Exercises from Shapiro, Teukolsky

Black Holes, White Dwarfs & Neutron Stars The Physics of Compact Objects

(3 mars 2016) G. Pasa

Table des matières

1	Star Death and the Formation of Compact Objects	2
2	Cold Equation of State Below Neutron Drip	3
3	White Dwarfs 3.1 A bit of thermodynamics	11 11 11
4	Cooling of White Dwarfs	16
5	General Relativity	17
6	The Equilibrium and Stability of Fluid Configurations	20
7	Rotation and Magnetic Fields	21
A	Rappels A.1 Statistique 1D	22 22 24
	A 3 Statistique 3D	24

Star Death and the Formation of Compact Objects

Exercice 1.1

Exercice 1.2

Exercice 1.3

Cold Equation of State Below Neutron Drip

Exercice 2.1

Les transformations de Lorentz donnent, avec les axes orientés convenablement,

$$\begin{cases} ct' &= \gamma(ct - \beta x) \\ x' &= \gamma(x - vt) \\ y' &= y \\ z' &= z \end{cases} \Leftrightarrow \begin{cases} cdt' &= \gamma(cdt - \beta dx) \\ dx' &= \gamma(dx - vdt) \\ dy' &= y \\ dz' &= z \end{cases}$$

et pour dt = 0, on a

$$d^3x' = \gamma d^3x$$

Pour l'impulsion, on a

$$\begin{cases} E' &= \gamma (E - \beta c p_x) \\ c p'_x &= \gamma (c p_x - \beta E) \\ p'_y &= p_y \\ p'_z &= p_z \end{cases}$$

d'où

$$\frac{E'}{\gamma} + \beta c p_x = E$$

dans cp'_r

$$cp'_x = \gamma cp_x - \beta\gamma(\frac{E'}{\gamma} + \beta cp_x) = \gamma(1 - \beta^2)cp_x - \beta E'$$

et

$$\begin{cases} cdp_x' &= \frac{1}{\gamma}cdp_x - \beta dE' \\ dp_y' &= dp_y \\ dp' &= dp_z \end{cases}$$

Or dans le référentiel \mathcal{R}' , le volume de l'espace des impulsions est pris à énergie constante E' = cste. Une surface d'énergie donnée dans l'espace des impulsion de \mathcal{R}' ne correspond pas à une énergie constante

de \mathcal{R} . Aussi a-t-on dE' = 0, bien que $dE \neq 0$. Il s'agit du même volume de l'espace de phase, mais qui ne correspond pas à la même surface d'énergie constante. ¹, de sorte que

$$d^3p' = \frac{1}{\gamma}d^3p$$

Ainsi

$$d^3x'd^3p' = d^3xd^3p.$$

Exercice 2.2

Soit

$$\phi(x) = \frac{1}{8\pi^2} (x\sqrt{1+x^2}(\frac{2}{3}x^2 - 1) + \ln(x + \sqrt{1+x^2}))$$
$$\chi(x) = \frac{1}{8\pi^2} (x\sqrt{1+x^2}(2x^2 + 1) - \ln(x + \sqrt{1+x^2}))$$

1. Pour le cas non relativiste, $x \ll 1$ et on a

$$\sqrt{1+x^2} = 1 + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{16} - \frac{5}{128}x^8 + O(x^{10})$$

et

$$x\sqrt{1+x^2}(\frac{2}{3}x^2-1) = -x + \frac{x^3}{6} + \frac{11}{24}x^5 - \frac{7}{48}x^7 + \frac{31}{384}x^9 + O(x^{10})$$
$$x\sqrt{1+x^2}(2x^2+1) = x + \frac{5}{2}x^3 + \frac{7}{8}x^5 - \frac{3}{16}x^7 + \frac{11}{128}x^9 + O(x^{10})$$

enfin

$$\ln(x + \sqrt{1 + x^2}) = x - \frac{x^3}{6} + \frac{3}{40}x^5 - \frac{5}{112}x^7 + \frac{35}{1152}x^9 + O(x^{10})$$

Ainsi

$$\phi(x) = \frac{1}{8\pi^2} \left(\frac{8}{15} x^5 - \frac{4}{21} x^7 + \frac{1}{9} x^9 + O(x^{10}) \right)$$
$$\chi(x) = \frac{1}{8\pi^2} \left(\frac{16}{6} x^3 + \frac{4}{5} x^5 - \frac{1}{7} x^7 + \frac{1}{18} x^9 + O(x^{10}) \right)$$

Soit

$$\begin{split} \phi(x) &= \frac{1}{15\pi^2} \left(x^5 - \frac{5}{14} x^7 + \frac{5}{24} x^9 + O(x^{10}) \right) \\ \chi(x) &= \frac{1}{3\pi^2} \left(x^3 + \frac{3}{10} x^5 - \frac{3}{56} x^7 + \frac{1}{48} x^9 + O(x^{10}) \right) \end{split}$$

^{1.} Dans la littérature, on avance l'argument que "dans le référentiel de la particule", dE'=0. Or, lors d'une transformation de Lorentz quelconque, le nouveau référentiel n'est généralement pas le référentiel de la particule considérée. Ainsi, on ne peut pas affirmer que dE'=0, lorsque l'on passe d'un référentiel \mathcal{R} vers un référentiel \mathcal{R}' pour cette raison. En effet, il n'y aurait alors pas plus de raison pour que dE'=0 que pour dE=0.

2. Pour le cas ultrarelativiste, $x \to \infty$ et on a

$$\ln(x + \sqrt{1 + x^2}) \simeq \ln(2x)$$

et avec

$$\sqrt{1+x^2} = x\sqrt{1+\frac{1}{x^2}} \simeq x(1+\frac{1}{2x^2}-\frac{1}{8x^4}+O(x^{-6}))$$

$$x\sqrt{1+x^2}\left(\frac{2}{3}x^2-1\right) \simeq \left(x^2+\frac{1}{2}-\frac{1}{8x^2}\right)\left(\frac{2}{3}x^2-1\right) \simeq \frac{2}{3}x^4-\frac{2}{3}x^2$$
$$x\sqrt{1+x^2}(2x^2+1) \simeq \left(x^2+\frac{1}{2}-\frac{1}{8x^2}\right)(2x^2+1) \simeq 2x^4+2x^2$$

d'où

$$\phi(x) = \frac{1}{12\pi^2} \left(x^4 - x^2 + \frac{3}{2} \ln(2x) \right)$$
$$\chi(x) = \frac{1}{4\pi^2} \left(x^4 + x^2 - \frac{1}{2} \ln(2x) \right)$$

Si

$$P = K\rho^{\Gamma} = \frac{mc^2}{\lambda^3}\phi(x) = \frac{mc^2(mc)^3}{\hbar^3}\phi(x)$$
 (2.3.21)

avec $\rho = nm_u\mu_e$ et $n = \frac{x^3}{3\pi\lambda^3}$, on a

$$K\left(\frac{m_u\mu_e x^3}{3\pi^2\lambda^3}\right)^{\Gamma} = \frac{mc^2}{\kappa\pi^2\lambda^3}x^n$$

avec dans le cas non relativiste n=5 et $\kappa=15$ et dans le cas relativiste n=4 et $\kappa=12$. On a ainsi (a) cas non-relativiste : $3\Gamma=5$ (donc $\Gamma=\frac{5}{3}$) et avec $m=m_e$

$$K \left(\frac{m_u \mu_e}{3\pi^2 \lambda^3} \right)^{\frac{5}{3}} = \frac{mc^2}{15\pi^2 \lambda^3} \iff K = \frac{3^{\frac{2}{3}} \pi^{\frac{4}{3}}}{5} \frac{\hbar^2}{m_e m_u^{\frac{5}{3}} \mu_e^{\frac{5}{3}}}$$

(b) cas relativiste : $3\Gamma = 4$ (donc $\Gamma = \frac{4}{3}$) et avec $m = m_e$

$$K \left(\frac{m_u \mu_e}{3\pi^2 \lambda^3} \right)^{\frac{4}{3}} = \frac{mc^2}{12\pi^2 \lambda^3} \iff K = \frac{3^{\frac{1}{3}} \pi^{\frac{2}{3}}}{4} \frac{c\hbar}{m_u^{\frac{4}{3}} \mu_e^{\frac{4}{3}}}$$

Exercice 2.3

De l'équation (2.1.7) on a

$$P = n^2 \frac{\partial}{\partial n} \left(\frac{\epsilon}{n} \right)$$

et de (2.3.4)

$$n = \frac{1}{3\pi\lambda^3}x^3 \quad \Leftrightarrow \quad dx = \frac{\pi\lambda^3}{x^2}dn$$

Ainsi

$$\partial_n = \partial_n(x)\partial_x = \frac{\pi\lambda^3}{x^2}\partial_x$$

Enfin avec (2.3.7) on a

$$\epsilon = \frac{mc^2}{\lambda^3} \chi$$

et

$$\chi = \frac{1}{8\pi^2} \left(x\sqrt{1+x^2}(1+2x^2) - \ln(x+\sqrt{1+x^2}) \right)$$

et

$$\frac{\epsilon}{n} = \frac{3\pi mc^2}{x^3} \chi$$

On trouve alors

$$\partial_n \left(\frac{\epsilon}{n} \right) = \frac{\pi \lambda^3}{x^2} \partial_x \left(\frac{3\pi mc^2}{x^3} \chi \right)$$
$$= \frac{3\pi^2 \lambda^3 mc^2}{x^6} (x\chi' - 3\chi).$$

Or

$$\chi' = \frac{1}{8\pi^2} \left(\sqrt{1+x^2} (1+2x^2) + 4x^2 \sqrt{1+x^2} + \frac{2x^2 (1+2x^2)}{2\sqrt{1+x^2}} - \frac{1+\frac{x}{\sqrt{1+x^2}}}{x+\sqrt{1+x^2}} \right)$$

$$= \frac{1}{8\pi^2} \left(\sqrt{1+x^2} (1+6x^2) + \frac{x^2+2x^4-1}{\sqrt{1+x^2}} \right)$$

$$= \frac{1}{8\pi^2} \left(\sqrt{1+x^2} (1+6x^2) + \frac{(2x^2-1)(x^2+1)}{\sqrt{1+x^2}} \right)$$

$$= \frac{1}{8\pi^2} \left(\sqrt{1+x^2} (1+6x^2) + \frac{(2x^2-1)(x^2+1)}{\sqrt{1+x^2}} \right)$$

$$= \frac{1}{8\pi^2} \left(\sqrt{1+x^2} (1+6x^2+2x^2-1) \right)$$

$$= \frac{1}{8\pi^2} 8x^2 \sqrt{1+x^2}$$

De sorte que

$$x\chi - 3\chi = \frac{1}{8\pi^2} \left(x\sqrt{1+x^2}(2x^2 - 3) + 3\ln(x + \sqrt{1+x^2}) \right)$$
$$= \frac{3}{8\pi^2} \left(x\sqrt{1+x^2}(\frac{2}{3}x^2 - 1) + \ln(x + \sqrt{1+x^2}) \right)$$
$$= 3\phi(x)$$

Ainsi

$$P = \left(\frac{1}{3\pi\lambda^{3}}x^{3}\right)^{2} \frac{3\pi^{2}\lambda^{3}mc^{2}}{x^{6}}3\phi(x)$$

soit

$$P = \frac{mc^2}{\lambda^3}\phi(x).$$

Exercice 2.4

On a

$$\begin{split} \epsilon + P &= \frac{mc^2}{\lambda^3} (\chi(x) + \phi(x)) \\ &= \frac{mc^2}{8\pi^2\lambda^3} \sqrt{1 + x^2} \frac{8}{3} x^3 \\ &= mc^2 \sqrt{1 + x^2} \frac{x^3}{3\pi^2\lambda^3} \\ &= nmc^2 \sqrt{1 + x^2} \end{split}$$

or

$$x = \frac{p_F}{mc} \iff \sqrt{1 + x^2} = \sqrt{1 + \frac{p_F^2}{m^2 c^2}} = \frac{1}{mc} \sqrt{m^2 c^2 + p_F^2} = \frac{E_F}{mc^2}$$

Ainsi, on a bien

$$\frac{\epsilon + P}{n} = E_F.$$

Exercice 2.5

Le nombre d'électron par nucléon pour l'hydrogène est $Y_H \simeq 1$ et pour les autres éléments $Y \simeq \frac{1}{2}$. Ainsi, si X est la proportion d'hydrogène et 1-X celle des autres éléments, la masse molaire moyenne par électron est alors

$$\mu_e = \frac{\frac{m_B}{m_u}}{XY_H + (1 - X)Y} \simeq \frac{1}{X + (1 - X)\frac{1}{2}} = \frac{2}{X + 1}.$$

Exercice 2.6

(a) Dans le cas non relativiste, on a $E = \frac{p^2}{2m}$ et

$$\epsilon = \frac{4\pi g}{h^3} \int_0^{p_F} \frac{p^2}{2m} p^2 dp = \frac{4\pi g}{5h^3} \frac{p_F^5}{2m}$$

De plus, on a

$$n = \frac{4\pi g}{h^3} \int_0^{p_F} p^2 dp = \frac{4\pi g}{3h^3} p_F^3$$

Ainsi, l'énergie moyenne par électron est

$$E = \frac{\epsilon}{n} = \frac{3}{5} \frac{p_F^2}{2m}$$

soit

$$E = \frac{3}{5}E_F.$$

(b) Dans le cas relativiste, on a

$$\epsilon = \frac{4\pi g}{h^3} \int_0^{p_F} (\sqrt{p^2 c^2 + m^2 c^4} - mc^2) p^2 dp = \frac{4\pi g}{h^3} (mc^2) (mc)^3 \int_0^{x_F} x^2 (\sqrt{x^2 + 1} - 1) dx$$

Exercice 2.7

(a) La distribution de Boltzman est

$$f(E) = e^{\beta(\mu - E - mc^2)}$$

(b) On a

$$\frac{\epsilon + P}{n} - Ts = \mu$$

or, du point précédent

$$\epsilon = n(mc^2 + \frac{3}{2}kT)$$
 et $P = nkT$

Ainsi

$$\frac{\epsilon+P}{n}=mc^2+\frac{5}{2}kT.$$

On obtient alors

$$\frac{\epsilon + P}{n} - Ts = \mu \quad \Leftrightarrow \quad \frac{5}{2}kT - Ts = \mu - mc^2$$

et en divisant par kT

$$\frac{5}{2} - \frac{s}{k} = \frac{\mu - mc^2}{kT}.$$

Or

$$n = g \left(\frac{mkT}{2\pi\hbar^2}\right)^{\frac{3}{2}} e^{\beta(\mu - mc^2)}$$

Ainsi

$$\frac{mc^2 - \mu}{kT} = \ln \left[\frac{g}{n} \left(\frac{mkT}{2\pi\hbar^2} \right)^{\frac{3}{2}} \right]$$

de sorte que

$$\boxed{\frac{5}{2} = \frac{s}{k} + \ln\left[\frac{g}{n} \left(\frac{mkT}{2\pi\hbar^2}\right)^{\frac{3}{2}}\right]}$$

Exercice 2.8

Exercice 2.9

On a

$$n = g \frac{4\pi}{h^3} e^{\beta \mu} \int_0^\infty p^2 e^{-\beta E(p)} dp$$

avec

$$\begin{cases} \text{relativiste}: & E = \sqrt{p^2c^2 + m^2c^4} \\ \text{non relativiste}: & E = \frac{p^2}{2m} \end{cases}$$

En posant

$$\begin{cases} u = e^{-\beta E} \\ dv = p^2 dp \end{cases} \Leftrightarrow \begin{cases} du = -\beta \frac{dE}{dp} e^{-\beta E} \\ v = \frac{1}{3} p^3 \end{cases}$$

On obtient

$$n = \frac{1}{3}\beta K \int_0^\infty p^3 \frac{dE}{dp} e^{-\beta E} dp$$

Or, $\frac{dE}{dp}=v$ dans le cas relativiste et non relativiste,

$$\begin{cases} \text{relativiste}: & \frac{dE}{dp} = \frac{pc^2}{\sqrt{p^2c^2 + m^2c^4}} = \frac{pc^2}{E} = v \\ \text{non relativiste}: & \frac{dE}{dp} = \frac{2p}{2m} = v \end{cases}$$

ainsi

$$nkT = \frac{1}{3}K \int_0^\infty pve^{-\beta E} p^2 dp = P$$

Exercice 2.10

Exercice 2.11

Exercice 2.12

Exercice 2.13

Exercice 2.14

Exercice 2.15

Exercice 2.16

Exercice 2.17

Exercice 2.18

Exercice 2.19

Exercice 2.20

Exercice 2.21

Exercice 2.24

White Dwarfs

3.1 A bit of thermodynamics

Le premier principe de la thermodynamique, pour un gaz s'écrit (dans cette section p est la pression du gaz)

$$dU = Tds - pdV$$

Avec $\epsilon = nU$ on a

$$dU = \frac{d\epsilon}{n} - \frac{\epsilon}{n^2} dn \iff d\epsilon = ndU + \frac{\epsilon}{n} dn$$

De plus, avec $dV=d(\frac{1}{n})=-\frac{dn}{n^2},$ on obtient d'où

$$d\epsilon = nTds \frac{p}{n}dn + \frac{\epsilon}{n}dn \iff \boxed{d\epsilon = nTds + \frac{p+\epsilon}{n}dn.}$$

L'enthalpie $h = U + pV = \frac{\epsilon}{n} + \frac{p}{n} = \frac{\epsilon + p}{n}$ s'écrit

$$h = U + pV \Leftrightarrow dh = dU + pdV + Vdp = dU - \frac{p}{n^2}dn + \frac{dp}{n}$$

On trouve alors

$$dh = \frac{d\epsilon}{n} - \frac{\epsilon}{n^2} dn - \frac{p}{n^2} dn + \frac{dp}{n}$$
$$= Tds + \frac{p+\epsilon}{n^2} dn - \frac{\epsilon}{n^2} dn - \frac{p}{n^2} dn + \frac{dp}{n}$$

soit

$$dh = Tds + \frac{dp}{n}$$

3.2 Equilibre des étoiles

Avec

$$m(r) = \int_0^r 4\pi y^2 \rho \, dy \iff \boxed{\frac{dm}{dr} = 4\pi r^2 \rho}$$

Soit une coquille sphérique mince d'épaisseur dr et de rayon r. La pression p(r) en r est donnée par

$$p(r) = p(r + dr) + \frac{dF}{dA}$$

où dF est la force exercée par un petit cylindre de base dA et de hauteur dr de densité ρ

$$dF = \frac{Gm(r)dm}{r^2} \quad \Leftrightarrow \quad dm = \rho \, dA \, dr$$

d'où

$$p(r) = p(r + dr) + \frac{Gm\rho}{r^2}dr \quad \Leftrightarrow \quad \boxed{\frac{dP}{dr} = -\frac{Gm\rho}{r^2}}$$

En isolant m et en dérivant, on obtient

$$-\frac{r^2}{\rho}\frac{dP}{dr} = Gm \quad \Leftrightarrow \quad G\frac{dm}{dr} = -\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP}{dr}\right)$$

que l'on peut récrire

$$4\pi G r^2 \rho = -\frac{d}{dr} \left(\frac{r^2}{\rho} \frac{dP}{dr} \right)$$

Exemple 1 (Densité constante)

Si $\rho = \text{cste}$ on obtient

$$4\pi Gr^2\rho^2 = -2rP' - r^2P'' \iff rP'' + 2P' + 4\pi Gr\rho^2 = 0$$

Avec les conditions P(R)=0 et $P(0)\in\mathbb{R}$, on peut résoudre le problène en posant u=P' l'équation homogène devient

$$ru' + 2u = 0 \iff u = \frac{K}{r^2}$$

et en variant la constante

$$u' = \frac{K'r^2 - 2Kr}{r^4} = \frac{K'r - 2K}{r^3}$$

dans l'équation avec second membre

$$\frac{K'r - 2K}{r^2} + 2u + 4\pi Gr\rho^2 = 0 \iff \frac{K'}{r} = -4\pi Gr\rho^2$$

de sorte que

$$K = -\frac{4\pi G\rho^2}{3}r^3 + C$$

Ainsi

$$u(r) = P' = \frac{C}{r^2} - \frac{4}{3}\pi G \rho^2 r$$

et on obtient

$$P = \frac{C_1}{r} - \frac{2}{3}\pi G\rho^2 r^2 + C_2$$

Avec $P(0) \in \mathbb{R}$ on a $C_1 = 0$ et avec P(R) = 0

$$C_2 = \frac{2}{3}\pi G\rho^2 R^2$$

$$P = \frac{2}{3}\pi G\rho^2 (R^2 - r^2).$$

De

$$P = n^2 \partial_n \left(\frac{\epsilon}{n}\right) = n \partial_n \epsilon - \epsilon$$

avec $\epsilon' = \epsilon - nmc^2$ on a

$$P = n\partial_n \epsilon' - \epsilon'$$

et

$$U = 4\pi \int_0^R \epsilon' r^2 dr$$

or

$$\epsilon' = \frac{P}{\Gamma - 1}$$

Ainsi

$$U = 4\pi \int_0^R \frac{P}{\Gamma - 1} r^2 dr$$

Mais comme

$$W = -3\pi \int_0^R P4\pi r^2 dr$$

On peut écrire

$$U = \frac{W}{-3(\Gamma - 1)} \iff \boxed{W = -3(\Gamma - 1)U}$$

Exercice 3.1

En statistique de Boltzmann, on a, pour les trois degrés de libertés de translation

$$\epsilon_B' = \frac{3}{2}nkT$$

D'autre part

$$\epsilon' = \frac{P}{\Gamma - 1}$$

et P = nkT en statistique de Boltzmann. Ainsi, on a

$$U = 4\pi \int_{0}^{R} \frac{nkT}{\Gamma - 1} r^{2} dr = \frac{4}{3}\pi R^{3} \frac{nkT}{\Gamma - 1} = V \frac{nkT}{\Gamma - 1}.$$

Ainsi

$$u = \frac{U}{V} = \frac{nkT}{\Gamma - 1} \iff (\Gamma - 1)u = nkT$$

donc

$$\epsilon_B' = \frac{3}{2}(\Gamma - 1)u$$

et en multipliant les deux membres par le volume du gaz

$$E_T = \frac{3}{2}(\Gamma - 1)U.$$

Ensuite, avec

$$W = -3(\Gamma - 1)U \iff (\Gamma - 1)U = \frac{-W}{3}$$

on a

$$E_T = \frac{3}{2} - \frac{W}{3} = -\frac{1}{2}W.$$

Avec $P = K \rho^{\Gamma}$ on a

$$dP = K\Gamma \rho^{\Gamma - 1} d\rho \iff d\rho = \frac{dP}{K\Gamma \rho^{\Gamma - 1}}.$$

Ainsi

$$\begin{split} \frac{d}{dr} \left(\frac{P}{\rho} \right) &= \frac{1}{\rho} \frac{dP}{dr} - \frac{P}{\rho^2} \frac{d\rho}{dr} \\ &= \frac{1}{\rho} \frac{dP}{dr} - \frac{P}{\rho^2} \frac{1}{K\Gamma \rho^{\Gamma - 1}} \frac{dP}{dr} \\ &= \frac{1}{\rho} \frac{dP}{dr} \left(1 - \frac{P}{\Gamma P} \right) \\ &= -\frac{Gm}{r^2} \frac{\Gamma - 1}{\Gamma} \end{split}$$

d'où

$$d\left(\frac{P}{\rho}\right) = \frac{\Gamma - 1}{\Gamma} Gm \, d\left(\frac{1}{r}\right).$$

Exercice 3.2

Avec

$$W = \int_0^R \frac{dP}{dr} 4\pi r^3 dr = -3 \int_0^R 4\pi r^2 P dr$$

 et

$$\frac{dm}{dr} = 4\pi \rho r^2 \iff dm = 4\pi \rho r^2 dr$$

et enfin

$$\frac{dP}{dr} = -\frac{Gm\rho}{r^2}$$

on trouve, en intégrant par parties et avec M(0)=0 et P(R)=0

$$W = 3 \int_0^R m \, d\left(\frac{P}{\rho}\right) = 3 \frac{\Gamma - 1}{\Gamma} G \int_0^R m^2 \, d\left(\frac{1}{r}\right)$$

En intégrant par parties, on obtient

$$W = 3\frac{\Gamma - 1}{\Gamma}G\left[\frac{m^2}{r}\bigg|_0^R - 2\int_0^R \frac{m}{r}dm\right]$$

Ainsi

$$\begin{split} W &= 3\frac{\Gamma-1}{\Gamma}\frac{GM^2}{R} - 6\frac{\Gamma-1}{\Gamma}G\int_0^R\frac{m}{r}4\pi\rho r^2dr\\ &= 3\frac{\Gamma-1}{\Gamma}\frac{GM^2}{R} - 6\frac{\Gamma-1}{\Gamma}G\int_0^Rm\rho 4\pi rdr\\ &= 3\frac{\Gamma-1}{\Gamma}\frac{GM^2}{R} - 6\frac{\Gamma-1}{\Gamma}G\int_0^R\frac{dP}{dr}\frac{r^2}{-G}4\pi rdr\\ &= 3\frac{\Gamma-1}{\Gamma}\frac{GM^2}{R} + 6\frac{\Gamma-1}{\Gamma}\int_0^R\frac{dP}{dr}4\pi r^3dr\\ &= 3\frac{\Gamma-1}{\Gamma}\frac{GM^2}{R} + 6\frac{\Gamma-1}{\Gamma}W \end{split}$$

On a alors

$$W\left(1-6\frac{\Gamma-1}{\Gamma}\right)=3\frac{\Gamma-1}{\Gamma}\frac{GM^2}{R}$$

d'où

$$W = -3\frac{\Gamma - 1}{5\Gamma - 6}\frac{GM^2}{R}.$$
 (3.2.11)

Cooling of White Dwarfs

General Relativity

Exercice 5.1

Exercice 5.2

Exercice 5.3

Exercice 5.4

Exercice 5.5

Si la masse volumique est constante, on a

$$M = \frac{4\pi}{3}R^3\rho \iff m = \frac{4\pi}{3}r^3 = \frac{M}{R^3}r^3$$

L'équation de la pression (Oppenheimer-Volkoff) s'écrit

$$\frac{dP}{dr} = -\frac{\rho m}{r^2} \left(1 + \frac{P}{\rho} \right) \left(1 + \frac{4\pi P r^3}{m} \right) \left(1 - \frac{2m}{r} \right)^{-1} \tag{5.7.6}$$

soit

$$\frac{d}{dr}\left(\frac{P}{\rho}\right) = -\frac{M}{R^3}r\left(1 + \frac{P}{\rho}\right)\left(1 + 3\frac{P}{\rho}\right)\left(1 - \frac{2M}{R^3}r^2\right)^{-1}.$$

En posant $\kappa = \frac{P}{\rho}$, on obtient

$$\frac{d\kappa}{(1+\kappa)(1+3\kappa)} = -\frac{M}{R^3} \frac{r}{1-\frac{2M}{P^3}r^2} dr$$

et avec $\frac{1}{(1+\kappa)(1+3\kappa)}=\frac{1}{2}(-\frac{1}{1+\kappa}+\frac{3}{1+3\kappa}),$ on obtient, en intégrant de r à R

$$-\ln\left(\frac{1+3\kappa}{1+\kappa}\right) = \frac{1}{2}\ln\left(\frac{1-\frac{2M}{R}}{1-\frac{2M}{R^3}r^2}\right)$$

où l'on a utilisé P(R) = 0, soit $\kappa(R) = 0$. Ainsi

$$\frac{1+\kappa}{1+\kappa} = \sqrt{\frac{1 - \frac{2M}{R}}{1 - \frac{2M}{P^3}r^2}}$$

et en isolant κ

$$(1+\kappa)\sqrt{1-\frac{2M}{R^3}r^2} = (1+3\kappa)\sqrt{1-\frac{2M}{R}}.$$

on obtient

$$\kappa = \frac{P}{\rho} = \frac{\sqrt{1 - \frac{2Mr^2}{R^3}} - \sqrt{1 - \frac{2M}{R}}}{3\sqrt{1 - \frac{2M}{R}} - \sqrt{1 - \frac{2Mr^2}{R^3}}}.$$
 (5.7.11)

Enfin partant de l'équation

$$\frac{d\phi}{dr} = -\frac{d}{dr} \left(\frac{P}{\rho}\right) \left(1 + \frac{P}{\rho}\right)^{-1} \tag{5.7.7}$$

avec $\kappa = \frac{P}{\rho}$ on a

$$d\phi = -d\kappa (1+\kappa)^{-1}$$

d'où, avec $\kappa(R) = 0$

$$\phi(R) - \phi(r) = \ln(1+\kappa) \Leftrightarrow e^{-\phi} = e^{-\phi(R)}(1+\kappa).$$

En utilisant la relation

$$\phi(R) = \frac{1}{2} \ln \left(1 - \frac{2M}{R} \right) \iff e^{\phi(R)} = \sqrt{1 - \frac{2M}{R}} \quad (5.7.10)$$

Or

$$\begin{aligned} 1+\kappa &= 1 + \frac{\sqrt{1 - \frac{2Mr^2}{R^3}} - \sqrt{1 - \frac{2M}{R}}}{3\sqrt{1 - \frac{2M}{R}} - \sqrt{1 - \frac{2Mr^2}{R^3}}} \\ &= \frac{2\sqrt{1 - \frac{2M}{R}}}{3\sqrt{1 - \frac{2M}{R}} - \sqrt{1 - \frac{2Mr^2}{R^3}}} \end{aligned}$$

ainsi

$$e^{-\phi(R)}(1+\kappa) = \frac{2}{3\sqrt{1-\frac{2M}{R}} - \sqrt{1-\frac{2Mr^2}{R^3}}}$$

de sorte que

$$e^{\phi} = \frac{3}{2}\sqrt{1 - \frac{2M}{R}} - \frac{1}{2}\sqrt{1 - \frac{2Mr^2}{R^3}}$$
 (5.7.12)

Finalement, en posant

$$\left. \frac{P}{\rho} \right|_{r=0} < \infty \iff \frac{3\sqrt{1 - \frac{2M}{R}} - 1}{1 - \sqrt{1 - \frac{2M}{R}}} > 0$$

on obtient

$$\begin{split} \frac{R}{2M}\left(3\sqrt{1-\frac{2M}{R}}-1\right)\left(1+\sqrt{1-\frac{2M}{R}}\right) &> 0 \\ 2\sqrt{1-\frac{2M}{R}} &> 1-3\left(1-\frac{2M}{R}\right) \\ \sqrt{1-\frac{2M}{R}} &> \frac{3M}{R}-1 \end{split}$$

En élevant au carré

$$1 - \frac{2M}{R} > \frac{9M^2}{R^2} - \frac{6M}{R} + 1$$

$$\frac{4M}{R} > \frac{9M^2}{R^2} \iff \boxed{\frac{8}{9} > \frac{2M}{R}}.$$

The Equilibrium and Stability of Fluid Configurations

Rotation and Magnetic Fields

Annexe A

Rappels

A.1Statistique 1D

Dans une longueur L les vecteurs d'état pour des états propres qui s'annulent aux extrémités sont

$$k_j = \frac{\pi}{L}j, \quad \forall j \in \mathbb{N}$$

et les impulsions

$$p_j = \hbar k_j = \frac{h}{2L} j = j\Delta p$$

avec $\Delta p=\frac{h}{2L}.$ De plus, $E^2=p^2c^2+m^2c^4$ et dans le régime non relativiste

$$E = mc^2 + \frac{p^2}{2m} + \dots$$

Ainsi $pc = \sqrt{E^2 - m^2 c^4}$ et dans le régime non relativiste

$$p = \sqrt{2m(E - mc^2)}$$
, avec $E \in [mc^2, +\infty[$.

On a alors

$$dp = \sqrt{2m} \frac{dE}{2\sqrt{E - mc^2}}$$

La densité d'état entre p et p + dp est

$$dn(p) = \frac{dN}{L} = \frac{1}{L}\frac{dp}{\Delta p} = \frac{2}{h}dp$$

et en fonction de l'énergie

$$dn(E) = \frac{\sqrt{2m}}{h} \frac{dE}{\sqrt{E - mc^2}}$$

1. Statistique de Fermi-Dirac Si chaque état est dégénéré g fois, et que le nombre total de particules est N et la densité de particule $n=\frac{N}{L}$, alors, pour des fermions d'énergie de Fermi E_F à T=0 avec une distribution

$$f(E) = \begin{cases} 1 & \text{si } E < \mu - mc^2 \\ 0 & \text{si } E > \mu - mc^2 \end{cases}$$

et ave $\mu = E_F + mc^2$, pour T = 0, on trouve

$$n_F = g \frac{\sqrt{2m}}{h} \int_{mc^2}^{E_F} \frac{dE}{\sqrt{E - mc^2}}$$

soit

$$n_F = 2g \frac{\sqrt{2m}}{h} \sqrt{E_F - mc^2}.$$

La densité d'énergie pour des fermions à T=0

$$\epsilon_F = \int_{mc^2}^{E_F} E \, dn(E) = \frac{2g}{h} \int_0^{p_F} (mc^2 + \frac{p^2}{2m}) \, dp$$

soit

$$\epsilon_F = \frac{2g}{3h}(E_F + 2mc^2)\sqrt{2m(E_F - mc^2)}.$$

2. Statistique de Boltzman Pour une statistique de Boltzman, la distribution de Boltzman s'écrit

$$f(E) = e^{\beta(\mu - E)} = e^{\beta(\mu - mc^2 - \frac{p^2}{2m})}$$

on obtient, avec $\beta = \frac{1}{kT}$ et avec $K = \frac{p^2}{2m}$

$$n_B = g \frac{\sqrt{2m}}{h} \int_{mc^2}^{\infty} \frac{e^{\beta(\mu - mc^2 - K)}}{\sqrt{E - mc^2}} dE = g \frac{\sqrt{2m}}{h} e^{\beta(\mu - mc^2)} \int_0^{\infty} \frac{e^{-\beta K}}{\sqrt{K}} dK$$

en posant $t = \sqrt{K}$ on a

$$\int_0^\infty \frac{e^{-\beta K}}{\sqrt{K}} dK = \int_0^\infty \frac{e^{-\beta t^2}}{t} 2t \, dt = 2\sqrt{\frac{\pi}{\beta}} = 2\sqrt{\pi kT}$$

Ainsi

$$n_B = \frac{2g}{h} \sqrt{2\pi mkT} e^{\beta(\mu - mc^2)}.$$

Enfin pour la densité d'énergie

$$\epsilon_B = \int_{mc^2}^{\infty} E \, dn(E)$$

$$= g \frac{\sqrt{2m}}{h} e^{\beta(\mu - mc^2)} \int_0^{\infty} (mc^2 + K) \frac{e^{-\beta K}}{\sqrt{K}} dK$$

$$= g \frac{\sqrt{2m}}{2h} e^{\beta(\mu - mc^2)} \sqrt{\pi kT} (4mc^2 + kT)$$

soit

$$\overline{\epsilon_B = g \frac{\sqrt{2\pi mkT}}{2h} (4mc^2 + kT)e^{\beta(\mu - mc^2)}}$$

 et

$$\frac{\epsilon_B}{n_B} = \frac{1}{4}(4mc^2 + kT) = mc^2 + \frac{1}{4}kT$$

A.2 Statistique 2D

Avec $p_2 = \hbar k_2 = \hbar \frac{\pi}{L}(n_x, n_y)$, pour $\{n_x, n_y\} \subset \mathbb{N}$ on a

$$p^2 = \hbar^2 k^2 = \frac{h^2}{4L}(n_x^2 + n_y^2) = \frac{h^2}{4L}n^2.$$

Le nombre d'état correspondant à une valeur entre n et n+dn est

$$dN = \frac{1}{4} 2\pi n \, dn = \frac{1}{4} 2\pi \frac{2L}{h} p \frac{2L}{h} \, dp = \pi \frac{2A}{h^2} p \, dp$$

soit une densité d'état

$$dn(p) = \frac{2\pi}{h^2} p \, dp$$

En prenant en compte la dégénérescence g des états et le taux d'occupation f(p)

$$dn(p) = g\frac{2\pi}{h^2}pf(p)\,dp$$

et

$$dn(E) = g\frac{4\pi m}{h^2}f(E) dE$$

A.3 Statistique 3D

Avec $p = \hbar k$ et $k = \frac{\pi}{L}(n_x, n_y, n_z)$ on a

$$p^2 = \frac{h^2}{4L^2}n^2$$

et le nombre d'état entre n et n + dn

$$dN = \frac{1}{8}4\pi n^2 dn = \frac{1}{8}4\pi \frac{8L^3}{h^3} p^2 dp$$

d'où une densité d'état

$$dn(p) = \frac{4\pi}{h^3} p^2 dp$$

En prenant en compte la dégénérescence des niveaux et le taux d'occupation, on a

$$dn(p) = \frac{4\pi}{h^3}gf(p)p^2dp$$

et

$$dn(E) = g \frac{2\pi}{h^3} (2m)^{\frac{3}{2}} \sqrt{E - mc^2} f(E) dE$$

1. Statistique de Fermi-Dirac. La densité de particules T=0 devient

$$n_F = g \frac{4\pi}{h^3} m \int_0^{p_F} p^2 dp$$

soit

$$n_F = g \frac{4\pi}{3h^3} p_F^3 = g \frac{4\pi}{3h^3} (2m(E_F - mc^2))^{\frac{3}{2}}$$

et la densité d'énergie

$$\epsilon_F = g \frac{2\pi}{h^3} (2m)^{\frac{3}{2}} \int_{mc^2}^{E_F} E\sqrt{E - mc^2} dE$$

d'où

$$\epsilon_F = g \frac{2\pi}{h^3} (2m)^{\frac{3}{2}} \frac{2}{15} (E_F - mc^2)^{\frac{3}{2}} (3E_F + 2mc^2)$$

soit

$$\epsilon_F = g \frac{4\pi}{15h^3} (2m)^{\frac{3}{2}} (E_F - mc^2)^{\frac{3}{2}} (3E_F + 2mc^2)$$

et

$$\boxed{\frac{\epsilon_F}{n_F} = \frac{2}{5}mc^2 + \frac{3}{5}E_F.}$$

2. Statistique de Boltzman. On obtient la densité de particules

$$n_B = g \frac{2\pi}{h^3} (2m)^{\frac{3}{2}} \int_0^\infty \sqrt{K} e^{\beta(\mu - mc^2 - K)} dK$$

soit

$$n_B = g \frac{2\pi}{h^3} (2m)^{\frac{3}{2}} e^{\beta(\mu - mc^2)} \frac{1}{2} kT \sqrt{\pi kT}$$

$$n_B = g \left(\frac{mkT}{2\pi\hbar^2}\right)^{\frac{3}{2}} e^{\beta(\mu - mc^2)}$$

et la densité d'énergie

$$\epsilon_B = g \frac{2\pi}{h^3} (2m)^{\frac{3}{2}} \int_0^\infty (mc^2 + K) \sqrt{K} e^{\beta(\mu - mc^2 - K)} dK$$

et par intégrations par parties on obtient

$$\epsilon_B = g \frac{2\pi}{h^3} (2m)^{\frac{3}{2}} \frac{1}{2} kT \sqrt{\pi kT} (mc^2 + \frac{3}{2} kT) e^{\beta(\mu - mc^2)}$$

soit

$$\epsilon_B = g \left(\frac{mkT}{2\pi\hbar^2}\right)^{\frac{3}{2}} (mc^2 + \frac{3}{2}kT)e^{\beta(\mu - mc^2)}$$

d'où

$$\boxed{\frac{\epsilon_B}{n_B} = mc^2 + \frac{3}{2}kT.}$$

Calculons encore la pression

$$P = \frac{g}{3} \frac{4\pi}{mh^3} e^{\beta(\mu - mc^2)} \int_0^\infty p^4 e^{-\beta \frac{p^2}{2m}} dp$$

d'où

$$\begin{split} P &= g \frac{4\pi}{3mh^3} e^{\beta(\mu - mc^2)} \frac{3}{8} 4m^2 k^2 T^2 \sqrt{2\pi mkT} \\ &= g \left(\frac{mkT}{2\pi\hbar^2} \right)^{\frac{3}{2}} kT e^{\beta(\mu - mc^2)} \end{split}$$

soit

$$P = nkT$$
.

3. Cas relativiste Dans ce cas, on a

$$E^2 = p^2 c^2 + m^2 c^4$$

de sorte que

$$pc = \sqrt{E^2 - m^2 c^4} = mc^2 \sqrt{x^2 - 1}$$

et

$$dp = \frac{E \, dE}{\sqrt{E^2 - m^2 c^4}} = mc^2 \frac{x \, dx}{\sqrt{x^2 - 1}}$$

avec $x = \frac{E}{mc^2}$. On trouve alors

$$dn(x) = g \frac{4\pi}{c^2 h^3} (mc^2)^3 \sqrt{x^2 - 1} x \, dx$$