My Project
rmodulon.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT: numbers modulo n
6*/
7#include "misc/auxiliary.h"
8
9#include "misc/mylimits.h"
10#include "misc/prime.h" // IsPrime
11#include "reporter/reporter.h"
12
13#include "coeffs/si_gmp.h"
14#include "coeffs/coeffs.h"
15#include "coeffs/modulop.h"
16#include "coeffs/rintegers.h"
17#include "coeffs/numbers.h"
18
19#include "coeffs/mpr_complex.h"
20
21#include "coeffs/longrat.h"
22#include "coeffs/rmodulon.h"
23
24#include <string.h>
25
26#ifdef HAVE_RINGS
27
28void nrnWrite (number a, const coeffs);
29#ifdef LDEBUG
30BOOLEAN nrnDBTest (number a, const char *f, const int l, const coeffs r);
31#endif
32
34
36{
37 const char start[]="ZZ/bigint(";
38 const int start_len=strlen(start);
39 if (strncmp(s,start,start_len)==0)
40 {
41 s+=start_len;
42 mpz_t z;
43 mpz_init(z);
44 s=nEatLong(s,z);
46 info.base=z;
47 info.exp= 1;
48 while ((*s!='\0') && (*s!=')')) s++;
49 // expect ")" or ")^exp"
50 if (*s=='\0') { mpz_clear(z); return NULL; }
51 if (((*s)==')') && (*(s+1)=='^'))
52 {
53 s=s+2;
54 int i;
55 s=nEati(s,&i,0);
56 info.exp=(unsigned long)i;
57 return nInitChar(n_Znm,(void*) &info);
58 }
59 else
60 return nInitChar(n_Zn,(void*) &info);
61 }
62 else return NULL;
63}
64
66static char* nrnCoeffName(const coeffs r)
67{
69 size_t l = (size_t)mpz_sizeinbase(r->modBase, 10) + 2;
70 char* s = (char*) omAlloc(l);
71 l+=24;
73 s= mpz_get_str (s, 10, r->modBase);
74 int ll;
75 if (nCoeff_is_Zn(r))
76 {
77 if (strlen(s)<10)
78 ll=snprintf(nrnCoeffName_buff,l,"ZZ/(%s)",s);
79 else
80 ll=snprintf(nrnCoeffName_buff,l,"ZZ/bigint(%s)",s);
81 }
82 else if (nCoeff_is_Ring_PtoM(r))
83 ll=snprintf(nrnCoeffName_buff,l,"ZZ/(bigint(%s)^%lu)",s,r->modExponent);
84 assume(ll<(int)l); // otherwise nrnCoeffName_buff too small
85 omFreeSize((ADDRESS)s, l-22);
86 return nrnCoeffName_buff;
87}
88
89static BOOLEAN nrnCoeffIsEqual(const coeffs r, n_coeffType n, void * parameter)
90{
91 /* test, if r is an instance of nInitCoeffs(n,parameter) */
92 ZnmInfo *info=(ZnmInfo*)parameter;
93 return (n==r->type) && (r->modExponent==info->exp)
94 && (mpz_cmp(r->modBase,info->base)==0);
95}
96
97static void nrnKillChar(coeffs r)
98{
99 mpz_clear(r->modNumber);
100 mpz_clear(r->modBase);
101 omFreeBin((void *) r->modBase, gmp_nrz_bin);
102 omFreeBin((void *) r->modNumber, gmp_nrz_bin);
103}
104
105static coeffs nrnQuot1(number c, const coeffs r)
106{
107 coeffs rr;
108 long ch = r->cfInt(c, r);
109 mpz_t a,b;
110 mpz_init_set(a, r->modNumber);
111 mpz_init_set_ui(b, ch);
112 mpz_t gcd;
113 mpz_init(gcd);
114 mpz_gcd(gcd, a,b);
115 if(mpz_cmp_ui(gcd, 1) == 0)
116 {
117 WerrorS("constant in q-ideal is coprime to modulus in ground ring");
118 WerrorS("Unable to create qring!");
119 return NULL;
120 }
121 if(r->modExponent == 1)
122 {
124 info.base = gcd;
125 info.exp = (unsigned long) 1;
126 rr = nInitChar(n_Zn, (void*)&info);
127 }
128 else
129 {
131 info.base = r->modBase;
132 int kNew = 1;
133 mpz_t baseTokNew;
134 mpz_init(baseTokNew);
135 mpz_set(baseTokNew, r->modBase);
136 while(mpz_cmp(gcd, baseTokNew) > 0)
137 {
138 kNew++;
139 mpz_mul(baseTokNew, baseTokNew, r->modBase);
140 }
141 //printf("\nkNew = %i\n",kNew);
142 info.exp = kNew;
143 mpz_clear(baseTokNew);
144 rr = nInitChar(n_Znm, (void*)&info);
145 }
146 mpz_clear(gcd);
147 return(rr);
148}
149
150static number nrnCopy(number a, const coeffs)
151{
152 mpz_ptr erg = (mpz_ptr) omAllocBin(gmp_nrz_bin);
153 mpz_init_set(erg, (mpz_ptr) a);
154 return (number) erg;
155}
156
157/*
158 * create a number from int
159 */
160static number nrnInit(long i, const coeffs r)
161{
162 mpz_ptr erg = (mpz_ptr) omAllocBin(gmp_nrz_bin);
163 mpz_init_set_si(erg, i);
164 mpz_mod(erg, erg, r->modNumber);
165 return (number) erg;
166}
167
168/*
169 * convert a number to int
170 */
171static long nrnInt(number &n, const coeffs)
172{
173 return mpz_get_si((mpz_ptr) n);
174}
175
176#if SI_INTEGER_VARIANT==2
177#define nrnDelete nrzDelete
178#define nrnSize nrzSize
179#else
180static void nrnDelete(number *a, const coeffs)
181{
182 if (*a != NULL)
183 {
184 mpz_clear((mpz_ptr) *a);
185 omFreeBin((void *) *a, gmp_nrz_bin);
186 *a = NULL;
187 }
188}
189static int nrnSize(number a, const coeffs)
190{
191 mpz_ptr p=(mpz_ptr)a;
192 int s=p->_mp_alloc;
193 if (s==1) s=(mpz_cmp_ui(p,0)!=0);
194 return s;
195}
196#endif
197/*
198 * Multiply two numbers
199 */
200static number nrnMult(number a, number b, const coeffs r)
201{
202 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
203 mpz_init(erg);
204 mpz_mul(erg, (mpz_ptr)a, (mpz_ptr) b);
205 mpz_mod(erg, erg, r->modNumber);
206 return (number) erg;
207}
208
209static void nrnPower(number a, int i, number * result, const coeffs r)
210{
211 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
212 mpz_init(erg);
213 mpz_powm_ui(erg, (mpz_ptr)a, i, r->modNumber);
214 *result = (number) erg;
215}
216
217static number nrnAdd(number a, number b, const coeffs r)
218{
219 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
220 mpz_init(erg);
221 mpz_add(erg, (mpz_ptr)a, (mpz_ptr) b);
222 mpz_mod(erg, erg, r->modNumber);
223 return (number) erg;
224}
225
226static number nrnSub(number a, number b, const coeffs r)
227{
228 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
229 mpz_init(erg);
230 mpz_sub(erg, (mpz_ptr)a, (mpz_ptr) b);
231 mpz_mod(erg, erg, r->modNumber);
232 return (number) erg;
233}
234
235static BOOLEAN nrnIsZero(number a, const coeffs)
236{
237 return 0 == mpz_cmpabs_ui((mpz_ptr)a, 0);
238}
239
240static number nrnNeg(number c, const coeffs r)
241{
242 if( !nrnIsZero(c, r) )
243 // Attention: This method operates in-place.
244 mpz_sub((mpz_ptr)c, r->modNumber, (mpz_ptr)c);
245 return c;
246}
247
248static number nrnInvers(number c, const coeffs r)
249{
250 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
251 mpz_init(erg);
252 if (nrnIsZero(c,r))
253 {
255 }
256 else
257 {
258 mpz_invert(erg, (mpz_ptr)c, r->modNumber);
259 }
260 return (number) erg;
261}
262
263/*
264 * Give the largest k, such that a = x * k, b = y * k has
265 * a solution.
266 * a may be NULL, b not
267 */
268static number nrnGcd(number a, number b, const coeffs r)
269{
270 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
271 mpz_init_set(erg, r->modNumber);
272 if (a != NULL) mpz_gcd(erg, erg, (mpz_ptr)a);
273 mpz_gcd(erg, erg, (mpz_ptr)b);
274 if(mpz_cmp(erg,r->modNumber)==0)
275 {
276 mpz_clear(erg);
278 return nrnInit(0,r);
279 }
280 return (number)erg;
281}
282
283/*
284 * Give the smallest k, such that a * x = k = b * y has a solution
285 * TODO: lcm(gcd,gcd) better than gcd(lcm) ?
286 */
287static number nrnLcm(number a, number b, const coeffs r)
288{
289 number erg = nrnGcd(NULL, a, r);
290 number tmp = nrnGcd(NULL, b, r);
291 mpz_lcm((mpz_ptr)erg, (mpz_ptr)erg, (mpz_ptr)tmp);
292 nrnDelete(&tmp, r);
293 return (number)erg;
294}
295
296/* Not needed any more, but may have room for improvement
297 number nrnGcd3(number a,number b, number c,ring r)
298{
299 mpz_ptr erg = (mpz_ptr) omAllocBin(gmp_nrz_bin);
300 mpz_init(erg);
301 if (a == NULL) a = (number)r->modNumber;
302 if (b == NULL) b = (number)r->modNumber;
303 if (c == NULL) c = (number)r->modNumber;
304 mpz_gcd(erg, (mpz_ptr)a, (mpz_ptr)b);
305 mpz_gcd(erg, erg, (mpz_ptr)c);
306 mpz_gcd(erg, erg, r->modNumber);
307 return (number)erg;
308}
309*/
310
311/*
312 * Give the largest k, such that a = x * k, b = y * k has
313 * a solution and r, s, s.t. k = s*a + t*b
314 * CF: careful: ExtGcd is wrong as implemented (or at least may not
315 * give you what you want:
316 * ExtGcd(5, 10 modulo 12):
317 * the gcdext will return 5 = 1*5 + 0*10
318 * however, mod 12, the gcd should be 1
319 */
320static number nrnExtGcd(number a, number b, number *s, number *t, const coeffs r)
321{
322 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
323 mpz_ptr bs = (mpz_ptr)omAllocBin(gmp_nrz_bin);
324 mpz_ptr bt = (mpz_ptr)omAllocBin(gmp_nrz_bin);
325 mpz_init(erg);
326 mpz_init(bs);
327 mpz_init(bt);
328 mpz_gcdext(erg, bs, bt, (mpz_ptr)a, (mpz_ptr)b);
329 mpz_mod(bs, bs, r->modNumber);
330 mpz_mod(bt, bt, r->modNumber);
331 *s = (number)bs;
332 *t = (number)bt;
333 return (number)erg;
334}
335
336static BOOLEAN nrnIsOne(number a, const coeffs)
337{
338 return 0 == mpz_cmp_si((mpz_ptr)a, 1);
339}
340
341static BOOLEAN nrnEqual(number a, number b, const coeffs)
342{
343 return 0 == mpz_cmp((mpz_ptr)a, (mpz_ptr)b);
344}
345
346static number nrnGetUnit(number k, const coeffs r)
347{
348 if (mpz_divisible_p(r->modNumber, (mpz_ptr)k)) return nrnInit(1,r);
349
350 mpz_ptr unit = (mpz_ptr)nrnGcd(NULL, k, r);
351 mpz_tdiv_q(unit, (mpz_ptr)k, unit);
352 mpz_ptr gcd = (mpz_ptr)nrnGcd(NULL, (number)unit, r);
353 if (!nrnIsOne((number)gcd,r))
354 {
355 mpz_ptr ctmp;
356 // tmp := unit^2
357 mpz_ptr tmp = (mpz_ptr) nrnMult((number) unit,(number) unit,r);
358 // gcd_new := gcd(tmp, 0)
359 mpz_ptr gcd_new = (mpz_ptr) nrnGcd(NULL, (number) tmp, r);
360 while (!nrnEqual((number) gcd_new,(number) gcd,r))
361 {
362 // gcd := gcd_new
363 ctmp = gcd;
364 gcd = gcd_new;
365 gcd_new = ctmp;
366 // tmp := tmp * unit
367 mpz_mul(tmp, tmp, unit);
368 mpz_mod(tmp, tmp, r->modNumber);
369 // gcd_new := gcd(tmp, 0)
370 mpz_gcd(gcd_new, tmp, r->modNumber);
371 }
372 // unit := unit + modNumber / gcd_new
373 mpz_tdiv_q(tmp, r->modNumber, gcd_new);
374 mpz_add(unit, unit, tmp);
375 mpz_mod(unit, unit, r->modNumber);
376 nrnDelete((number*) &gcd_new, r);
377 nrnDelete((number*) &tmp, r);
378 }
379 nrnDelete((number*) &gcd, r);
380 return (number)unit;
381}
382
383/* XExtGcd returns a unimodular matrix ((s,t)(u,v)) sth.
384 * (a,b)^t ((st)(uv)) = (g,0)^t
385 * Beware, the ExtGcd will not necessaairly do this.
386 * Problem: if g = as+bt then (in Z/nZ) it follows NOT that
387 * 1 = (a/g)s + (b/g) t
388 * due to the zero divisors.
389 */
390
391//#define CF_DEB;
392static number nrnXExtGcd(number a, number b, number *s, number *t, number *u, number *v, const coeffs r)
393{
394 number xx;
395#ifdef CF_DEB
396 StringSetS("XExtGcd of ");
397 nrnWrite(a, r);
398 StringAppendS("\t");
399 nrnWrite(b, r);
400 StringAppendS(" modulo ");
401 nrnWrite(xx = (number)r->modNumber, r);
402 Print("%s\n", StringEndS());
403#endif
404
405 mpz_ptr one = (mpz_ptr)omAllocBin(gmp_nrz_bin);
406 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
407 mpz_ptr bs = (mpz_ptr)omAllocBin(gmp_nrz_bin);
408 mpz_ptr bt = (mpz_ptr)omAllocBin(gmp_nrz_bin);
409 mpz_ptr bu = (mpz_ptr)omAllocBin(gmp_nrz_bin);
410 mpz_ptr bv = (mpz_ptr)omAllocBin(gmp_nrz_bin);
411 mpz_init(erg);
412 mpz_init(one);
413 mpz_init_set(bs, (mpz_ptr) a);
414 mpz_init_set(bt, (mpz_ptr) b);
415 mpz_init(bu);
416 mpz_init(bv);
417 mpz_gcd(erg, bs, bt);
418
419#ifdef CF_DEB
420 StringSetS("1st gcd:");
421 nrnWrite(xx= (number)erg, r);
422#endif
423
424 mpz_gcd(erg, erg, r->modNumber);
425
426 mpz_div(bs, bs, erg);
427 mpz_div(bt, bt, erg);
428
429#ifdef CF_DEB
430 Print("%s\n", StringEndS());
431 StringSetS("xgcd: ");
432#endif
433
434 mpz_gcdext(one, bu, bv, bs, bt);
435 number ui = nrnGetUnit(xx = (number) one, r);
436#ifdef CF_DEB
437 n_Write(xx, r);
438 StringAppendS("\t");
439 n_Write(ui, r);
440 Print("%s\n", StringEndS());
441#endif
442 nrnDelete(&xx, r);
443 if (!nrnIsOne(ui, r))
444 {
445#ifdef CF_DEB
446 PrintS("Scaling\n");
447#endif
448 number uii = nrnInvers(ui, r);
449 nrnDelete(&ui, r);
450 ui = uii;
451 mpz_ptr uu = (mpz_ptr)omAllocBin(gmp_nrz_bin);
452 mpz_init_set(uu, (mpz_ptr)ui);
453 mpz_mul(bu, bu, uu);
454 mpz_mul(bv, bv, uu);
455 mpz_clear(uu);
457 }
458 nrnDelete(&ui, r);
459#ifdef CF_DEB
460 StringSetS("xgcd");
461 nrnWrite(xx= (number)bs, r);
462 StringAppendS("*");
463 nrnWrite(xx= (number)bu, r);
464 StringAppendS(" + ");
465 nrnWrite(xx= (number)bt, r);
466 StringAppendS("*");
467 nrnWrite(xx= (number)bv, r);
468 Print("%s\n", StringEndS());
469#endif
470
471 mpz_mod(bs, bs, r->modNumber);
472 mpz_mod(bt, bt, r->modNumber);
473 mpz_mod(bu, bu, r->modNumber);
474 mpz_mod(bv, bv, r->modNumber);
475 *s = (number)bu;
476 *t = (number)bv;
477 *u = (number)bt;
478 *u = nrnNeg(*u, r);
479 *v = (number)bs;
480 return (number)erg;
481}
482
483static BOOLEAN nrnIsMOne(number a, const coeffs r)
484{
485 if((r->ch==2) && (nrnIsOne(a,r))) return FALSE;
486 mpz_t t; mpz_init_set(t, (mpz_ptr)a);
487 mpz_add_ui(t, t, 1);
488 bool erg = (0 == mpz_cmp(t, r->modNumber));
489 mpz_clear(t);
490 return erg;
491}
492
493static BOOLEAN nrnGreater(number a, number b, const coeffs)
494{
495 return 0 < mpz_cmp((mpz_ptr)a, (mpz_ptr)b);
496}
497
498static BOOLEAN nrnGreaterZero(number k, const coeffs cf)
499{
500 if (cf->is_field)
501 {
502 if (mpz_cmp_ui(cf->modBase,2)==0)
503 {
504 return TRUE;
505 }
506 #if 0
507 mpz_t ch2; mpz_init_set(ch2, cf->modBase);
508 mpz_sub_ui(ch2,ch2,1); //cf->modBase is odd
509 mpz_divexact_ui(ch2,ch2,2);
510 if (mpz_cmp(ch2,(mpz_ptr)k)<0)
511 {
512 mpz_clear(ch2);
513 return FALSE;
514 }
515 mpz_clear(ch2);
516 #endif
517 }
518 #if 0
519 else
520 {
521 mpz_t ch2; mpz_init_set(ch2, cf->modBase);
522 mpz_tdiv_q_ui(ch2,ch2,2);
523 if (mpz_cmp(ch2,(mpz_ptr)k)<0)
524 {
525 mpz_clear(ch2);
526 return FALSE;
527 }
528 mpz_clear(ch2);
529 }
530 #endif
531 return 0 < mpz_sgn1((mpz_ptr)k);
532}
533
534static BOOLEAN nrnIsUnit(number a, const coeffs r)
535{
536 number tmp = nrnGcd(a, (number)r->modNumber, r);
537 bool res = nrnIsOne(tmp, r);
538 nrnDelete(&tmp, r);
539 return res;
540}
541
542static number nrnAnn(number k, const coeffs r)
543{
544 mpz_ptr tmp = (mpz_ptr) omAllocBin(gmp_nrz_bin);
545 mpz_init(tmp);
546 mpz_gcd(tmp, (mpz_ptr) k, r->modNumber);
547 if (mpz_cmp_si(tmp, 1)==0)
548 {
549 mpz_set_ui(tmp, 0);
550 return (number) tmp;
551 }
552 mpz_divexact(tmp, r->modNumber, tmp);
553 return (number) tmp;
554}
555
556static BOOLEAN nrnDivBy(number a, number b, const coeffs r)
557{
558 /* b divides a iff b/gcd(a, b) is a unit in the given ring: */
559 number n = nrnGcd(a, b, r);
560 mpz_tdiv_q((mpz_ptr)n, (mpz_ptr)b, (mpz_ptr)n);
561 bool result = nrnIsUnit(n, r);
562 nrnDelete(&n, NULL);
563 return result;
564}
565
566static int nrnDivComp(number a, number b, const coeffs r)
567{
568 if (nrnEqual(a, b,r)) return 2;
569 if (mpz_divisible_p((mpz_ptr) a, (mpz_ptr) b)) return -1;
570 if (mpz_divisible_p((mpz_ptr) b, (mpz_ptr) a)) return 1;
571 return 0;
572}
573
574static number nrnDiv(number a, number b, const coeffs r)
575{
576 if (nrnIsZero(b,r))
577 {
579 return nrnInit(0,r);
580 }
581 else if (r->is_field)
582 {
583 number inv=nrnInvers(b,r);
584 number erg=nrnMult(a,inv,r);
585 nrnDelete(&inv,r);
586 return erg;
587 }
588 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
589 mpz_init(erg);
590 if (mpz_divisible_p((mpz_ptr)a, (mpz_ptr)b))
591 {
592 mpz_divexact(erg, (mpz_ptr)a, (mpz_ptr)b);
593 return (number)erg;
594 }
595 else
596 {
597 mpz_ptr gcd = (mpz_ptr)nrnGcd(a, b, r);
598 mpz_divexact(erg, (mpz_ptr)b, gcd);
599 if (!nrnIsUnit((number)erg, r))
600 {
601 WerrorS("Division not possible, even by cancelling zero divisors.");
602 nrnDelete((number*) &gcd, r);
603 nrnDelete((number*) &erg, r);
604 return (number)NULL;
605 }
606 // a / gcd(a,b) * [b / gcd (a,b)]^(-1)
607 mpz_ptr tmp = (mpz_ptr)nrnInvers((number) erg,r);
608 mpz_divexact(erg, (mpz_ptr)a, gcd);
609 mpz_mul(erg, erg, tmp);
610 nrnDelete((number*) &gcd, r);
611 nrnDelete((number*) &tmp, r);
612 mpz_mod(erg, erg, r->modNumber);
613 return (number)erg;
614 }
615}
616
617static number nrnMod(number a, number b, const coeffs r)
618{
619 /*
620 We need to return the number rr which is uniquely determined by the
621 following two properties:
622 (1) 0 <= rr < |b| (with respect to '<' and '<=' performed in Z x Z)
623 (2) There exists some k in the integers Z such that a = k * b + rr.
624 Consider g := gcd(n, |b|). Note that then |b|/g is a unit in Z/n.
625 Now, there are three cases:
626 (a) g = 1
627 Then |b| is a unit in Z/n, i.e. |b| (and also b) divides a.
628 Thus rr = 0.
629 (b) g <> 1 and g divides a
630 Then a = (a/g) * (|b|/g)^(-1) * b (up to sign), i.e. again rr = 0.
631 (c) g <> 1 and g does not divide a
632 Then denote the division with remainder of a by g as this:
633 a = s * g + t. Then t = a - s * g = a - s * (|b|/g)^(-1) * |b|
634 fulfills (1) and (2), i.e. rr := t is the correct result. Hence
635 in this third case, rr is the remainder of division of a by g in Z.
636 Remark: according to mpz_mod: a,b are always non-negative
637 */
638 mpz_ptr g = (mpz_ptr)omAllocBin(gmp_nrz_bin);
639 mpz_ptr rr = (mpz_ptr)omAllocBin(gmp_nrz_bin);
640 mpz_init(g);
641 mpz_init_set_ui(rr, 0);
642 mpz_gcd(g, (mpz_ptr)r->modNumber, (mpz_ptr)b); // g is now as above
643 if (mpz_cmp_si(g, 1L) != 0) mpz_mod(rr, (mpz_ptr)a, g); // the case g <> 1
644 mpz_clear(g);
646 return (number)rr;
647}
648
649/* CF: note that Z/nZ has (at least) two distinct euclidean structures
650 * 1st phi(a) := (a mod n) which is just the structure directly
651 * inherited from Z
652 * 2nd phi(a) := gcd(a, n)
653 * The 1st version is probably faster as everything just comes from Z,
654 * but the 2nd version behaves nicely wrt. to quotient operations
655 * and HNF and such. In agreement with nrnMod we imlement the 2nd here
656 *
657 * For quotrem note that if b exactly divides a, then
658 * min(v_p(a), v_p(n)) >= min(v_p(b), v_p(n))
659 * so if we divide a and b by g:= gcd(a,b,n), then b becomes a
660 * unit mod n/g.
661 * Thus we 1st compute the remainder (similar to nrnMod) and then
662 * the exact quotient.
663 */
664static number nrnQuotRem(number a, number b, number * rem, const coeffs r)
665{
666 mpz_t g, aa, bb;
667 mpz_ptr qq = (mpz_ptr)omAllocBin(gmp_nrz_bin);
668 mpz_ptr rr = (mpz_ptr)omAllocBin(gmp_nrz_bin);
669 mpz_init(qq);
670 mpz_init(rr);
671 mpz_init(g);
672 mpz_init_set(aa, (mpz_ptr)a);
673 mpz_init_set(bb, (mpz_ptr)b);
674
675 mpz_gcd(g, bb, r->modNumber);
676 mpz_mod(rr, aa, g);
677 mpz_sub(aa, aa, rr);
678 mpz_gcd(g, aa, g);
679 mpz_div(aa, aa, g);
680 mpz_div(bb, bb, g);
681 mpz_div(g, r->modNumber, g);
682 mpz_invert(g, bb, g);
683 mpz_mul(qq, aa, g);
684 if (rem)
685 *rem = (number)rr;
686 else {
687 mpz_clear(rr);
689 }
690 mpz_clear(g);
691 mpz_clear(aa);
692 mpz_clear(bb);
693 return (number) qq;
694}
695
696/*
697 * Helper function for computing the module
698 */
699
701
702static number nrnMapModN(number from, const coeffs /*src*/, const coeffs dst)
703{
704 return nrnMult(from, (number) nrnMapCoef, dst);
705}
706
707static number nrnMap2toM(number from, const coeffs /*src*/, const coeffs dst)
708{
709 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
710 mpz_init(erg);
711 mpz_mul_ui(erg, nrnMapCoef, (unsigned long)from);
712 mpz_mod(erg, erg, dst->modNumber);
713 return (number)erg;
714}
715
716static number nrnMapZp(number from, const coeffs /*src*/, const coeffs dst)
717{
718 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
719 mpz_init(erg);
720 // TODO: use npInt(...)
721 mpz_mul_si(erg, nrnMapCoef, (unsigned long)from);
722 mpz_mod(erg, erg, dst->modNumber);
723 return (number)erg;
724}
725
726number nrnMapGMP(number from, const coeffs /*src*/, const coeffs dst)
727{
728 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
729 mpz_init(erg);
730 mpz_mod(erg, (mpz_ptr)from, dst->modNumber);
731 return (number)erg;
732}
733
734static number nrnMapQ(number from, const coeffs src, const coeffs dst)
735{
736 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
737 nlMPZ(erg, from, src);
738 mpz_mod(erg, erg, dst->modNumber);
739 return (number)erg;
740}
741
742#if SI_INTEGER_VARIANT==3
743static number nrnMapZ(number from, const coeffs /*src*/, const coeffs dst)
744{
745 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
746 if (n_Z_IS_SMALL(from))
747 mpz_init_set_si(erg, SR_TO_INT(from));
748 else
749 mpz_init_set(erg, (mpz_ptr) from);
750 mpz_mod(erg, erg, dst->modNumber);
751 return (number)erg;
752}
753#elif SI_INTEGER_VARIANT==2
754
755static number nrnMapZ(number from, const coeffs src, const coeffs dst)
756{
757 if (SR_HDL(from) & SR_INT)
758 {
759 long f_i=SR_TO_INT(from);
760 return nrnInit(f_i,dst);
761 }
762 return nrnMapGMP(from,src,dst);
763}
764#elif SI_INTEGER_VARIANT==1
765static number nrnMapZ(number from, const coeffs src, const coeffs dst)
766{
767 return nrnMapQ(from,src,dst);
768}
769#endif
770void nrnWrite (number a, const coeffs /*cf*/)
771{
772 char *s,*z;
773 if (a==NULL)
774 {
775 StringAppendS("o");
776 }
777 else
778 {
779 int l=mpz_sizeinbase((mpz_ptr) a, 10) + 2;
780 s=(char*)omAlloc(l);
781 z=mpz_get_str(s,10,(mpz_ptr) a);
782 StringAppendS(z);
784 }
785}
786
787nMapFunc nrnSetMap(const coeffs src, const coeffs dst)
788{
789 /* dst = nrn */
790 if ((src->rep==n_rep_gmp) && nCoeff_is_Z(src))
791 {
792 return nrnMapZ;
793 }
794 if ((src->rep==n_rep_gap_gmp) /*&& nCoeff_is_Z(src)*/)
795 {
796 return nrnMapZ;
797 }
798 if (src->rep==n_rep_gap_rat) /*&& nCoeff_is_Q(src)) or Z*/
799 {
800 return nrnMapQ;
801 }
802 // Some type of Z/n ring / field
803 if (nCoeff_is_Zn(src) || nCoeff_is_Ring_PtoM(src) ||
805 {
806 if ( (!nCoeff_is_Zp(src))
807 && (mpz_cmp(src->modBase, dst->modBase) == 0)
808 && (src->modExponent == dst->modExponent)) return ndCopyMap;
809 else
810 {
811 mpz_ptr nrnMapModul = (mpz_ptr) omAllocBin(gmp_nrz_bin);
812 // Computing the n of Z/n
813 if (nCoeff_is_Zp(src))
814 {
815 mpz_init_set_si(nrnMapModul, src->ch);
816 }
817 else
818 {
819 mpz_init(nrnMapModul);
820 mpz_set(nrnMapModul, src->modNumber);
821 }
822 // nrnMapCoef = 1 in dst if dst is a subring of src
823 // nrnMapCoef = 0 in dst / src if src is a subring of dst
824 if (nrnMapCoef == NULL)
825 {
826 nrnMapCoef = (mpz_ptr) omAllocBin(gmp_nrz_bin);
827 mpz_init(nrnMapCoef);
828 }
829 if (mpz_divisible_p(nrnMapModul, dst->modNumber))
830 {
831 mpz_set_ui(nrnMapCoef, 1);
832 }
833 else
834 if (mpz_divisible_p(dst->modNumber,nrnMapModul))
835 {
836 mpz_divexact(nrnMapCoef, dst->modNumber, nrnMapModul);
837 mpz_ptr tmp = dst->modNumber;
838 dst->modNumber = nrnMapModul;
839 if (!nrnIsUnit((number) nrnMapCoef,dst))
840 {
841 dst->modNumber = tmp;
842 nrnDelete((number*) &nrnMapModul, dst);
843 return NULL;
844 }
845 mpz_ptr inv = (mpz_ptr) nrnInvers((number) nrnMapCoef,dst);
846 dst->modNumber = tmp;
847 mpz_mul(nrnMapCoef, nrnMapCoef, inv);
848 mpz_mod(nrnMapCoef, nrnMapCoef, dst->modNumber);
849 nrnDelete((number*) &inv, dst);
850 }
851 else
852 {
853 nrnDelete((number*) &nrnMapModul, dst);
854 return NULL;
855 }
856 nrnDelete((number*) &nrnMapModul, dst);
857 if (nCoeff_is_Ring_2toM(src))
858 return nrnMap2toM;
859 else if (nCoeff_is_Zp(src))
860 return nrnMapZp;
861 else
862 return nrnMapModN;
863 }
864 }
865 return NULL; // default
866}
867
868static number nrnInitMPZ(mpz_t m, const coeffs r)
869{
870 mpz_ptr erg = (mpz_ptr)omAllocBin(gmp_nrz_bin);
871 mpz_init_set(erg,m);
872 mpz_mod(erg, erg, r->modNumber);
873 return (number) erg;
874}
875
876static void nrnMPZ(mpz_t m, number &n, const coeffs)
877{
878 mpz_init_set(m, (mpz_ptr)n);
879}
880
881/*
882 * set the exponent (allocate and init tables) (TODO)
883 */
884
885static void nrnSetExp(unsigned long m, coeffs r)
886{
887 /* clean up former stuff */
888 if (r->modNumber != NULL) mpz_clear(r->modNumber);
889
890 r->modExponent= m;
891 r->modNumber = (mpz_ptr)omAllocBin(gmp_nrz_bin);
892 mpz_init_set (r->modNumber, r->modBase);
893 mpz_pow_ui (r->modNumber, r->modNumber, m);
894}
895
896/* We expect this ring to be Z/n^m for some m > 0 and for some n > 2 which is not a prime. */
897static void nrnInitExp(unsigned long m, coeffs r)
898{
899 nrnSetExp(m, r);
900 assume (r->modNumber != NULL);
901//CF: in general, the modulus is computed somewhere. I don't want to
902// check it's size before I construct the best ring.
903// if (mpz_cmp_ui(r->modNumber,2) <= 0)
904// WarnS("nrnInitExp failed (m in Z/m too small)");
905}
906
907#ifdef LDEBUG
908BOOLEAN nrnDBTest (number a, const char *f, const int l, const coeffs r)
909{
910 if ( (mpz_sgn1((mpz_ptr) a) < 0) || (mpz_cmp((mpz_ptr) a, r->modNumber) > 0) )
911 {
912 Warn("mod-n: out of range at %s:%d\n",f,l);
913 return FALSE;
914 }
915 return TRUE;
916}
917#endif
918
919/*2
920* extracts a long integer from s, returns the rest (COPY FROM longrat0.cc)
921*/
922static const char * nlCPEatLongC(char *s, mpz_ptr i)
923{
924 const char * start=s;
925 if (!(*s >= '0' && *s <= '9'))
926 {
927 mpz_init_set_ui(i, 1);
928 return s;
929 }
930 mpz_init(i);
931 while (*s >= '0' && *s <= '9') s++;
932 if (*s=='\0')
933 {
934 mpz_set_str(i,start,10);
935 }
936 else
937 {
938 char c=*s;
939 *s='\0';
940 mpz_set_str(i,start,10);
941 *s=c;
942 }
943 return s;
944}
945
946static const char * nrnRead (const char *s, number *a, const coeffs r)
947{
948 mpz_ptr z = (mpz_ptr) omAllocBin(gmp_nrz_bin);
949 {
950 s = nlCPEatLongC((char *)s, z);
951 }
952 mpz_mod(z, z, r->modNumber);
953 if ((*s)=='/')
954 {
955 mpz_ptr n = (mpz_ptr) omAllocBin(gmp_nrz_bin);
956 s++;
957 s=nlCPEatLongC((char*)s,n);
958 if (!nrnIsOne((number)n,r))
959 {
960 *a=nrnDiv((number)z,(number)n,r);
961 mpz_clear(z);
962 omFreeBin((void *)z, gmp_nrz_bin);
963 mpz_clear(n);
964 omFreeBin((void *)n, gmp_nrz_bin);
965 }
966 }
967 else
968 *a = (number) z;
969 return s;
970}
971
972static number nrnConvFactoryNSingN( const CanonicalForm n, const coeffs r)
973{
974 return nrnInit(n.intval(),r);
975}
976
977static CanonicalForm nrnConvSingNFactoryN( number n, BOOLEAN setChar, const coeffs r )
978{
979 if (setChar) setCharacteristic( r->ch );
980 return CanonicalForm(nrnInt( n,r ));
981}
982
983/* for initializing function pointers */
985{
986 assume( (getCoeffType(r) == n_Zn) || (getCoeffType (r) == n_Znm) );
987 ZnmInfo * info= (ZnmInfo *) p;
988 r->modBase= (mpz_ptr)nrnCopy((number)info->base, r); //this circumvents the problem
989 //in bigintmat.cc where we cannot create a "legal" nrn that can be freed.
990 //If we take a copy, we can do whatever we want.
991
992 nrnInitExp (info->exp, r);
993
994 /* next computation may yield wrong characteristic as r->modNumber
995 is a GMP number */
996 r->ch = mpz_get_ui(r->modNumber);
997
998 r->is_field=FALSE;
999 r->is_domain=FALSE;
1000 r->rep=n_rep_gmp;
1001
1002 r->cfInit = nrnInit;
1003 r->cfDelete = nrnDelete;
1004 r->cfCopy = nrnCopy;
1005 r->cfSize = nrnSize;
1006 r->cfInt = nrnInt;
1007 r->cfAdd = nrnAdd;
1008 r->cfSub = nrnSub;
1009 r->cfMult = nrnMult;
1010 r->cfDiv = nrnDiv;
1011 r->cfAnn = nrnAnn;
1012 r->cfIntMod = nrnMod;
1013 r->cfExactDiv = nrnDiv;
1014 r->cfInpNeg = nrnNeg;
1015 r->cfInvers = nrnInvers;
1016 r->cfDivBy = nrnDivBy;
1017 r->cfDivComp = nrnDivComp;
1018 r->cfGreater = nrnGreater;
1019 r->cfEqual = nrnEqual;
1020 r->cfIsZero = nrnIsZero;
1021 r->cfIsOne = nrnIsOne;
1022 r->cfIsMOne = nrnIsMOne;
1023 r->cfGreaterZero = nrnGreaterZero;
1024 r->cfWriteLong = nrnWrite;
1025 r->cfRead = nrnRead;
1026 r->cfPower = nrnPower;
1027 r->cfSetMap = nrnSetMap;
1028 //r->cfNormalize = ndNormalize;
1029 r->cfLcm = nrnLcm;
1030 r->cfGcd = nrnGcd;
1031 r->cfIsUnit = nrnIsUnit;
1032 r->cfGetUnit = nrnGetUnit;
1033 r->cfExtGcd = nrnExtGcd;
1034 r->cfXExtGcd = nrnXExtGcd;
1035 r->cfQuotRem = nrnQuotRem;
1036 r->cfCoeffName = nrnCoeffName;
1037 r->nCoeffIsEqual = nrnCoeffIsEqual;
1038 r->cfKillChar = nrnKillChar;
1039 r->cfQuot1 = nrnQuot1;
1040 r->cfInitMPZ = nrnInitMPZ;
1041 r->cfMPZ = nrnMPZ;
1042#if SI_INTEGER_VARIANT==2
1043 r->cfWriteFd = nrzWriteFd;
1044 r->cfReadFd = nrzReadFd;
1045#endif
1046
1047#ifdef LDEBUG
1048 r->cfDBTest = nrnDBTest;
1049#endif
1050 if ((r->modExponent==1)&&(mpz_size1(r->modBase)==1))
1051 {
1052 long p=mpz_get_si(r->modBase);
1053 if ((p<=FACTORY_MAX_PRIME)&&(p==IsPrime(p))) /*factory limit: <2^29*/
1054 {
1055 r->convFactoryNSingN=nrnConvFactoryNSingN;
1056 r->convSingNFactoryN=nrnConvSingNFactoryN;
1057 }
1058 }
1059 return FALSE;
1060}
1061
1062#endif
1063/* #ifdef HAVE_RINGS */
All the auxiliary stuff.
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
void FACTORY_PUBLIC setCharacteristic(int c)
Definition: cf_char.cc:28
int l
Definition: cfEzgcd.cc:100
int m
Definition: cfEzgcd.cc:128
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
int p
Definition: cfModGcd.cc:4078
g
Definition: cfModGcd.cc:4090
CanonicalForm cf
Definition: cfModGcd.cc:4083
CanonicalForm b
Definition: cfModGcd.cc:4103
FILE * f
Definition: checklibs.c:9
factory's main class
Definition: canonicalform.h:86
long intval() const
conversion functions
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition: coeffs.h:816
number ndCopyMap(number a, const coeffs src, const coeffs dst)
Definition: numbers.cc:255
static FORCE_INLINE BOOLEAN nCoeff_is_Ring_PtoM(const coeffs r)
Definition: coeffs.h:727
n_coeffType
Definition: coeffs.h:27
@ n_Znm
only used if HAVE_RINGS is defined
Definition: coeffs.h:45
@ n_Zn
only used if HAVE_RINGS is defined
Definition: coeffs.h:44
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition: numbers.cc:354
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
Definition: coeffs.h:421
static FORCE_INLINE BOOLEAN nCoeff_is_Zn(const coeffs r)
Definition: coeffs.h:826
static FORCE_INLINE void n_Write(number n, const coeffs r, const BOOLEAN bShortOut=TRUE)
Definition: coeffs.h:591
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
Definition: coeffs.h:800
static FORCE_INLINE BOOLEAN nCoeff_is_Ring_2toM(const coeffs r)
Definition: coeffs.h:724
@ n_rep_gap_rat
(number), see longrat.h
Definition: coeffs.h:111
@ n_rep_gap_gmp
(), see rinteger.h, new impl.
Definition: coeffs.h:112
@ n_rep_gmp
(mpz_ptr), see rmodulon,h
Definition: coeffs.h:115
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
#define Print
Definition: emacs.cc:80
#define Warn
Definition: emacs.cc:77
return result
Definition: facAbsBiFact.cc:75
const CanonicalForm int s
Definition: facAbsFact.cc:51
CanonicalForm res
Definition: facAbsFact.cc:60
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
const ExtensionInfo & info
< [in] sqrfree poly
void WerrorS(const char *s)
Definition: feFopen.cc:24
#define STATIC_VAR
Definition: globaldefs.h:7
#define EXTERN_VAR
Definition: globaldefs.h:6
void mpz_mul_si(mpz_ptr r, mpz_srcptr s, long int si)
Definition: longrat.cc:177
void nlMPZ(mpz_t m, number &n, const coeffs r)
Definition: longrat.cc:2819
#define SR_INT
Definition: longrat.h:67
#define SR_TO_INT(SR)
Definition: longrat.h:69
void rem(unsigned long *a, unsigned long *q, unsigned long p, int &dega, int degq)
Definition: minpoly.cc:572
#define assume(x)
Definition: mod2.h:387
#define FACTORY_MAX_PRIME
Definition: modulop.h:38
The main handler for Singular numbers which are suitable for Singular polynomials.
char * nEati(char *s, int *i, int m)
divide by the first (leading) number and return it, i.e. make monic
Definition: numbers.cc:631
char * nEatLong(char *s, mpz_ptr i)
extracts a long integer from s, returns the rest
Definition: numbers.cc:652
const char *const nDivBy0
Definition: numbers.h:87
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omAllocBin(bin)
Definition: omAllocDecl.h:205
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define NULL
Definition: omList.c:12
omBin_t * omBin
Definition: omStructs.h:12
int IsPrime(int p)
Definition: prime.cc:61
void StringSetS(const char *st)
Definition: reporter.cc:128
void StringAppendS(const char *st)
Definition: reporter.cc:107
void PrintS(const char *s)
Definition: reporter.cc:284
char * StringEndS()
Definition: reporter.cc:151
number nrzReadFd(const ssiInfo *d, const coeffs)
void nrzWriteFd(number n, const ssiInfo *d, const coeffs)
static number nrnMap2toM(number from, const coeffs, const coeffs dst)
Definition: rmodulon.cc:707
static coeffs nrnQuot1(number c, const coeffs r)
Definition: rmodulon.cc:105
static number nrnInit(long i, const coeffs r)
Definition: rmodulon.cc:160
static const char * nlCPEatLongC(char *s, mpz_ptr i)
Definition: rmodulon.cc:922
STATIC_VAR char * nrnCoeffName_buff
Definition: rmodulon.cc:65
static void nrnKillChar(coeffs r)
Definition: rmodulon.cc:97
BOOLEAN nrnDBTest(number a, const char *f, const int l, const coeffs r)
Definition: rmodulon.cc:908
#define nrnSize
Definition: rmodulon.cc:178
static BOOLEAN nrnGreater(number a, number b, const coeffs)
Definition: rmodulon.cc:493
STATIC_VAR mpz_ptr nrnMapCoef
Definition: rmodulon.cc:700
static BOOLEAN nrnIsZero(number a, const coeffs)
Definition: rmodulon.cc:235
static CanonicalForm nrnConvSingNFactoryN(number n, BOOLEAN setChar, const coeffs r)
Definition: rmodulon.cc:977
static number nrnExtGcd(number a, number b, number *s, number *t, const coeffs r)
Definition: rmodulon.cc:320
static void nrnMPZ(mpz_t m, number &n, const coeffs)
Definition: rmodulon.cc:876
static BOOLEAN nrnCoeffIsEqual(const coeffs r, n_coeffType n, void *parameter)
Definition: rmodulon.cc:89
void nrnWrite(number a, const coeffs)
Definition: rmodulon.cc:770
static number nrnMod(number a, number b, const coeffs r)
Definition: rmodulon.cc:617
coeffs nrnInitCfByName(char *s, n_coeffType)
Definition: rmodulon.cc:35
static number nrnMapZ(number from, const coeffs src, const coeffs dst)
Definition: rmodulon.cc:755
static number nrnInitMPZ(mpz_t m, const coeffs r)
Definition: rmodulon.cc:868
static void nrnInitExp(unsigned long m, coeffs r)
Definition: rmodulon.cc:897
static number nrnAnn(number k, const coeffs r)
Definition: rmodulon.cc:542
static BOOLEAN nrnIsUnit(number a, const coeffs r)
Definition: rmodulon.cc:534
#define nrnDelete
Definition: rmodulon.cc:177
nMapFunc nrnSetMap(const coeffs src, const coeffs dst)
Definition: rmodulon.cc:787
static number nrnMapZp(number from, const coeffs, const coeffs dst)
Definition: rmodulon.cc:716
static number nrnInvers(number c, const coeffs r)
Definition: rmodulon.cc:248
static number nrnConvFactoryNSingN(const CanonicalForm n, const coeffs r)
Definition: rmodulon.cc:972
static void nrnSetExp(unsigned long m, coeffs r)
Definition: rmodulon.cc:885
static int nrnDivComp(number a, number b, const coeffs r)
Definition: rmodulon.cc:566
static const char * nrnRead(const char *s, number *a, const coeffs r)
Definition: rmodulon.cc:946
static number nrnXExtGcd(number a, number b, number *s, number *t, number *u, number *v, const coeffs r)
Definition: rmodulon.cc:392
static BOOLEAN nrnEqual(number a, number b, const coeffs)
Definition: rmodulon.cc:341
static number nrnQuotRem(number a, number b, number *rem, const coeffs r)
Definition: rmodulon.cc:664
static long nrnInt(number &n, const coeffs)
Definition: rmodulon.cc:171
static number nrnMapQ(number from, const coeffs src, const coeffs dst)
Definition: rmodulon.cc:734
EXTERN_VAR omBin gmp_nrz_bin
Definition: rmodulon.cc:33
static BOOLEAN nrnIsOne(number a, const coeffs)
Definition: rmodulon.cc:336
static number nrnCopy(number a, const coeffs)
Definition: rmodulon.cc:150
static number nrnSub(number a, number b, const coeffs r)
Definition: rmodulon.cc:226
static number nrnLcm(number a, number b, const coeffs r)
Definition: rmodulon.cc:287
static number nrnMapModN(number from, const coeffs, const coeffs dst)
Definition: rmodulon.cc:702
static void nrnPower(number a, int i, number *result, const coeffs r)
Definition: rmodulon.cc:209
static number nrnMult(number a, number b, const coeffs r)
Definition: rmodulon.cc:200
static number nrnNeg(number c, const coeffs r)
Definition: rmodulon.cc:240
static number nrnGetUnit(number k, const coeffs r)
Definition: rmodulon.cc:346
number nrnMapGMP(number from, const coeffs, const coeffs dst)
Definition: rmodulon.cc:726
static char * nrnCoeffName(const coeffs r)
Definition: rmodulon.cc:66
static number nrnDiv(number a, number b, const coeffs r)
Definition: rmodulon.cc:574
static BOOLEAN nrnIsMOne(number a, const coeffs r)
Definition: rmodulon.cc:483
static BOOLEAN nrnDivBy(number a, number b, const coeffs r)
Definition: rmodulon.cc:556
static BOOLEAN nrnGreaterZero(number k, const coeffs cf)
Definition: rmodulon.cc:498
BOOLEAN nrnInitChar(coeffs r, void *p)
Definition: rmodulon.cc:984
static number nrnAdd(number a, number b, const coeffs r)
Definition: rmodulon.cc:217
static number nrnGcd(number a, number b, const coeffs r)
Definition: rmodulon.cc:268
#define mpz_size1(A)
Definition: si_gmp.h:17
#define mpz_sgn1(A)
Definition: si_gmp.h:18
#define SR_HDL(A)
Definition: tgb.cc:35
int gcd(int a, int b)
Definition: walkSupport.cc:836