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This is due to the orbital motion of the electron around the nucleus which generates a magnetic
field on the electron that interacts with the spin magnetic moment of the electron. The magnetic
field is produced by the movement of the electron around the nucleus that can be seen, in the rest
frame of the electron, as the movement of the nucleus around the electron. The movement of the
nucleus which is positively charged, generates a magnetic field B at the position of the electron. If ~v
is the speed of the electron, then

~B =
~v × ~E

c2

The magnetic moment of the electron on its orbit can be calculated quasi-classicaly as

µL = −e ω
2π
πr2 = −e

v
r

2π
πr2 = −e pr

2m
= −e L

2m

where ω = v
r
is the angular speed of the electron and r the radius of its orbit. So that we can write

µ = −e 1

2m
(gL~L+ gs~s)

where we have introduced gL = 1 the orbital gyromagnetic factor and a similar contribution to the
spin with gs = 2. The Pauli equation or the classical limit of the Dirac equation gives for the total
angular momentum L+ 2s, that is gs

gL
= 2.

The spin magnetic moment of the electron is

~µs = −gse
2m

~s

with gs = 2 in the Dirac theory (the first order correction gives gs = 2 + α
π

= 2.0023 with α the fine
structure constant). Since the electric field is the derivative of the potential ~E = −∇V , we can write
the energy of the spin-orbit coupling as

∆ESO =
1

c2
(~v × ~E) · ~µs

that is
∆ESO =

gse

2mc2
(~v ×∇V ) · ~s

1.5 Nuclear Shell Model
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Chapitre 2

Simple Models

2.1 Introduction
In spherical coordinates the laplacian is

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂φ2

The non-relativistic Schrœdinger equation for the one-nucleon state is then

EΨ(r, θ, φ) =

[
− ~2

2m
∆ + U(r)

]
Ψ(r, θ, φ)

with
Ψ(r, θ, φ) = R(r)Ylm(θ, φ)

where the normalized spherical harmonics are

Ylm(θ, φ) =

√
2`+ 1

4π

(`+m)!

(`−m)!
Pm
`

(
cos(θ)

)
eimφ

and Pm
` are the associated Legendre polynomials

Pm
` (x) = (−1)m(1− x2)

m
2
dm

dxm
P`(x)

and P` is the Legendre polynomial given by the Rodrigue formula

P`(x) =
1

2nn!

dn

dxn
(x2 − 1)n

and is a solution of the equation[
(1− x2)

d2

dx2
− 2x

d

dx
+ `(`+ 1)

]
P` = 0.

The spherical harmonics satisfy the orthogonality relation∫ π

0

dθ

∫ 2π

0

dφ Y ∗m,l(θ, φ)Ym′,l′(θ, φ) sin(θ) = δmm′δll′ .
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The radial equation is then

ER`(r) =

[
− ~2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

~2

2m

`(`+ 1)

r2
+ U(r)

]
R`(r)

Define ε, ν, x and y by

E =
~2

2mR2
ε, U(r) =

~2

2mR2
ν(r), x =

r

R
, R`(r) = u`(x)

we get the radial equation

εu`(x) =

[
− 1

x2

∂

∂x

(
x2 ∂

∂x

)
+
`(`+ 1)

x2
+ ν(x)

]
u`(x)

that is [
−x2 ∂

2

∂x2
− 2x

∂

∂x
+ `(`+ 1) + x2(ν(x)− ε)

]
u`(x) = 0.

2.2 Infinite spherical square well
In the case of an infinite square well potential

U(r) =

{
0 if : r 6 R

∞ if : r > R

This can be achieved by demanding that

R`(r) = 0, for r > R

or
u`(x) = 0, for x > 1.

The radial equation is then[
−x2 ∂

2

∂x2
− 2x

∂

∂x
+ `(`+ 1)− x2ε

]
u`(x) = 0.

which can be put in the form

x2u′′` + 2xu′` + [εx2 − `(`+ 1)]u` = 0

This is the spherical Bessel differential equation. The solutions are the spherical Bessel functions of
the first kind j`(z) and of the second kind y`(z), where z = x

√
ε.

Since the spherical Bessel functions of the second kind diverge at z = 0, the only acceptable
solutions are the spherical Bessel functions of the first kind

j`(z) =

√
π

2z
J`+ 1

2
(z).

The quantization condition comes then by imposing the boundary condition (at z = x
√
ε =
√
ε

for x = 1)
j`(
√
ε) = 0

So
√
ε must be a zero of the spherical Bessel function of the first kind, which are the same as the

zero of the Bessel function of the first kind J`+ 1
2
.
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Figure 2.1 – Spherical Bessel functions of the first kind j` for ` = 0 . . . 10. The zeroes give the value
of
√
ε.

n ` state
1 0 1s
1 1 1p
1 2 1d
2 0 2s
1 3 1f
2 1 2p
1 4 1g
2 2 2d

n ` state
1 5 1h
3 0 3s
2 3 2f
1 6 1i
3 1 3p
1 7 1k
2 4 2g
3 2 3d

Table 2.1 – The first states of the infinite square well with increasing energies. The states are labeled
by the angular momentum quantum number `, and the order number n of the zero for that `. States
that are very close in energy have the same color.

2.3 Spherical harmonic oscillator
This time we take the potential

U(r) =
1

2
mΩ2r2

so that the radial equation, with ω2 = m2R4Ω2

~2 , becomes

εu`(x) =

[
− 1

x2

∂

∂x

(
x2 ∂

∂x

)
+
`(`+ 1)

x2
+ ω2x2

]
u`(x)

By substituting y` = xu` and rewriting the equation with y` we have{
u′ = y′

x
− y

x2

u′′ = y′′

x
− 2 y′

x2
+ 2 y

x3
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so that
ε
y`
x

=

[
−2

x

(
y′`
x
− y`
x2

)
− y′′`

x
+ 2

y′`
x2
− 2

x3
y` +

`(`+ 1)

x2

y`
x

+ ω2x2y`
x

]
we obtain then the radial equation, on multiplying by x and dividing by ω and substituting z = x

√
ω

y′′` +

(
ε

ω
− z2 − `(`+ 1)

z2

)
y` = 0

where now y` = y`(z).
This is an equation of the form

y′′ +

(
4n+ 2α + 2− x2 +

1− 4α2

4x2

)
y = 0

whose solution are expressed with the associated Laguerre functions Lαn(x) by

y(x) = e−
x2

2 xα+ 1
2L(α)

n (x2).

provided the following conditions are satisfied
1− 4α2

4
= −`(`+ 1)

4n+ 2α + 2 =
ε

ω

⇔

{
α = `+ 1

2

ε = ω(4n+ 2`+ 3)

This means that the energy is quantized by the number

k = (2n+ `)

as
ε = ω(2k + 3)

and the eigenfunctions take the form

yn,`(z) = e−
z2

2 z`L
(`+ 1

2
)

n (z2).

n ` k state
0 0 0 1s
0 1 1 1p
0 2 2 1d
1 0 2 2s
0 3 3 1f
1 1 3 2p
2 0 4 3s
1 2 4 2d
0 4 4 1g

n ` k state
2 1 5 3p
1 3 5 2f
0 5 5 1h
3 0 6 4s
2 2 6 3d
1 4 6 2g
0 6 6 1i

k states nstates ncumulative

0 1s 2 2
1 1p 6 8
2 2s, 1d 2 + 10 = 12 20
3 2p, 1f 6 + 14 = 20 40
4 3s, 2d, 1g 2 + 10 + 18 = 30 70
5 3p, 2f , 1h 6 + 14 + 22 = 42 112
6 4s, 3d, 2g, 1i 2 + 10 + 18 + 26 = 56 168

6



2.4 Spherical finite square well
We assume that nucleons are bound by an average potential that is spherically symmetric and

has the shape of a square well of depth −V constant for a distance r = R, R being the nuclear radius

U(r) =

{
−V if : r 6 R

0 if : r > R

The value of the potential V is of order of some tens of MeV (typically V = 40 MeV and R ' 10−15

m).
Let us look for bound states, for which

−V < E < 0.

Then, with ε = −α2

ν(r) =

{
−ν2

0 if 0 6 x 6 1

0 if x > 1
− ν2

0 < −α2 < 0.

So, for a finite square well potential, we recover a two domain equation
[
x2 ∂2

∂x2
+ 2x ∂

∂x
− `(`+ 1) + x2(ν2

0 − α2)
]
u`(x) = 0, 0 6 x 6 1

[
x2 ∂2

∂x2
+ 2x ∂

∂x
− `(`+ 1)− α2x2

]
u`(x) = 0 x > 1

Which are spherical Bessel equations. If we define β2 + α2 = ν2
0

1 and

z =

{
xβ if 0 6 x 6 1

xα if x > 1

the equations can be written
[
z2 ∂2

∂z2
+ 2z ∂

∂z
+ (z2 − `(`+ 1))

]
u`(z) = 0 inside

[
z2 ∂2

∂z2
+ 2z ∂

∂z
− (z2 + `(`+ 1))

]
u`(z) = 0 outside

the first equation is the spherical Bessel equation and the second equation is the modified spherical
Bessel equation, the respective solutions which converge in their respective domain are the spherical
Bessel function of the first kind and the modified spherical Bessel function of the second kind

u`(z) =


A` j`(z) inside

B` k`(z) outside

The spherical Bessel functions and modified spherical Bessel functions can be expressed with their
cylindrical counterparts of half integer order

j`(z) =

√
π

2z
J`+ 1

2
(z), k`(z) =

√
2

πz
K`+ 1

2
(z)

1. The number α2 give the depth of the energy level relative to the free state E = 0 (it is the ionization energy),
and β2 gives the height of the energy from the bottom of the level.
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So the radial solution is of the form

R`(x) =


A` j`(xβ) if 0 6 x 6 1

B` k`(xα) if x > 1

For x 6 1 we have excluded the spherical Bessel function of the second kind y` since it diverges at
the origin and for x > 1 we have excluded the modified spherical Bessel function of the first kind i`
since it diverges at infinity.

Continuity at x = 1 requires that

A` j`(β) = B` k`(α) ⇒ B` = A`
j`(β)

k`(α)

and continuity of the first derivative requires

A` β j
′
`(β) = B` α k

′
`(α)

that is
β j′`(β) = α k′`(α)

j`(β)

k`(α)

or √
ν2

0 − α2
j′`(
√
ν2

0 − α2)

j`(
√
ν2

0 − α2)
= α

k′`(α)

k`(α)

which provides the quantization conditions for the eigenstates and eigen-energies εn`.
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Figure 2.2 – Evolution of Energy levels with the height of the finite square well potential, for a
depth up to ν = 15. Notice how the levels 3s and 1h are reversed, as are the levels 2g and 1j, 1l and
4p, 3g and 1m, compared to the infinitely deep well.

To compare the eigenenergies with the case of the infinite-height square potential, we have plotted
the evolution of β2 (the height of the eigenvalue of Energy from the bottom of the well) with the
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n ` state infinite well
1 0 1s 1s
1 1 1p 1p
1 2 1d 1d
2 0 2s 2s
1 3 1f 1f
2 1 2p 2p
1 4 1g 1g
2 2 2d 2d
3 0 3s 1h
1 5 1h 3s
2 3 2f 2f
1 6 1i 1i
3 1 3p 3p

n ` state infinite well
1 7 2g 1k
2 4 1k 2g
3 2 3d 3d
4 0 4s 4s
1 8 1l 1l
2 5 2h 2h
3 3 3f 3f
4 1 4p 1m
1 9 1m 4p
2 6 2i 2i
1 10 1n 3g
3 4 3g 1n

Table 2.2 – The first states of the infinite square well with increasing energies. The states are labeled
by the angular momentum quantum number `, and the order number n of the zero for that `. States
that are very close in energy have the same color. The states 3g and 1m are very close.

depth ν2. We see that the lowest lying levels do increase gently with ν2 to reach the value of the
limiting case of infinite depth. The labels of the states are written next to the plot.

The sequence of states is give in table 2.2
The picture 2.3 gives a more comprehensive view with νmax = 30.
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Figure 2.3 – Evolution of Energy levels with the height of the finite square well potential, for a
depth up to ν = 30.
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Chapitre 3

Spin-orbit coupling

3.1 Introduction

3.2 Spin-orbit effect
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