My Project
p_polys.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/***************************************************************
5 * File: p_polys.cc
6 * Purpose: implementation of ring independent poly procedures?
7 * Author: obachman (Olaf Bachmann)
8 * Created: 8/00
9 *******************************************************************/
10
11#include <ctype.h>
12
13#include "misc/auxiliary.h"
14
15#include "misc/options.h"
16#include "misc/intvec.h"
17
18
19#include "coeffs/longrat.h" // snumber is needed...
20#include "coeffs/numbers.h" // ndCopyMap
21
23
24#define TRANSEXT_PRIVATES
25
28
29#include "polys/weight.h"
30#include "polys/simpleideals.h"
31
32#include "ring.h"
33#include "p_polys.h"
34
38
39
40#ifdef HAVE_PLURAL
41#include "nc/nc.h"
42#include "nc/sca.h"
43#endif
44
45#ifdef HAVE_SHIFTBBA
46#include "polys/shiftop.h"
47#endif
48
49#include "clapsing.h"
50
51/*
52 * lift ideal with coeffs over Z (mod N) to Q via Farey
53 */
54poly p_Farey(poly p, number N, const ring r)
55{
56 poly h=p_Copy(p,r);
57 poly hh=h;
58 while(h!=NULL)
59 {
60 number c=pGetCoeff(h);
61 pSetCoeff0(h,n_Farey(c,N,r->cf));
62 n_Delete(&c,r->cf);
63 pIter(h);
64 }
65 while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf)))
66 {
67 p_LmDelete(&hh,r);
68 }
69 h=hh;
70 while((h!=NULL) && (pNext(h)!=NULL))
71 {
72 if(n_IsZero(pGetCoeff(pNext(h)),r->cf))
73 {
74 p_LmDelete(&pNext(h),r);
75 }
76 else pIter(h);
77 }
78 return hh;
79}
80/*2
81* xx,q: arrays of length 0..rl-1
82* xx[i]: SB mod q[i]
83* assume: char=0
84* assume: q[i]!=0
85* x: work space
86* destroys xx
87*/
88poly p_ChineseRemainder(poly *xx, number *x,number *q, int rl, CFArray &inv_cache,const ring R)
89{
90 poly r,h,hh;
91 int j;
92 poly res_p=NULL;
93 loop
94 {
95 /* search the lead term */
96 r=NULL;
97 for(j=rl-1;j>=0;j--)
98 {
99 h=xx[j];
100 if ((h!=NULL)
101 &&((r==NULL)||(p_LmCmp(r,h,R)==-1)))
102 r=h;
103 }
104 /* nothing found -> return */
105 if (r==NULL) break;
106 /* create the monomial in h */
107 h=p_Head(r,R);
108 /* collect the coeffs in x[..]*/
109 for(j=rl-1;j>=0;j--)
110 {
111 hh=xx[j];
112 if ((hh!=NULL) && (p_LmCmp(h,hh,R)==0))
113 {
114 x[j]=pGetCoeff(hh);
115 hh=p_LmFreeAndNext(hh,R);
116 xx[j]=hh;
117 }
118 else
119 x[j]=n_Init(0, R->cf);
120 }
121 number n=n_ChineseRemainderSym(x,q,rl,TRUE,inv_cache,R->cf);
122 for(j=rl-1;j>=0;j--)
123 {
124 x[j]=NULL; // n_Init(0...) takes no memory
125 }
126 if (n_IsZero(n,R->cf)) p_Delete(&h,R);
127 else
128 {
129 //Print("new mon:");pWrite(h);
130 p_SetCoeff(h,n,R);
131 pNext(h)=res_p;
132 res_p=h; // building res_p in reverse order!
133 }
134 }
135 res_p=pReverse(res_p);
136 p_Test(res_p, R);
137 return res_p;
138}
139
140/***************************************************************
141 *
142 * Completing what needs to be set for the monomial
143 *
144 ***************************************************************/
145// this is special for the syz stuff
149
151
152#ifndef SING_NDEBUG
153# define MYTEST 0
154#else /* ifndef SING_NDEBUG */
155# define MYTEST 0
156#endif /* ifndef SING_NDEBUG */
157
158void p_Setm_General(poly p, const ring r)
159{
161 int pos=0;
162 if (r->typ!=NULL)
163 {
164 loop
165 {
166 unsigned long ord=0;
167 sro_ord* o=&(r->typ[pos]);
168 switch(o->ord_typ)
169 {
170 case ro_dp:
171 {
172 int a,e;
173 a=o->data.dp.start;
174 e=o->data.dp.end;
175 for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r);
176 p->exp[o->data.dp.place]=ord;
177 break;
178 }
179 case ro_wp_neg:
181 // no break;
182 case ro_wp:
183 {
184 int a,e;
185 a=o->data.wp.start;
186 e=o->data.wp.end;
187 int *w=o->data.wp.weights;
188#if 1
189 for(int i=a;i<=e;i++) ord+=((unsigned long)p_GetExp(p,i,r))*((unsigned long)w[i-a]);
190#else
191 long ai;
192 int ei,wi;
193 for(int i=a;i<=e;i++)
194 {
195 ei=p_GetExp(p,i,r);
196 wi=w[i-a];
197 ai=ei*wi;
198 if (ai/ei!=wi) pSetm_error=TRUE;
199 ord+=ai;
200 if (ord<ai) pSetm_error=TRUE;
201 }
202#endif
203 p->exp[o->data.wp.place]=ord;
204 break;
205 }
206 case ro_am:
207 {
209 const short a=o->data.am.start;
210 const short e=o->data.am.end;
211 const int * w=o->data.am.weights;
212#if 1
213 for(short i=a; i<=e; i++, w++)
214 ord += ((*w) * p_GetExp(p,i,r));
215#else
216 long ai;
217 int ei,wi;
218 for(short i=a;i<=e;i++)
219 {
220 ei=p_GetExp(p,i,r);
221 wi=w[i-a];
222 ai=ei*wi;
223 if (ai/ei!=wi) pSetm_error=TRUE;
224 ord += ai;
225 if (ord<ai) pSetm_error=TRUE;
226 }
227#endif
228 const int c = p_GetComp(p,r);
229
230 const short len_gen= o->data.am.len_gen;
231
232 if ((c > 0) && (c <= len_gen))
233 {
234 assume( w == o->data.am.weights_m );
235 assume( w[0] == len_gen );
236 ord += w[c];
237 }
238
239 p->exp[o->data.am.place] = ord;
240 break;
241 }
242 case ro_wp64:
243 {
244 int64 ord=0;
245 int a,e;
246 a=o->data.wp64.start;
247 e=o->data.wp64.end;
248 int64 *w=o->data.wp64.weights64;
249 int64 ei,wi,ai;
250 for(int i=a;i<=e;i++)
251 {
252 //Print("exp %d w %d \n",p_GetExp(p,i,r),(int)w[i-a]);
253 //ord+=((int64)p_GetExp(p,i,r))*w[i-a];
254 ei=(int64)p_GetExp(p,i,r);
255 wi=w[i-a];
256 ai=ei*wi;
257 if(ei!=0 && ai/ei!=wi)
258 {
260 #if SIZEOF_LONG == 4
261 Print("ai %lld, wi %lld\n",ai,wi);
262 #else
263 Print("ai %ld, wi %ld\n",ai,wi);
264 #endif
265 }
266 ord+=ai;
267 if (ord<ai)
268 {
270 #if SIZEOF_LONG == 4
271 Print("ai %lld, ord %lld\n",ai,ord);
272 #else
273 Print("ai %ld, ord %ld\n",ai,ord);
274 #endif
275 }
276 }
277 #if SIZEOF_LONG == 4
278 int64 mask=(int64)0x7fffffff;
279 long a_0=(long)(ord&mask); //2^31
280 long a_1=(long)(ord >>31 ); /*(ord/(mask+1));*/
281
282 //Print("mask: %x, ord: %d, a_0: %d, a_1: %d\n"
283 //,(int)mask,(int)ord,(int)a_0,(int)a_1);
284 //Print("mask: %d",mask);
285
286 p->exp[o->data.wp64.place]=a_1;
287 p->exp[o->data.wp64.place+1]=a_0;
288 #elif SIZEOF_LONG == 8
289 p->exp[o->data.wp64.place]=ord;
290 #endif
291// if(p_Setm_error) PrintS("***************************\n"
292// "***************************\n"
293// "**WARNING: overflow error**\n"
294// "***************************\n"
295// "***************************\n");
296 break;
297 }
298 case ro_cp:
299 {
300 int a,e;
301 a=o->data.cp.start;
302 e=o->data.cp.end;
303 int pl=o->data.cp.place;
304 for(int i=a;i<=e;i++) { p->exp[pl]=p_GetExp(p,i,r); pl++; }
305 break;
306 }
307 case ro_syzcomp:
308 {
309 long c=__p_GetComp(p,r);
310 long sc = c;
311 int* Components = (_componentsExternal ? _components :
312 o->data.syzcomp.Components);
313 long* ShiftedComponents = (_componentsExternal ? _componentsShifted:
314 o->data.syzcomp.ShiftedComponents);
315 if (ShiftedComponents != NULL)
316 {
317 assume(Components != NULL);
318 assume(c == 0 || Components[c] != 0);
319 sc = ShiftedComponents[Components[c]];
320 assume(c == 0 || sc != 0);
321 }
322 p->exp[o->data.syzcomp.place]=sc;
323 break;
324 }
325 case ro_syz:
326 {
327 const unsigned long c = __p_GetComp(p, r);
328 const short place = o->data.syz.place;
329 const int limit = o->data.syz.limit;
330
331 if (c > (unsigned long)limit)
332 p->exp[place] = o->data.syz.curr_index;
333 else if (c > 0)
334 {
335 assume( (1 <= c) && (c <= (unsigned long)limit) );
336 p->exp[place]= o->data.syz.syz_index[c];
337 }
338 else
339 {
340 assume(c == 0);
341 p->exp[place]= 0;
342 }
343 break;
344 }
345 // Prefix for Induced Schreyer ordering
346 case ro_isTemp: // Do nothing?? (to be removed into suffix later on...?)
347 {
348 assume(p != NULL);
349
350#ifndef SING_NDEBUG
351#if MYTEST
352 Print("p_Setm_General: ro_isTemp ord: pos: %d, p: ", pos); p_wrp(p, r);
353#endif
354#endif
355 int c = p_GetComp(p, r);
356
357 assume( c >= 0 );
358
359 // Let's simulate case ro_syz above....
360 // Should accumulate (by Suffix) and be a level indicator
361 const int* const pVarOffset = o->data.isTemp.pVarOffset;
362
363 assume( pVarOffset != NULL );
364
365 // TODO: Can this be done in the suffix???
366 for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
367 {
368 const int vo = pVarOffset[i];
369 if( vo != -1) // TODO: optimize: can be done once!
370 {
371 // Hans! Please don't break it again! p_SetExp(p, ..., r, vo) is correct:
372 p_SetExp(p, p_GetExp(p, i, r), r, vo); // copy put them verbatim
373 // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct:
374 assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim
375 }
376 }
377#ifndef SING_NDEBUG
378 for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
379 {
380 const int vo = pVarOffset[i];
381 if( vo != -1) // TODO: optimize: can be done once!
382 {
383 // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct:
384 assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim
385 }
386 }
387#if MYTEST
388// if( p->exp[o->data.isTemp.start] > 0 )
389 PrintS("after Values: "); p_wrp(p, r);
390#endif
391#endif
392 break;
393 }
394
395 // Suffix for Induced Schreyer ordering
396 case ro_is:
397 {
398#ifndef SING_NDEBUG
399#if MYTEST
400 Print("p_Setm_General: ro_is ord: pos: %d, p: ", pos); p_wrp(p, r);
401#endif
402#endif
403
404 assume(p != NULL);
405
406 int c = p_GetComp(p, r);
407
408 assume( c >= 0 );
409 const ideal F = o->data.is.F;
410 const int limit = o->data.is.limit;
411 assume( limit >= 0 );
412 const int start = o->data.is.start;
413
414 if( F != NULL && c > limit )
415 {
416#ifndef SING_NDEBUG
417#if MYTEST
418 Print("p_Setm_General: ro_is : in rSetm: pos: %d, c: %d > limit: %d\n", c, pos, limit);
419 PrintS("preComputed Values: ");
420 p_wrp(p, r);
421#endif
422#endif
423// if( c > limit ) // BUG???
424 p->exp[start] = 1;
425// else
426// p->exp[start] = 0;
427
428
429 c -= limit;
430 assume( c > 0 );
431 c--;
432
433 if( c >= IDELEMS(F) )
434 break;
435
436 assume( c < IDELEMS(F) ); // What about others???
437
438 const poly pp = F->m[c]; // get reference monomial!!!
439
440 if(pp == NULL)
441 break;
442
443 assume(pp != NULL);
444
445#ifndef SING_NDEBUG
446#if MYTEST
447 Print("Respective F[c - %d: %d] pp: ", limit, c);
448 p_wrp(pp, r);
449#endif
450#endif
451
452 const int end = o->data.is.end;
453 assume(start <= end);
454
455
456// const int st = o->data.isTemp.start;
457
458#ifndef SING_NDEBUG
459#if MYTEST
460 Print("p_Setm_General: is(-Temp-) :: c: %d, limit: %d, [st:%d] ===>>> %ld\n", c, limit, start, p->exp[start]);
461#endif
462#endif
463
464 // p_ExpVectorAdd(p, pp, r);
465
466 for( int i = start; i <= end; i++) // v[0] may be here...
467 p->exp[i] += pp->exp[i]; // !!!!!!!! ADD corresponding LT(F)
468
469 // p_MemAddAdjust(p, ri);
470 if (r->NegWeightL_Offset != NULL)
471 {
472 for (int i=r->NegWeightL_Size-1; i>=0; i--)
473 {
474 const int _i = r->NegWeightL_Offset[i];
475 if( start <= _i && _i <= end )
476 p->exp[_i] -= POLY_NEGWEIGHT_OFFSET;
477 }
478 }
479
480
481#ifndef SING_NDEBUG
482 const int* const pVarOffset = o->data.is.pVarOffset;
483
484 assume( pVarOffset != NULL );
485
486 for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
487 {
488 const int vo = pVarOffset[i];
489 if( vo != -1) // TODO: optimize: can be done once!
490 // Hans! Please don't break it again! p_GetExp(p/pp, r, vo) is correct:
491 assume( p_GetExp(p, r, vo) == (p_GetExp(p, i, r) + p_GetExp(pp, r, vo)) );
492 }
493 // TODO: how to check this for computed values???
494#if MYTEST
495 PrintS("Computed Values: "); p_wrp(p, r);
496#endif
497#endif
498 } else
499 {
500 p->exp[start] = 0; //!!!!????? where?????
501
502 const int* const pVarOffset = o->data.is.pVarOffset;
503
504 // What about v[0] - component: it will be added later by
505 // suffix!!!
506 // TODO: Test it!
507 const int vo = pVarOffset[0];
508 if( vo != -1 )
509 p->exp[vo] = c; // initial component v[0]!
510
511#ifndef SING_NDEBUG
512#if MYTEST
513 Print("ELSE p_Setm_General: ro_is :: c: %d <= limit: %d, vo: %d, exp: %d\n", c, limit, vo, p->exp[vo]);
514 p_wrp(p, r);
515#endif
516#endif
517 }
518
519 break;
520 }
521 default:
522 dReportError("wrong ord in rSetm:%d\n",o->ord_typ);
523 return;
524 }
525 pos++;
526 if (pos == r->OrdSize) return;
527 }
528 }
529}
530
531void p_Setm_Syz(poly p, ring r, int* Components, long* ShiftedComponents)
532{
533 _components = Components;
534 _componentsShifted = ShiftedComponents;
536 p_Setm_General(p, r);
538}
539
540// dummy for lp, ls, etc
541void p_Setm_Dummy(poly p, const ring r)
542{
544}
545
546// for dp, Dp, ds, etc
547void p_Setm_TotalDegree(poly p, const ring r)
548{
550 p->exp[r->pOrdIndex] = p_Totaldegree(p, r);
551}
552
553// for wp, Wp, ws, etc
554void p_Setm_WFirstTotalDegree(poly p, const ring r)
555{
557 p->exp[r->pOrdIndex] = p_WFirstTotalDegree(p, r);
558}
559
561{
562 // covers lp, rp, ls,
563 if (r->typ == NULL) return p_Setm_Dummy;
564
565 if (r->OrdSize == 1)
566 {
567 if (r->typ[0].ord_typ == ro_dp &&
568 r->typ[0].data.dp.start == 1 &&
569 r->typ[0].data.dp.end == r->N &&
570 r->typ[0].data.dp.place == r->pOrdIndex)
571 return p_Setm_TotalDegree;
572 if (r->typ[0].ord_typ == ro_wp &&
573 r->typ[0].data.wp.start == 1 &&
574 r->typ[0].data.wp.end == r->N &&
575 r->typ[0].data.wp.place == r->pOrdIndex &&
576 r->typ[0].data.wp.weights == r->firstwv)
578 }
579 return p_Setm_General;
580}
581
582
583/* -------------------------------------------------------------------*/
584/* several possibilities for pFDeg: the degree of the head term */
585
586/* comptible with ordering */
587long p_Deg(poly a, const ring r)
588{
589 p_LmCheckPolyRing(a, r);
590// assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume!
591 return p_GetOrder(a, r);
592}
593
594// p_WTotalDegree for weighted orderings
595// whose first block covers all variables
596long p_WFirstTotalDegree(poly p, const ring r)
597{
598 int i;
599 long sum = 0;
600
601 for (i=1; i<= r->firstBlockEnds; i++)
602 {
603 sum += p_GetExp(p, i, r)*r->firstwv[i-1];
604 }
605 return sum;
606}
607
608/*2
609* compute the degree of the leading monomial of p
610* with respect to weigths from the ordering
611* the ordering is not compatible with degree so do not use p->Order
612*/
613long p_WTotaldegree(poly p, const ring r)
614{
616 int i, k;
617 long j =0;
618
619 // iterate through each block:
620 for (i=0;r->order[i]!=0;i++)
621 {
622 int b0=r->block0[i];
623 int b1=r->block1[i];
624 switch(r->order[i])
625 {
626 case ringorder_M:
627 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
628 { // in jedem block:
629 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn;
630 }
631 break;
632 case ringorder_am:
633 b1=si_min(b1,r->N);
634 /* no break, continue as ringorder_a*/
635 case ringorder_a:
636 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
637 { // only one line
638 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
639 }
640 return j*r->OrdSgn;
641 case ringorder_wp:
642 case ringorder_ws:
643 case ringorder_Wp:
644 case ringorder_Ws:
645 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
646 { // in jedem block:
647 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
648 }
649 break;
650 case ringorder_lp:
651 case ringorder_ls:
652 case ringorder_rs:
653 case ringorder_dp:
654 case ringorder_ds:
655 case ringorder_Dp:
656 case ringorder_Ds:
657 case ringorder_rp:
658 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
659 {
660 j+= p_GetExp(p,k,r);
661 }
662 break;
663 case ringorder_a64:
664 {
665 int64* w=(int64*)r->wvhdl[i];
666 for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++)
667 {
668 //there should be added a line which checks if w[k]>2^31
669 j+= p_GetExp(p,k+1, r)*(long)w[k];
670 }
671 //break;
672 return j;
673 }
674 case ringorder_c: /* nothing to do*/
675 case ringorder_C: /* nothing to do*/
676 case ringorder_S: /* nothing to do*/
677 case ringorder_s: /* nothing to do*/
678 case ringorder_IS: /* nothing to do */
679 case ringorder_unspec: /* to make clang happy, does not occur*/
680 case ringorder_no: /* to make clang happy, does not occur*/
681 case ringorder_L: /* to make clang happy, does not occur*/
682 case ringorder_aa: /* ignored by p_WTotaldegree*/
683 break;
684 /* no default: all orderings covered */
685 }
686 }
687 return j;
688}
689
690long p_DegW(poly p, const int *w, const ring R)
691{
692 p_Test(p, R);
693 assume( w != NULL );
694 long r=-LONG_MAX;
695
696 while (p!=NULL)
697 {
698 long t=totaldegreeWecart_IV(p,R,w);
699 if (t>r) r=t;
700 pIter(p);
701 }
702 return r;
703}
704
705int p_Weight(int i, const ring r)
706{
707 if ((r->firstwv==NULL) || (i>r->firstBlockEnds))
708 {
709 return 1;
710 }
711 return r->firstwv[i-1];
712}
713
714long p_WDegree(poly p, const ring r)
715{
716 if (r->firstwv==NULL) return p_Totaldegree(p, r);
718 int i;
719 long j =0;
720
721 for(i=1;i<=r->firstBlockEnds;i++)
722 j+=p_GetExp(p, i, r)*r->firstwv[i-1];
723
724 for (;i<=rVar(r);i++)
725 j+=p_GetExp(p,i, r)*p_Weight(i, r);
726
727 return j;
728}
729
730
731/* ---------------------------------------------------------------------*/
732/* several possibilities for pLDeg: the maximal degree of a monomial in p*/
733/* compute in l also the pLength of p */
734
735/*2
736* compute the length of a polynomial (in l)
737* and the degree of the monomial with maximal degree: the last one
738*/
739long pLDeg0(poly p,int *l, const ring r)
740{
741 p_CheckPolyRing(p, r);
742 long unsigned k= p_GetComp(p, r);
743 int ll=1;
744
745 if (k > 0)
746 {
747 while ((pNext(p)!=NULL) && (__p_GetComp(pNext(p), r)==k))
748 {
749 pIter(p);
750 ll++;
751 }
752 }
753 else
754 {
755 while (pNext(p)!=NULL)
756 {
757 pIter(p);
758 ll++;
759 }
760 }
761 *l=ll;
762 return r->pFDeg(p, r);
763}
764
765/*2
766* compute the length of a polynomial (in l)
767* and the degree of the monomial with maximal degree: the last one
768* but search in all components before syzcomp
769*/
770long pLDeg0c(poly p,int *l, const ring r)
771{
772 assume(p!=NULL);
773 p_Test(p,r);
774 p_CheckPolyRing(p, r);
775 long o;
776 int ll=1;
777
778 if (! rIsSyzIndexRing(r))
779 {
780 while (pNext(p) != NULL)
781 {
782 pIter(p);
783 ll++;
784 }
785 o = r->pFDeg(p, r);
786 }
787 else
788 {
789 long unsigned curr_limit = rGetCurrSyzLimit(r);
790 poly pp = p;
791 while ((p=pNext(p))!=NULL)
792 {
793 if (__p_GetComp(p, r)<=curr_limit/*syzComp*/)
794 ll++;
795 else break;
796 pp = p;
797 }
798 p_Test(pp,r);
799 o = r->pFDeg(pp, r);
800 }
801 *l=ll;
802 return o;
803}
804
805/*2
806* compute the length of a polynomial (in l)
807* and the degree of the monomial with maximal degree: the first one
808* this works for the polynomial case with degree orderings
809* (both c,dp and dp,c)
810*/
811long pLDegb(poly p,int *l, const ring r)
812{
813 p_CheckPolyRing(p, r);
814 long unsigned k= p_GetComp(p, r);
815 long o = r->pFDeg(p, r);
816 int ll=1;
817
818 if (k != 0)
819 {
820 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
821 {
822 ll++;
823 }
824 }
825 else
826 {
827 while ((p=pNext(p)) !=NULL)
828 {
829 ll++;
830 }
831 }
832 *l=ll;
833 return o;
834}
835
836/*2
837* compute the length of a polynomial (in l)
838* and the degree of the monomial with maximal degree:
839* this is NOT the last one, we have to look for it
840*/
841long pLDeg1(poly p,int *l, const ring r)
842{
843 p_CheckPolyRing(p, r);
844 long unsigned k= p_GetComp(p, r);
845 int ll=1;
846 long t,max;
847
848 max=r->pFDeg(p, r);
849 if (k > 0)
850 {
851 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
852 {
853 t=r->pFDeg(p, r);
854 if (t>max) max=t;
855 ll++;
856 }
857 }
858 else
859 {
860 while ((p=pNext(p))!=NULL)
861 {
862 t=r->pFDeg(p, r);
863 if (t>max) max=t;
864 ll++;
865 }
866 }
867 *l=ll;
868 return max;
869}
870
871/*2
872* compute the length of a polynomial (in l)
873* and the degree of the monomial with maximal degree:
874* this is NOT the last one, we have to look for it
875* in all components
876*/
877long pLDeg1c(poly p,int *l, const ring r)
878{
879 p_CheckPolyRing(p, r);
880 int ll=1;
881 long t,max;
882
883 max=r->pFDeg(p, r);
884 if (rIsSyzIndexRing(r))
885 {
886 long unsigned limit = rGetCurrSyzLimit(r);
887 while ((p=pNext(p))!=NULL)
888 {
889 if (__p_GetComp(p, r)<=limit)
890 {
891 if ((t=r->pFDeg(p, r))>max) max=t;
892 ll++;
893 }
894 else break;
895 }
896 }
897 else
898 {
899 while ((p=pNext(p))!=NULL)
900 {
901 if ((t=r->pFDeg(p, r))>max) max=t;
902 ll++;
903 }
904 }
905 *l=ll;
906 return max;
907}
908
909// like pLDeg1, only pFDeg == pDeg
910long pLDeg1_Deg(poly p,int *l, const ring r)
911{
912 assume(r->pFDeg == p_Deg);
913 p_CheckPolyRing(p, r);
914 long unsigned k= p_GetComp(p, r);
915 int ll=1;
916 long t,max;
917
918 max=p_GetOrder(p, r);
919 if (k > 0)
920 {
921 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
922 {
923 t=p_GetOrder(p, r);
924 if (t>max) max=t;
925 ll++;
926 }
927 }
928 else
929 {
930 while ((p=pNext(p))!=NULL)
931 {
932 t=p_GetOrder(p, r);
933 if (t>max) max=t;
934 ll++;
935 }
936 }
937 *l=ll;
938 return max;
939}
940
941long pLDeg1c_Deg(poly p,int *l, const ring r)
942{
943 assume(r->pFDeg == p_Deg);
944 p_CheckPolyRing(p, r);
945 int ll=1;
946 long t,max;
947
948 max=p_GetOrder(p, r);
949 if (rIsSyzIndexRing(r))
950 {
951 long unsigned limit = rGetCurrSyzLimit(r);
952 while ((p=pNext(p))!=NULL)
953 {
954 if (__p_GetComp(p, r)<=limit)
955 {
956 if ((t=p_GetOrder(p, r))>max) max=t;
957 ll++;
958 }
959 else break;
960 }
961 }
962 else
963 {
964 while ((p=pNext(p))!=NULL)
965 {
966 if ((t=p_GetOrder(p, r))>max) max=t;
967 ll++;
968 }
969 }
970 *l=ll;
971 return max;
972}
973
974// like pLDeg1, only pFDeg == pTotoalDegree
975long pLDeg1_Totaldegree(poly p,int *l, const ring r)
976{
977 p_CheckPolyRing(p, r);
978 long unsigned k= p_GetComp(p, r);
979 int ll=1;
980 long t,max;
981
982 max=p_Totaldegree(p, r);
983 if (k > 0)
984 {
985 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
986 {
987 t=p_Totaldegree(p, r);
988 if (t>max) max=t;
989 ll++;
990 }
991 }
992 else
993 {
994 while ((p=pNext(p))!=NULL)
995 {
996 t=p_Totaldegree(p, r);
997 if (t>max) max=t;
998 ll++;
999 }
1000 }
1001 *l=ll;
1002 return max;
1003}
1004
1005long pLDeg1c_Totaldegree(poly p,int *l, const ring r)
1006{
1007 p_CheckPolyRing(p, r);
1008 int ll=1;
1009 long t,max;
1010
1011 max=p_Totaldegree(p, r);
1012 if (rIsSyzIndexRing(r))
1013 {
1014 long unsigned limit = rGetCurrSyzLimit(r);
1015 while ((p=pNext(p))!=NULL)
1016 {
1017 if (__p_GetComp(p, r)<=limit)
1018 {
1019 if ((t=p_Totaldegree(p, r))>max) max=t;
1020 ll++;
1021 }
1022 else break;
1023 }
1024 }
1025 else
1026 {
1027 while ((p=pNext(p))!=NULL)
1028 {
1029 if ((t=p_Totaldegree(p, r))>max) max=t;
1030 ll++;
1031 }
1032 }
1033 *l=ll;
1034 return max;
1035}
1036
1037// like pLDeg1, only pFDeg == p_WFirstTotalDegree
1038long pLDeg1_WFirstTotalDegree(poly p,int *l, const ring r)
1039{
1040 p_CheckPolyRing(p, r);
1041 long unsigned k= p_GetComp(p, r);
1042 int ll=1;
1043 long t,max;
1044
1046 if (k > 0)
1047 {
1048 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
1049 {
1050 t=p_WFirstTotalDegree(p, r);
1051 if (t>max) max=t;
1052 ll++;
1053 }
1054 }
1055 else
1056 {
1057 while ((p=pNext(p))!=NULL)
1058 {
1059 t=p_WFirstTotalDegree(p, r);
1060 if (t>max) max=t;
1061 ll++;
1062 }
1063 }
1064 *l=ll;
1065 return max;
1066}
1067
1068long pLDeg1c_WFirstTotalDegree(poly p,int *l, const ring r)
1069{
1070 p_CheckPolyRing(p, r);
1071 int ll=1;
1072 long t,max;
1073
1075 if (rIsSyzIndexRing(r))
1076 {
1077 long unsigned limit = rGetCurrSyzLimit(r);
1078 while ((p=pNext(p))!=NULL)
1079 {
1080 if (__p_GetComp(p, r)<=limit)
1081 {
1082 if ((t=p_Totaldegree(p, r))>max) max=t;
1083 ll++;
1084 }
1085 else break;
1086 }
1087 }
1088 else
1089 {
1090 while ((p=pNext(p))!=NULL)
1091 {
1092 if ((t=p_Totaldegree(p, r))>max) max=t;
1093 ll++;
1094 }
1095 }
1096 *l=ll;
1097 return max;
1098}
1099
1100/***************************************************************
1101 *
1102 * Maximal Exponent business
1103 *
1104 ***************************************************************/
1105
1106static inline unsigned long
1107p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r,
1108 unsigned long number_of_exp)
1109{
1110 const unsigned long bitmask = r->bitmask;
1111 unsigned long ml1 = l1 & bitmask;
1112 unsigned long ml2 = l2 & bitmask;
1113 unsigned long max = (ml1 > ml2 ? ml1 : ml2);
1114 unsigned long j = number_of_exp - 1;
1115
1116 if (j > 0)
1117 {
1118 unsigned long mask = bitmask << r->BitsPerExp;
1119 while (1)
1120 {
1121 ml1 = l1 & mask;
1122 ml2 = l2 & mask;
1123 max |= ((ml1 > ml2 ? ml1 : ml2) & mask);
1124 j--;
1125 if (j == 0) break;
1126 mask = mask << r->BitsPerExp;
1127 }
1128 }
1129 return max;
1130}
1131
1132static inline unsigned long
1133p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r)
1134{
1135 return p_GetMaxExpL2(l1, l2, r, r->ExpPerLong);
1136}
1137
1138poly p_GetMaxExpP(poly p, const ring r)
1139{
1140 p_CheckPolyRing(p, r);
1141 if (p == NULL) return p_Init(r);
1142 poly max = p_LmInit(p, r);
1143 pIter(p);
1144 if (p == NULL) return max;
1145 int i, offset;
1146 unsigned long l_p, l_max;
1147 unsigned long divmask = r->divmask;
1148
1149 do
1150 {
1151 offset = r->VarL_Offset[0];
1152 l_p = p->exp[offset];
1153 l_max = max->exp[offset];
1154 // do the divisibility trick to find out whether l has an exponent
1155 if (l_p > l_max ||
1156 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1157 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1158
1159 for (i=1; i<r->VarL_Size; i++)
1160 {
1161 offset = r->VarL_Offset[i];
1162 l_p = p->exp[offset];
1163 l_max = max->exp[offset];
1164 // do the divisibility trick to find out whether l has an exponent
1165 if (l_p > l_max ||
1166 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1167 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1168 }
1169 pIter(p);
1170 }
1171 while (p != NULL);
1172 return max;
1173}
1174
1175unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max)
1176{
1177 unsigned long l_p, divmask = r->divmask;
1178 int i;
1179
1180 while (p != NULL)
1181 {
1182 l_p = p->exp[r->VarL_Offset[0]];
1183 if (l_p > l_max ||
1184 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1185 l_max = p_GetMaxExpL2(l_max, l_p, r);
1186 for (i=1; i<r->VarL_Size; i++)
1187 {
1188 l_p = p->exp[r->VarL_Offset[i]];
1189 // do the divisibility trick to find out whether l has an exponent
1190 if (l_p > l_max ||
1191 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1192 l_max = p_GetMaxExpL2(l_max, l_p, r);
1193 }
1194 pIter(p);
1195 }
1196 return l_max;
1197}
1198
1199
1200
1201
1202/***************************************************************
1203 *
1204 * Misc things
1205 *
1206 ***************************************************************/
1207// returns TRUE, if all monoms have the same component
1208BOOLEAN p_OneComp(poly p, const ring r)
1209{
1210 if(p!=NULL)
1211 {
1212 long i = p_GetComp(p, r);
1213 while (pNext(p)!=NULL)
1214 {
1215 pIter(p);
1216 if(i != p_GetComp(p, r)) return FALSE;
1217 }
1218 }
1219 return TRUE;
1220}
1221
1222/*2
1223*test if a monomial /head term is a pure power,
1224* i.e. depends on only one variable
1225*/
1226int p_IsPurePower(const poly p, const ring r)
1227{
1228 int i,k=0;
1229
1230 for (i=r->N;i;i--)
1231 {
1232 if (p_GetExp(p,i, r)!=0)
1233 {
1234 if(k!=0) return 0;
1235 k=i;
1236 }
1237 }
1238 return k;
1239}
1240
1241/*2
1242*test if a polynomial is univariate
1243* return -1 for constant,
1244* 0 for not univariate,s
1245* i if dep. on var(i)
1246*/
1247int p_IsUnivariate(poly p, const ring r)
1248{
1249 int i,k=-1;
1250
1251 while (p!=NULL)
1252 {
1253 for (i=r->N;i;i--)
1254 {
1255 if (p_GetExp(p,i, r)!=0)
1256 {
1257 if((k!=-1)&&(k!=i)) return 0;
1258 k=i;
1259 }
1260 }
1261 pIter(p);
1262 }
1263 return k;
1264}
1265
1266// set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0
1267int p_GetVariables(poly p, int * e, const ring r)
1268{
1269 int i;
1270 int n=0;
1271 while(p!=NULL)
1272 {
1273 n=0;
1274 for(i=r->N; i>0; i--)
1275 {
1276 if(e[i]==0)
1277 {
1278 if (p_GetExp(p,i,r)>0)
1279 {
1280 e[i]=1;
1281 n++;
1282 }
1283 }
1284 else
1285 n++;
1286 }
1287 if (n==r->N) break;
1288 pIter(p);
1289 }
1290 return n;
1291}
1292
1293
1294/*2
1295* returns a polynomial representing the integer i
1296*/
1297poly p_ISet(long i, const ring r)
1298{
1299 poly rc = NULL;
1300 if (i!=0)
1301 {
1302 rc = p_Init(r);
1303 pSetCoeff0(rc,n_Init(i,r->cf));
1304 if (n_IsZero(pGetCoeff(rc),r->cf))
1305 p_LmDelete(&rc,r);
1306 }
1307 return rc;
1308}
1309
1310/*2
1311* an optimized version of p_ISet for the special case 1
1312*/
1313poly p_One(const ring r)
1314{
1315 poly rc = p_Init(r);
1316 pSetCoeff0(rc,n_Init(1,r->cf));
1317 return rc;
1318}
1319
1320void p_Split(poly p, poly *h)
1321{
1322 *h=pNext(p);
1323 pNext(p)=NULL;
1324}
1325
1326/*2
1327* pair has no common factor ? or is no polynomial
1328*/
1329BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r)
1330{
1331
1332 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1333 return FALSE;
1334 int i = rVar(r);
1335 loop
1336 {
1337 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1338 return FALSE;
1339 i--;
1340 if (i == 0)
1341 return TRUE;
1342 }
1343}
1344
1345BOOLEAN p_HasNotCFRing(poly p1, poly p2, const ring r)
1346{
1347
1348 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1349 return FALSE;
1350 int i = rVar(r);
1351 loop
1352 {
1353 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1354 return FALSE;
1355 i--;
1356 if (i == 0) {
1357 if (n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf) ||
1358 n_DivBy(pGetCoeff(p2), pGetCoeff(p1), r->cf)) {
1359 return FALSE;
1360 } else {
1361 return TRUE;
1362 }
1363 }
1364 }
1365}
1366
1367/*2
1368* convert monomial given as string to poly, e.g. 1x3y5z
1369*/
1370const char * p_Read(const char *st, poly &rc, const ring r)
1371{
1372 if (r==NULL) { rc=NULL;return st;}
1373 int i,j;
1374 rc = p_Init(r);
1375 const char *s = n_Read(st,&(p_GetCoeff(rc, r)),r->cf);
1376 if (s==st)
1377 /* i.e. it does not start with a coeff: test if it is a ringvar*/
1378 {
1379 j = r_IsRingVar(s,r->names,r->N);
1380 if (j >= 0)
1381 {
1382 p_IncrExp(rc,1+j,r);
1383 while (*s!='\0') s++;
1384 goto done;
1385 }
1386 }
1387 while (*s!='\0')
1388 {
1389 char ss[2];
1390 ss[0] = *s++;
1391 ss[1] = '\0';
1392 j = r_IsRingVar(ss,r->names,r->N);
1393 if (j >= 0)
1394 {
1395 const char *s_save=s;
1396 s = eati(s,&i);
1397 if (((unsigned long)i) > r->bitmask/2)
1398 {
1399 // exponent to large: it is not a monomial
1400 p_LmDelete(&rc,r);
1401 return s_save;
1402 }
1403 p_AddExp(rc,1+j, (long)i, r);
1404 }
1405 else
1406 {
1407 // 1st char of is not a varname
1408 // We return the parsed polynomial nevertheless. This is needed when
1409 // we are parsing coefficients in a rational function field.
1410 s--;
1411 break;
1412 }
1413 }
1414done:
1415 if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r);
1416 else
1417 {
1418#ifdef HAVE_PLURAL
1419 // in super-commutative ring
1420 // squares of anti-commutative variables are zeroes!
1421 if(rIsSCA(r))
1422 {
1423 const unsigned int iFirstAltVar = scaFirstAltVar(r);
1424 const unsigned int iLastAltVar = scaLastAltVar(r);
1425
1426 assume(rc != NULL);
1427
1428 for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++)
1429 if( p_GetExp(rc, k, r) > 1 )
1430 {
1431 p_LmDelete(&rc, r);
1432 goto finish;
1433 }
1434 }
1435#endif
1436
1437 p_Setm(rc,r);
1438 }
1439finish:
1440 return s;
1441}
1442poly p_mInit(const char *st, BOOLEAN &ok, const ring r)
1443{
1444 poly p;
1445 const char *s=p_Read(st,p,r);
1446 if (*s!='\0')
1447 {
1448 if ((s!=st)&&isdigit(st[0]))
1449 {
1451 }
1452 ok=FALSE;
1453 if (p!=NULL)
1454 {
1455 if (pGetCoeff(p)==NULL) p_LmFree(p,r);
1456 else p_LmDelete(p,r);
1457 }
1458 return NULL;
1459 }
1460 p_Test(p,r);
1461 ok=!errorreported;
1462 return p;
1463}
1464
1465/*2
1466* returns a polynomial representing the number n
1467* destroys n
1468*/
1469poly p_NSet(number n, const ring r)
1470{
1471 if (n_IsZero(n,r->cf))
1472 {
1473 n_Delete(&n, r->cf);
1474 return NULL;
1475 }
1476 else
1477 {
1478 poly rc = p_Init(r);
1479 pSetCoeff0(rc,n);
1480 return rc;
1481 }
1482}
1483/*2
1484* assumes that LM(a) = LM(b)*m, for some monomial m,
1485* returns the multiplicant m,
1486* leaves a and b unmodified
1487*/
1488poly p_MDivide(poly a, poly b, const ring r)
1489{
1490 assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0));
1491 int i;
1492 poly result = p_Init(r);
1493
1494 for(i=(int)r->N; i; i--)
1495 p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r);
1496 p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r);
1497 p_Setm(result,r);
1498 return result;
1499}
1500
1501poly p_Div_nn(poly p, const number n, const ring r)
1502{
1503 pAssume(!n_IsZero(n,r->cf));
1504 p_Test(p, r);
1505 poly result = p;
1506 poly prev = NULL;
1507 while (p!=NULL)
1508 {
1509 number nc = n_Div(pGetCoeff(p),n,r->cf);
1510 if (!n_IsZero(nc,r->cf))
1511 {
1512 p_SetCoeff(p,nc,r);
1513 prev=p;
1514 pIter(p);
1515 }
1516 else
1517 {
1518 if (prev==NULL)
1519 {
1520 p_LmDelete(&result,r);
1521 p=result;
1522 }
1523 else
1524 {
1525 p_LmDelete(&pNext(prev),r);
1526 p=pNext(prev);
1527 }
1528 }
1529 }
1530 p_Test(result,r);
1531 return(result);
1532}
1533
1534poly p_Div_mm(poly p, const poly m, const ring r)
1535{
1536 p_Test(p, r);
1537 p_Test(m, r);
1538 poly result = p;
1539 poly prev = NULL;
1540 number n=pGetCoeff(m);
1541 while (p!=NULL)
1542 {
1543 number nc = n_Div(pGetCoeff(p),n,r->cf);
1544 n_Normalize(nc,r->cf);
1545 if (!n_IsZero(nc,r->cf))
1546 {
1547 p_SetCoeff(p,nc,r);
1548 prev=p;
1549 p_ExpVectorSub(p,m,r);
1550 pIter(p);
1551 }
1552 else
1553 {
1554 if (prev==NULL)
1555 {
1556 p_LmDelete(&result,r);
1557 p=result;
1558 }
1559 else
1560 {
1561 p_LmDelete(&pNext(prev),r);
1562 p=pNext(prev);
1563 }
1564 }
1565 }
1566 p_Test(result,r);
1567 return(result);
1568}
1569
1570/*2
1571* divides a by the monomial b, ignores monomials which are not divisible
1572* assumes that b is not NULL, destroyes b
1573*/
1574poly p_DivideM(poly a, poly b, const ring r)
1575{
1576 if (a==NULL) { p_Delete(&b,r); return NULL; }
1577 poly result=a;
1578
1579 if(!p_IsConstant(b,r))
1580 {
1581 if (rIsNCRing(r))
1582 {
1583 WerrorS("p_DivideM not implemented for non-commuative rings");
1584 return NULL;
1585 }
1586 poly prev=NULL;
1587 while (a!=NULL)
1588 {
1589 if (p_DivisibleBy(b,a,r))
1590 {
1591 p_ExpVectorSub(a,b,r);
1592 prev=a;
1593 pIter(a);
1594 }
1595 else
1596 {
1597 if (prev==NULL)
1598 {
1599 p_LmDelete(&result,r);
1600 a=result;
1601 }
1602 else
1603 {
1604 p_LmDelete(&pNext(prev),r);
1605 a=pNext(prev);
1606 }
1607 }
1608 }
1609 }
1610 if (result!=NULL)
1611 {
1612 number inv=pGetCoeff(b);
1613 //if ((!rField_is_Ring(r)) || n_IsUnit(inv,r->cf))
1614 if (rField_is_Zp(r))
1615 {
1616 inv = n_Invers(inv,r->cf);
1617 __p_Mult_nn(result,inv,r);
1618 n_Delete(&inv, r->cf);
1619 }
1620 else
1621 {
1622 result = p_Div_nn(result,inv,r);
1623 }
1624 }
1625 p_Delete(&b, r);
1626 return result;
1627}
1628
1629poly pp_DivideM(poly a, poly b, const ring r)
1630{
1631 if (a==NULL) { return NULL; }
1632 // TODO: better implementation without copying a,b
1633 return p_DivideM(p_Copy(a,r),p_Head(b,r),r);
1634}
1635
1636#ifdef HAVE_RINGS
1637/* TRUE iff LT(f) | LT(g) */
1638BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r)
1639{
1640 int exponent;
1641 for(int i = (int)rVar(r); i>0; i--)
1642 {
1643 exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r);
1644 if (exponent < 0) return FALSE;
1645 }
1646 return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf);
1647}
1648#endif
1649
1650// returns the LCM of the head terms of a and b in *m
1651void p_Lcm(const poly a, const poly b, poly m, const ring r)
1652{
1653 for (int i=r->N; i; --i)
1654 p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r);
1655
1656 p_SetComp(m, si_max(p_GetComp(a,r), p_GetComp(b,r)),r);
1657 /* Don't do a pSetm here, otherwise hres/lres chockes */
1658}
1659
1660poly p_Lcm(const poly a, const poly b, const ring r)
1661{
1662 poly m=p_Init(r);
1663 p_Lcm(a, b, m, r);
1664 p_Setm(m,r);
1665 return(m);
1666}
1667
1668#ifdef HAVE_RATGRING
1669/*2
1670* returns the rational LCM of the head terms of a and b
1671* without coefficient!!!
1672*/
1673poly p_LcmRat(const poly a, const poly b, const long lCompM, const ring r)
1674{
1675 poly m = // p_One( r);
1676 p_Init(r);
1677
1678// const int (currRing->N) = r->N;
1679
1680 // for (int i = (currRing->N); i>=r->real_var_start; i--)
1681 for (int i = r->real_var_end; i>=r->real_var_start; i--)
1682 {
1683 const int lExpA = p_GetExp (a, i, r);
1684 const int lExpB = p_GetExp (b, i, r);
1685
1686 p_SetExp (m, i, si_max(lExpA, lExpB), r);
1687 }
1688
1689 p_SetComp (m, lCompM, r);
1690 p_Setm(m,r);
1691 n_New(&(p_GetCoeff(m, r)), r);
1692
1693 return(m);
1694};
1695
1696void p_LmDeleteAndNextRat(poly *p, int ishift, ring r)
1697{
1698 /* modifies p*/
1699 // Print("start: "); Print(" "); p_wrp(*p,r);
1700 p_LmCheckPolyRing2(*p, r);
1701 poly q = p_Head(*p,r);
1702 const long cmp = p_GetComp(*p, r);
1703 while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) )
1704 {
1705 p_LmDelete(p,r);
1706 // Print("while: ");p_wrp(*p,r);Print(" ");
1707 }
1708 // p_wrp(*p,r);Print(" ");
1709 // PrintS("end\n");
1710 p_LmDelete(&q,r);
1711}
1712
1713
1714/* returns x-coeff of p, i.e. a poly in x, s.t. corresponding xd-monomials
1715have the same D-part and the component 0
1716does not destroy p
1717*/
1718poly p_GetCoeffRat(poly p, int ishift, ring r)
1719{
1720 poly q = pNext(p);
1721 poly res; // = p_Head(p,r);
1722 res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally
1723 p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r);
1724 poly s;
1725 long cmp = p_GetComp(p, r);
1726 while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) )
1727 {
1728 s = p_GetExp_k_n(q, ishift+1, r->N, r);
1729 p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r);
1730 res = p_Add_q(res,s,r);
1731 q = pNext(q);
1732 }
1733 cmp = 0;
1734 p_SetCompP(res,cmp,r);
1735 return res;
1736}
1737
1738
1739
1740void p_ContentRat(poly &ph, const ring r)
1741// changes ph
1742// for rat coefficients in K(x1,..xN)
1743{
1744 // init array of RatLeadCoeffs
1745 // poly p_GetCoeffRat(poly p, int ishift, ring r);
1746
1747 int len=pLength(ph);
1748 poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs
1749 poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms
1750 int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs
1751 int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs
1752 int k = 0;
1753 poly p = p_Copy(ph, r); // ph will be needed below
1754 int mintdeg = p_Totaldegree(p, r);
1755 int minlen = len;
1756 int dd = 0; int i;
1757 int HasConstantCoef = 0;
1758 int is = r->real_var_start - 1;
1759 while (p!=NULL)
1760 {
1761 LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat istead of p_HeadRat(p, is, currRing); !
1762 C[k] = p_GetCoeffRat(p, is, r);
1763 D[k] = p_Totaldegree(C[k], r);
1764 mintdeg = si_min(mintdeg,D[k]);
1765 L[k] = pLength(C[k]);
1766 minlen = si_min(minlen,L[k]);
1767 if (p_IsConstant(C[k], r))
1768 {
1769 // C[k] = const, so the content will be numerical
1770 HasConstantCoef = 1;
1771 // smth like goto cleanup and return(pContent(p));
1772 }
1773 p_LmDeleteAndNextRat(&p, is, r);
1774 k++;
1775 }
1776
1777 // look for 1 element of minimal degree and of minimal length
1778 k--;
1779 poly d;
1780 int mindeglen = len;
1781 if (k<=0) // this poly is not a ratgring poly -> pContent
1782 {
1783 p_Delete(&C[0], r);
1784 p_Delete(&LM[0], r);
1785 p_ContentForGB(ph, r);
1786 goto cleanup;
1787 }
1788
1789 int pmindeglen;
1790 for(i=0; i<=k; i++)
1791 {
1792 if (D[i] == mintdeg)
1793 {
1794 if (L[i] < mindeglen)
1795 {
1796 mindeglen=L[i];
1797 pmindeglen = i;
1798 }
1799 }
1800 }
1801 d = p_Copy(C[pmindeglen], r);
1802 // there are dd>=1 mindeg elements
1803 // and pmideglen is the coordinate of one of the smallest among them
1804
1805 // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r));
1806 // return naGcd(d,d2,currRing);
1807
1808 // adjoin pContentRat here?
1809 for(i=0; i<=k; i++)
1810 {
1811 d=singclap_gcd(d,p_Copy(C[i], r), r);
1812 if (p_Totaldegree(d, r)==0)
1813 {
1814 // cleanup, pContent, return
1815 p_Delete(&d, r);
1816 for(;k>=0;k--)
1817 {
1818 p_Delete(&C[k], r);
1819 p_Delete(&LM[k], r);
1820 }
1821 p_ContentForGB(ph, r);
1822 goto cleanup;
1823 }
1824 }
1825 for(i=0; i<=k; i++)
1826 {
1827 poly h=singclap_pdivide(C[i],d, r);
1828 p_Delete(&C[i], r);
1829 C[i]=h;
1830 }
1831
1832 // zusammensetzen,
1833 p=NULL; // just to be sure
1834 for(i=0; i<=k; i++)
1835 {
1836 p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r);
1837 C[i]=NULL; LM[i]=NULL;
1838 }
1839 p_Delete(&ph, r); // do not need it anymore
1840 ph = p;
1841 // aufraeumen, return
1842cleanup:
1843 omFree(C);
1844 omFree(LM);
1845 omFree(D);
1846 omFree(L);
1847}
1848
1849
1850#endif
1851
1852
1853/* assumes that p and divisor are univariate polynomials in r,
1854 mentioning the same variable;
1855 assumes divisor != NULL;
1856 p may be NULL;
1857 assumes a global monomial ordering in r;
1858 performs polynomial division of p by divisor:
1859 - afterwards p contains the remainder of the division, i.e.,
1860 p_before = result * divisor + p_afterwards;
1861 - if needResult == TRUE, then the method computes and returns 'result',
1862 otherwise NULL is returned (This parametrization can be used when
1863 one is only interested in the remainder of the division. In this
1864 case, the method will be slightly faster.)
1865 leaves divisor unmodified */
1866poly p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
1867{
1868 assume(divisor != NULL);
1869 if (p == NULL) return NULL;
1870
1871 poly result = NULL;
1872 number divisorLC = p_GetCoeff(divisor, r);
1873 int divisorLE = p_GetExp(divisor, 1, r);
1874 while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r)))
1875 {
1876 /* determine t = LT(p) / LT(divisor) */
1877 poly t = p_ISet(1, r);
1878 number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf);
1879 n_Normalize(c,r->cf);
1880 p_SetCoeff(t, c, r);
1881 int e = p_GetExp(p, 1, r) - divisorLE;
1882 p_SetExp(t, 1, e, r);
1883 p_Setm(t, r);
1884 if (needResult) result = p_Add_q(result, p_Copy(t, r), r);
1885 p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r);
1886 }
1887 return result;
1888}
1889
1890/*2
1891* returns the partial differentiate of a by the k-th variable
1892* does not destroy the input
1893*/
1894poly p_Diff(poly a, int k, const ring r)
1895{
1896 poly res, f, last;
1897 number t;
1898
1899 last = res = NULL;
1900 while (a!=NULL)
1901 {
1902 if (p_GetExp(a,k,r)!=0)
1903 {
1904 f = p_LmInit(a,r);
1905 t = n_Init(p_GetExp(a,k,r),r->cf);
1906 pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf));
1907 n_Delete(&t,r->cf);
1908 if (n_IsZero(pGetCoeff(f),r->cf))
1909 p_LmDelete(&f,r);
1910 else
1911 {
1912 p_DecrExp(f,k,r);
1913 p_Setm(f,r);
1914 if (res==NULL)
1915 {
1916 res=last=f;
1917 }
1918 else
1919 {
1920 pNext(last)=f;
1921 last=f;
1922 }
1923 }
1924 }
1925 pIter(a);
1926 }
1927 return res;
1928}
1929
1930static poly p_DiffOpM(poly a, poly b,BOOLEAN multiply, const ring r)
1931{
1932 int i,j,s;
1933 number n,h,hh;
1934 poly p=p_One(r);
1935 n=n_Mult(pGetCoeff(a),pGetCoeff(b),r->cf);
1936 for(i=rVar(r);i>0;i--)
1937 {
1938 s=p_GetExp(b,i,r);
1939 if (s<p_GetExp(a,i,r))
1940 {
1941 n_Delete(&n,r->cf);
1942 p_LmDelete(&p,r);
1943 return NULL;
1944 }
1945 if (multiply)
1946 {
1947 for(j=p_GetExp(a,i,r); j>0;j--)
1948 {
1949 h = n_Init(s,r->cf);
1950 hh=n_Mult(n,h,r->cf);
1951 n_Delete(&h,r->cf);
1952 n_Delete(&n,r->cf);
1953 n=hh;
1954 s--;
1955 }
1956 p_SetExp(p,i,s,r);
1957 }
1958 else
1959 {
1960 p_SetExp(p,i,s-p_GetExp(a,i,r),r);
1961 }
1962 }
1963 p_Setm(p,r);
1964 /*if (multiply)*/ p_SetCoeff(p,n,r);
1965 if (n_IsZero(n,r->cf)) p=p_LmDeleteAndNext(p,r); // return NULL as p is a monomial
1966 return p;
1967}
1968
1969poly p_DiffOp(poly a, poly b,BOOLEAN multiply, const ring r)
1970{
1971 poly result=NULL;
1972 poly h;
1973 for(;a!=NULL;pIter(a))
1974 {
1975 for(h=b;h!=NULL;pIter(h))
1976 {
1977 result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r);
1978 }
1979 }
1980 return result;
1981}
1982/*2
1983* subtract p2 from p1, p1 and p2 are destroyed
1984* do not put attention on speed: the procedure is only used in the interpreter
1985*/
1986poly p_Sub(poly p1, poly p2, const ring r)
1987{
1988 return p_Add_q(p1, p_Neg(p2,r),r);
1989}
1990
1991/*3
1992* compute for a monomial m
1993* the power m^exp, exp > 1
1994* destroys p
1995*/
1996static poly p_MonPower(poly p, int exp, const ring r)
1997{
1998 int i;
1999
2000 if(!n_IsOne(pGetCoeff(p),r->cf))
2001 {
2002 number x, y;
2003 y = pGetCoeff(p);
2004 n_Power(y,exp,&x,r->cf);
2005 n_Delete(&y,r->cf);
2006 pSetCoeff0(p,x);
2007 }
2008 for (i=rVar(r); i!=0; i--)
2009 {
2010 p_MultExp(p,i, exp,r);
2011 }
2012 p_Setm(p,r);
2013 return p;
2014}
2015
2016/*3
2017* compute for monomials p*q
2018* destroys p, keeps q
2019*/
2020static void p_MonMult(poly p, poly q, const ring r)
2021{
2022 number x, y;
2023
2024 y = pGetCoeff(p);
2025 x = n_Mult(y,pGetCoeff(q),r->cf);
2026 n_Delete(&y,r->cf);
2027 pSetCoeff0(p,x);
2028 //for (int i=pVariables; i!=0; i--)
2029 //{
2030 // pAddExp(p,i, pGetExp(q,i));
2031 //}
2032 //p->Order += q->Order;
2033 p_ExpVectorAdd(p,q,r);
2034}
2035
2036/*3
2037* compute for monomials p*q
2038* keeps p, q
2039*/
2040static poly p_MonMultC(poly p, poly q, const ring rr)
2041{
2042 number x;
2043 poly r = p_Init(rr);
2044
2045 x = n_Mult(pGetCoeff(p),pGetCoeff(q),rr->cf);
2046 pSetCoeff0(r,x);
2047 p_ExpVectorSum(r,p, q, rr);
2048 return r;
2049}
2050
2051/*3
2052* create binomial coef.
2053*/
2054static number* pnBin(int exp, const ring r)
2055{
2056 int e, i, h;
2057 number x, y, *bin=NULL;
2058
2059 x = n_Init(exp,r->cf);
2060 if (n_IsZero(x,r->cf))
2061 {
2062 n_Delete(&x,r->cf);
2063 return bin;
2064 }
2065 h = (exp >> 1) + 1;
2066 bin = (number *)omAlloc0(h*sizeof(number));
2067 bin[1] = x;
2068 if (exp < 4)
2069 return bin;
2070 i = exp - 1;
2071 for (e=2; e<h; e++)
2072 {
2073 x = n_Init(i,r->cf);
2074 i--;
2075 y = n_Mult(x,bin[e-1],r->cf);
2076 n_Delete(&x,r->cf);
2077 x = n_Init(e,r->cf);
2078 bin[e] = n_ExactDiv(y,x,r->cf);
2079 n_Delete(&x,r->cf);
2080 n_Delete(&y,r->cf);
2081 }
2082 return bin;
2083}
2084
2085static void pnFreeBin(number *bin, int exp,const coeffs r)
2086{
2087 int e, h = (exp >> 1) + 1;
2088
2089 if (bin[1] != NULL)
2090 {
2091 for (e=1; e<h; e++)
2092 n_Delete(&(bin[e]),r);
2093 }
2094 omFreeSize((ADDRESS)bin, h*sizeof(number));
2095}
2096
2097/*
2098* compute for a poly p = head+tail, tail is monomial
2099* (head + tail)^exp, exp > 1
2100* with binomial coef.
2101*/
2102static poly p_TwoMonPower(poly p, int exp, const ring r)
2103{
2104 int eh, e;
2105 long al;
2106 poly *a;
2107 poly tail, b, res, h;
2108 number x;
2109 number *bin = pnBin(exp,r);
2110
2111 tail = pNext(p);
2112 if (bin == NULL)
2113 {
2114 p_MonPower(p,exp,r);
2115 p_MonPower(tail,exp,r);
2116 p_Test(p,r);
2117 return p;
2118 }
2119 eh = exp >> 1;
2120 al = (exp + 1) * sizeof(poly);
2121 a = (poly *)omAlloc(al);
2122 a[1] = p;
2123 for (e=1; e<exp; e++)
2124 {
2125 a[e+1] = p_MonMultC(a[e],p,r);
2126 }
2127 res = a[exp];
2128 b = p_Head(tail,r);
2129 for (e=exp-1; e>eh; e--)
2130 {
2131 h = a[e];
2132 x = n_Mult(bin[exp-e],pGetCoeff(h),r->cf);
2133 p_SetCoeff(h,x,r);
2134 p_MonMult(h,b,r);
2135 res = pNext(res) = h;
2136 p_MonMult(b,tail,r);
2137 }
2138 for (e=eh; e!=0; e--)
2139 {
2140 h = a[e];
2141 x = n_Mult(bin[e],pGetCoeff(h),r->cf);
2142 p_SetCoeff(h,x,r);
2143 p_MonMult(h,b,r);
2144 res = pNext(res) = h;
2145 p_MonMult(b,tail,r);
2146 }
2147 p_LmDelete(&tail,r);
2148 pNext(res) = b;
2149 pNext(b) = NULL;
2150 res = a[exp];
2151 omFreeSize((ADDRESS)a, al);
2152 pnFreeBin(bin, exp, r->cf);
2153// tail=res;
2154// while((tail!=NULL)&&(pNext(tail)!=NULL))
2155// {
2156// if(nIsZero(pGetCoeff(pNext(tail))))
2157// {
2158// pLmDelete(&pNext(tail));
2159// }
2160// else
2161// pIter(tail);
2162// }
2163 p_Test(res,r);
2164 return res;
2165}
2166
2167static poly p_Pow(poly p, int i, const ring r)
2168{
2169 poly rc = p_Copy(p,r);
2170 i -= 2;
2171 do
2172 {
2173 rc = p_Mult_q(rc,p_Copy(p,r),r);
2174 p_Normalize(rc,r);
2175 i--;
2176 }
2177 while (i != 0);
2178 return p_Mult_q(rc,p,r);
2179}
2180
2181static poly p_Pow_charp(poly p, int i, const ring r)
2182{
2183 //assume char_p == i
2184 poly h=p;
2185 while(h!=NULL) { p_MonPower(h,i,r);pIter(h);}
2186 return p;
2187}
2188
2189/*2
2190* returns the i-th power of p
2191* p will be destroyed
2192*/
2193poly p_Power(poly p, int i, const ring r)
2194{
2195 poly rc=NULL;
2196
2197 if (i==0)
2198 {
2199 p_Delete(&p,r);
2200 return p_One(r);
2201 }
2202
2203 if(p!=NULL)
2204 {
2205 if ( (i > 0) && ((unsigned long ) i > (r->bitmask))
2206 #ifdef HAVE_SHIFTBBA
2207 && (!rIsLPRing(r))
2208 #endif
2209 )
2210 {
2211 Werror("exponent %d is too large, max. is %ld",i,r->bitmask);
2212 return NULL;
2213 }
2214 switch (i)
2215 {
2216// cannot happen, see above
2217// case 0:
2218// {
2219// rc=pOne();
2220// pDelete(&p);
2221// break;
2222// }
2223 case 1:
2224 rc=p;
2225 break;
2226 case 2:
2227 rc=p_Mult_q(p_Copy(p,r),p,r);
2228 break;
2229 default:
2230 if (i < 0)
2231 {
2232 p_Delete(&p,r);
2233 return NULL;
2234 }
2235 else
2236 {
2237#ifdef HAVE_PLURAL
2238 if (rIsNCRing(r)) /* in the NC case nothing helps :-( */
2239 {
2240 int j=i;
2241 rc = p_Copy(p,r);
2242 while (j>1)
2243 {
2244 rc = p_Mult_q(p_Copy(p,r),rc,r);
2245 j--;
2246 }
2247 p_Delete(&p,r);
2248 return rc;
2249 }
2250#endif
2251 rc = pNext(p);
2252 if (rc == NULL)
2253 return p_MonPower(p,i,r);
2254 /* else: binom ?*/
2255 int char_p=rInternalChar(r);
2256 if ((char_p>0) && (i>char_p)
2257 && ((rField_is_Zp(r,char_p)
2258 || (rField_is_Zp_a(r,char_p)))))
2259 {
2260 poly h=p_Pow_charp(p_Copy(p,r),char_p,r);
2261 int rest=i-char_p;
2262 while (rest>=char_p)
2263 {
2264 rest-=char_p;
2265 h=p_Mult_q(h,p_Pow_charp(p_Copy(p,r),char_p,r),r);
2266 }
2267 poly res=h;
2268 if (rest>0)
2269 res=p_Mult_q(p_Power(p_Copy(p,r),rest,r),h,r);
2270 p_Delete(&p,r);
2271 return res;
2272 }
2273 if ((pNext(rc) != NULL)
2274 || rField_is_Ring(r)
2275 )
2276 return p_Pow(p,i,r);
2277 if ((char_p==0) || (i<=char_p))
2278 return p_TwoMonPower(p,i,r);
2279 return p_Pow(p,i,r);
2280 }
2281 /*end default:*/
2282 }
2283 }
2284 return rc;
2285}
2286
2287/* --------------------------------------------------------------------------------*/
2288/* content suff */
2289//number p_InitContent(poly ph, const ring r);
2290
2291void p_Content(poly ph, const ring r)
2292{
2293 if (ph==NULL) return;
2294 const coeffs cf=r->cf;
2295 if (pNext(ph)==NULL)
2296 {
2297 p_SetCoeff(ph,n_Init(1,cf),r);
2298 return;
2299 }
2300 if ((cf->cfSubringGcd==ndGcd)
2301 || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2302 return;
2303 number h;
2304 if ((rField_is_Q(r))
2305 || (rField_is_Q_a(r))
2306 || (rField_is_Zp_a)(r)
2307 || (rField_is_Z(r))
2308 )
2309 {
2310 h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2311 }
2312 else
2313 {
2314 h=n_Copy(pGetCoeff(ph),cf);
2315 }
2316 poly p;
2317 if(n_IsOne(h,cf))
2318 {
2319 goto content_finish;
2320 }
2321 p=ph;
2322 // take the SubringGcd of all coeffs
2323 while (p!=NULL)
2324 {
2326 number d=n_SubringGcd(h,pGetCoeff(p),cf);
2327 n_Delete(&h,cf);
2328 h = d;
2329 if(n_IsOne(h,cf))
2330 {
2331 goto content_finish;
2332 }
2333 pIter(p);
2334 }
2335 // if found<>1, divide by it
2336 p = ph;
2337 while (p!=NULL)
2338 {
2339 number d = n_ExactDiv(pGetCoeff(p),h,cf);
2340 p_SetCoeff(p,d,r);
2341 pIter(p);
2342 }
2343content_finish:
2344 n_Delete(&h,r->cf);
2345 // and last: check leading sign:
2346 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2347}
2348
2349void p_Content_n(poly ph, number &c,const ring r)
2350{
2351 const coeffs cf=r->cf;
2352 if (ph==NULL)
2353 {
2354 c=n_Init(1,cf);
2355 return;
2356 }
2357 if (pNext(ph)==NULL)
2358 {
2359 c=pGetCoeff(ph);
2360 p_SetCoeff0(ph,n_Init(1,cf),r);
2361 }
2362 if ((cf->cfSubringGcd==ndGcd)
2363 || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2364 {
2365 c=n_Init(1,r->cf);
2366 return;
2367 }
2368 number h;
2369 if ((rField_is_Q(r))
2370 || (rField_is_Q_a(r))
2371 || (rField_is_Zp_a)(r)
2372 || (rField_is_Z(r))
2373 )
2374 {
2375 h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2376 }
2377 else
2378 {
2379 h=n_Copy(pGetCoeff(ph),cf);
2380 }
2381 poly p;
2382 if(n_IsOne(h,cf))
2383 {
2384 goto content_finish;
2385 }
2386 p=ph;
2387 // take the SubringGcd of all coeffs
2388 while (p!=NULL)
2389 {
2391 number d=n_SubringGcd(h,pGetCoeff(p),cf);
2392 n_Delete(&h,cf);
2393 h = d;
2394 if(n_IsOne(h,cf))
2395 {
2396 goto content_finish;
2397 }
2398 pIter(p);
2399 }
2400 // if found<>1, divide by it
2401 p = ph;
2402 while (p!=NULL)
2403 {
2404 number d = n_ExactDiv(pGetCoeff(p),h,cf);
2405 p_SetCoeff(p,d,r);
2406 pIter(p);
2407 }
2408content_finish:
2409 c=h;
2410 // and last: check leading sign:
2411 if(!n_GreaterZero(pGetCoeff(ph),r->cf))
2412 {
2413 c = n_InpNeg(c,r->cf);
2414 ph = p_Neg(ph,r);
2415 }
2416}
2417
2418#define CLEARENUMERATORS 1
2419
2420void p_ContentForGB(poly ph, const ring r)
2421{
2422 if(TEST_OPT_CONTENTSB) return;
2423 assume( ph != NULL );
2424
2425 assume( r != NULL ); assume( r->cf != NULL );
2426
2427
2428#if CLEARENUMERATORS
2429 if( 0 )
2430 {
2431 const coeffs C = r->cf;
2432 // experimentall (recursive enumerator treatment) of alg. Ext!
2433 CPolyCoeffsEnumerator itr(ph);
2434 n_ClearContent(itr, r->cf);
2435
2436 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2437 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2438
2439 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2440 return;
2441 }
2442#endif
2443
2444
2445#ifdef HAVE_RINGS
2446 if (rField_is_Ring(r))
2447 {
2448 if (rField_has_Units(r))
2449 {
2450 number k = n_GetUnit(pGetCoeff(ph),r->cf);
2451 if (!n_IsOne(k,r->cf))
2452 {
2453 number tmpGMP = k;
2454 k = n_Invers(k,r->cf);
2455 n_Delete(&tmpGMP,r->cf);
2456 poly h = pNext(ph);
2457 p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r);
2458 while (h != NULL)
2459 {
2460 p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r);
2461 pIter(h);
2462 }
2463// assume( n_GreaterZero(pGetCoeff(ph),r->cf) );
2464// if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2465 }
2466 n_Delete(&k,r->cf);
2467 }
2468 return;
2469 }
2470#endif
2471 number h,d;
2472 poly p;
2473
2474 if(pNext(ph)==NULL)
2475 {
2476 p_SetCoeff(ph,n_Init(1,r->cf),r);
2477 }
2478 else
2479 {
2480 assume( pNext(ph) != NULL );
2481#if CLEARENUMERATORS
2482 if( nCoeff_is_Q(r->cf) )
2483 {
2484 // experimentall (recursive enumerator treatment) of alg. Ext!
2485 CPolyCoeffsEnumerator itr(ph);
2486 n_ClearContent(itr, r->cf);
2487
2488 p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf);
2489 assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ??
2490
2491 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2492 return;
2493 }
2494#endif
2495
2496 n_Normalize(pGetCoeff(ph),r->cf);
2497 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2498 if (rField_is_Q(r)||(getCoeffType(r->cf)==n_transExt)) // should not be used anymore if CLEARENUMERATORS is 1
2499 {
2500 h=p_InitContent(ph,r);
2501 p=ph;
2502 }
2503 else
2504 {
2505 h=n_Copy(pGetCoeff(ph),r->cf);
2506 p = pNext(ph);
2507 }
2508 while (p!=NULL)
2509 {
2510 n_Normalize(pGetCoeff(p),r->cf);
2511 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2512 n_Delete(&h,r->cf);
2513 h = d;
2514 if(n_IsOne(h,r->cf))
2515 {
2516 break;
2517 }
2518 pIter(p);
2519 }
2520 //number tmp;
2521 if(!n_IsOne(h,r->cf))
2522 {
2523 p = ph;
2524 while (p!=NULL)
2525 {
2526 //d = nDiv(pGetCoeff(p),h);
2527 //tmp = nExactDiv(pGetCoeff(p),h);
2528 //if (!nEqual(d,tmp))
2529 //{
2530 // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2531 // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2532 // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2533 //}
2534 //nDelete(&tmp);
2535 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2536 p_SetCoeff(p,d,r);
2537 pIter(p);
2538 }
2539 }
2540 n_Delete(&h,r->cf);
2541 if (rField_is_Q_a(r))
2542 {
2543 // special handling for alg. ext.:
2544 if (getCoeffType(r->cf)==n_algExt)
2545 {
2546 h = n_Init(1, r->cf->extRing->cf);
2547 p=ph;
2548 while (p!=NULL)
2549 { // each monom: coeff in Q_a
2550 poly c_n_n=(poly)pGetCoeff(p);
2551 poly c_n=c_n_n;
2552 while (c_n!=NULL)
2553 { // each monom: coeff in Q
2554 d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf);
2555 n_Delete(&h,r->cf->extRing->cf);
2556 h=d;
2557 pIter(c_n);
2558 }
2559 pIter(p);
2560 }
2561 /* h contains the 1/lcm of all denominators in c_n_n*/
2562 //n_Normalize(h,r->cf->extRing->cf);
2563 if(!n_IsOne(h,r->cf->extRing->cf))
2564 {
2565 p=ph;
2566 while (p!=NULL)
2567 { // each monom: coeff in Q_a
2568 poly c_n=(poly)pGetCoeff(p);
2569 while (c_n!=NULL)
2570 { // each monom: coeff in Q
2571 d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf);
2572 n_Normalize(d,r->cf->extRing->cf);
2573 n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf);
2574 pGetCoeff(c_n)=d;
2575 pIter(c_n);
2576 }
2577 pIter(p);
2578 }
2579 }
2580 n_Delete(&h,r->cf->extRing->cf);
2581 }
2582 /*else
2583 {
2584 // special handling for rat. functions.:
2585 number hzz =NULL;
2586 p=ph;
2587 while (p!=NULL)
2588 { // each monom: coeff in Q_a (Z_a)
2589 fraction f=(fraction)pGetCoeff(p);
2590 poly c_n=NUM(f);
2591 if (hzz==NULL)
2592 {
2593 hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf);
2594 pIter(c_n);
2595 }
2596 while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf)))
2597 { // each monom: coeff in Q (Z)
2598 d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf);
2599 n_Delete(&hzz,r->cf->extRing->cf);
2600 hzz=d;
2601 pIter(c_n);
2602 }
2603 pIter(p);
2604 }
2605 // hzz contains the gcd of all numerators in f
2606 h=n_Invers(hzz,r->cf->extRing->cf);
2607 n_Delete(&hzz,r->cf->extRing->cf);
2608 n_Normalize(h,r->cf->extRing->cf);
2609 if(!n_IsOne(h,r->cf->extRing->cf))
2610 {
2611 p=ph;
2612 while (p!=NULL)
2613 { // each monom: coeff in Q_a (Z_a)
2614 fraction f=(fraction)pGetCoeff(p);
2615 NUM(f)=__p_Mult_nn(NUM(f),h,r->cf->extRing);
2616 p_Normalize(NUM(f),r->cf->extRing);
2617 pIter(p);
2618 }
2619 }
2620 n_Delete(&h,r->cf->extRing->cf);
2621 }*/
2622 }
2623 }
2624 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2625}
2626
2627// Not yet?
2628#if 1 // currently only used by Singular/janet
2629void p_SimpleContent(poly ph, int smax, const ring r)
2630{
2631 if(TEST_OPT_CONTENTSB) return;
2632 if (ph==NULL) return;
2633 if (pNext(ph)==NULL)
2634 {
2635 p_SetCoeff(ph,n_Init(1,r->cf),r);
2636 return;
2637 }
2638 if (pNext(pNext(ph))==NULL)
2639 {
2640 return;
2641 }
2642 if (!(rField_is_Q(r))
2643 && (!rField_is_Q_a(r))
2644 && (!rField_is_Zp_a(r))
2645 && (!rField_is_Z(r))
2646 )
2647 {
2648 return;
2649 }
2650 number d=p_InitContent(ph,r);
2651 number h=d;
2652 if (n_Size(d,r->cf)<=smax)
2653 {
2654 n_Delete(&h,r->cf);
2655 //if (TEST_OPT_PROT) PrintS("G");
2656 return;
2657 }
2658
2659 poly p=ph;
2660 if (smax==1) smax=2;
2661 while (p!=NULL)
2662 {
2663#if 1
2664 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2665 n_Delete(&h,r->cf);
2666 h = d;
2667#else
2668 n_InpGcd(h,pGetCoeff(p),r->cf);
2669#endif
2670 if(n_Size(h,r->cf)<smax)
2671 {
2672 //if (TEST_OPT_PROT) PrintS("g");
2673 n_Delete(&h,r->cf);
2674 return;
2675 }
2676 pIter(p);
2677 }
2678 p = ph;
2679 if (!n_GreaterZero(pGetCoeff(p),r->cf)) h=n_InpNeg(h,r->cf);
2680 if(n_IsOne(h,r->cf))
2681 {
2682 n_Delete(&h,r->cf);
2683 return;
2684 }
2685 if (TEST_OPT_PROT) PrintS("c");
2686 while (p!=NULL)
2687 {
2688#if 1
2689 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2690 p_SetCoeff(p,d,r);
2691#else
2692 STATISTIC(n_ExactDiv); nlInpExactDiv(pGetCoeff(p),h,r->cf); // no such function... ?
2693#endif
2694 pIter(p);
2695 }
2696 n_Delete(&h,r->cf);
2697}
2698#endif
2699
2700number p_InitContent(poly ph, const ring r)
2701// only for coefficients in Q and rational functions
2702#if 0
2703{
2705 assume(ph!=NULL);
2706 assume(pNext(ph)!=NULL);
2707 assume(rField_is_Q(r));
2708 if (pNext(pNext(ph))==NULL)
2709 {
2710 return n_GetNumerator(pGetCoeff(pNext(ph)),r->cf);
2711 }
2712 poly p=ph;
2713 number n1=n_GetNumerator(pGetCoeff(p),r->cf);
2714 pIter(p);
2715 number n2=n_GetNumerator(pGetCoeff(p),r->cf);
2716 pIter(p);
2717 number d;
2718 number t;
2719 loop
2720 {
2721 nlNormalize(pGetCoeff(p),r->cf);
2722 t=n_GetNumerator(pGetCoeff(p),r->cf);
2723 if (nlGreaterZero(t,r->cf))
2724 d=nlAdd(n1,t,r->cf);
2725 else
2726 d=nlSub(n1,t,r->cf);
2727 nlDelete(&t,r->cf);
2728 nlDelete(&n1,r->cf);
2729 n1=d;
2730 pIter(p);
2731 if (p==NULL) break;
2732 nlNormalize(pGetCoeff(p),r->cf);
2733 t=n_GetNumerator(pGetCoeff(p),r->cf);
2734 if (nlGreaterZero(t,r->cf))
2735 d=nlAdd(n2,t,r->cf);
2736 else
2737 d=nlSub(n2,t,r->cf);
2738 nlDelete(&t,r->cf);
2739 nlDelete(&n2,r->cf);
2740 n2=d;
2741 pIter(p);
2742 if (p==NULL) break;
2743 }
2744 d=nlGcd(n1,n2,r->cf);
2745 nlDelete(&n1,r->cf);
2746 nlDelete(&n2,r->cf);
2747 return d;
2748}
2749#else
2750{
2751 /* ph has al least 2 terms */
2752 number d=pGetCoeff(ph);
2753 int s=n_Size(d,r->cf);
2754 pIter(ph);
2755 number d2=pGetCoeff(ph);
2756 int s2=n_Size(d2,r->cf);
2757 pIter(ph);
2758 if (ph==NULL)
2759 {
2760 if (s<s2) return n_Copy(d,r->cf);
2761 else return n_Copy(d2,r->cf);
2762 }
2763 do
2764 {
2765 number nd=pGetCoeff(ph);
2766 int ns=n_Size(nd,r->cf);
2767 if (ns<=2)
2768 {
2769 s2=s;
2770 d2=d;
2771 d=nd;
2772 s=ns;
2773 break;
2774 }
2775 else if (ns<s)
2776 {
2777 s2=s;
2778 d2=d;
2779 d=nd;
2780 s=ns;
2781 }
2782 pIter(ph);
2783 }
2784 while(ph!=NULL);
2785 return n_SubringGcd(d,d2,r->cf);
2786}
2787#endif
2788
2789//void pContent(poly ph)
2790//{
2791// number h,d;
2792// poly p;
2793//
2794// p = ph;
2795// if(pNext(p)==NULL)
2796// {
2797// pSetCoeff(p,nInit(1));
2798// }
2799// else
2800// {
2801//#ifdef PDEBUG
2802// if (!pTest(p)) return;
2803//#endif
2804// nNormalize(pGetCoeff(p));
2805// if(!nGreaterZero(pGetCoeff(ph)))
2806// {
2807// ph = pNeg(ph);
2808// nNormalize(pGetCoeff(p));
2809// }
2810// h=pGetCoeff(p);
2811// pIter(p);
2812// while (p!=NULL)
2813// {
2814// nNormalize(pGetCoeff(p));
2815// if (nGreater(h,pGetCoeff(p))) h=pGetCoeff(p);
2816// pIter(p);
2817// }
2818// h=nCopy(h);
2819// p=ph;
2820// while (p!=NULL)
2821// {
2822// d=n_Gcd(h,pGetCoeff(p));
2823// nDelete(&h);
2824// h = d;
2825// if(nIsOne(h))
2826// {
2827// break;
2828// }
2829// pIter(p);
2830// }
2831// p = ph;
2832// //number tmp;
2833// if(!nIsOne(h))
2834// {
2835// while (p!=NULL)
2836// {
2837// d = nExactDiv(pGetCoeff(p),h);
2838// pSetCoeff(p,d);
2839// pIter(p);
2840// }
2841// }
2842// nDelete(&h);
2843// if ( (nGetChar() == 1) || (nGetChar() < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */
2844// {
2845// pTest(ph);
2846// singclap_divide_content(ph);
2847// pTest(ph);
2848// }
2849// }
2850//}
2851#if 0
2852void p_Content(poly ph, const ring r)
2853{
2854 number h,d;
2855 poly p;
2856
2857 if(pNext(ph)==NULL)
2858 {
2859 p_SetCoeff(ph,n_Init(1,r->cf),r);
2860 }
2861 else
2862 {
2863 n_Normalize(pGetCoeff(ph),r->cf);
2864 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2865 h=n_Copy(pGetCoeff(ph),r->cf);
2866 p = pNext(ph);
2867 while (p!=NULL)
2868 {
2869 n_Normalize(pGetCoeff(p),r->cf);
2870 d=n_Gcd(h,pGetCoeff(p),r->cf);
2871 n_Delete(&h,r->cf);
2872 h = d;
2873 if(n_IsOne(h,r->cf))
2874 {
2875 break;
2876 }
2877 pIter(p);
2878 }
2879 p = ph;
2880 //number tmp;
2881 if(!n_IsOne(h,r->cf))
2882 {
2883 while (p!=NULL)
2884 {
2885 //d = nDiv(pGetCoeff(p),h);
2886 //tmp = nExactDiv(pGetCoeff(p),h);
2887 //if (!nEqual(d,tmp))
2888 //{
2889 // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2890 // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2891 // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2892 //}
2893 //nDelete(&tmp);
2894 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2895 p_SetCoeff(p,d,r->cf);
2896 pIter(p);
2897 }
2898 }
2899 n_Delete(&h,r->cf);
2900 //if ( (n_GetChar(r) == 1) || (n_GetChar(r) < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */
2901 //{
2902 // singclap_divide_content(ph);
2903 // if(!n_GreaterZero(pGetCoeff(ph),r)) ph = p_Neg(ph,r);
2904 //}
2905 }
2906}
2907#endif
2908/* ---------------------------------------------------------------------------*/
2909/* cleardenom suff */
2910poly p_Cleardenom(poly p, const ring r)
2911{
2912 if( p == NULL )
2913 return NULL;
2914
2915 assume( r != NULL );
2916 assume( r->cf != NULL );
2917 const coeffs C = r->cf;
2918
2919#if CLEARENUMERATORS
2920 if( 0 )
2921 {
2923 n_ClearDenominators(itr, C);
2924 n_ClearContent(itr, C); // divide out the content
2925 p_Test(p, r); n_Test(pGetCoeff(p), C);
2926 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2927// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2928 return p;
2929 }
2930#endif
2931
2932 number d, h;
2933
2934 if (rField_is_Ring(r))
2935 {
2936 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2937 return p;
2938 }
2939
2941 {
2942 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2943 return p;
2944 }
2945
2946 assume(p != NULL);
2947
2948 if(pNext(p)==NULL)
2949 {
2950 if (!TEST_OPT_CONTENTSB)
2951 p_SetCoeff(p,n_Init(1,C),r);
2952 else if(!n_GreaterZero(pGetCoeff(p),C))
2953 p = p_Neg(p,r);
2954 return p;
2955 }
2956
2957 assume(pNext(p)!=NULL);
2958 poly start=p;
2959
2960#if 0 && CLEARENUMERATORS
2961//CF: does not seem to work that well..
2962
2963 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
2964 {
2966 n_ClearDenominators(itr, C);
2967 n_ClearContent(itr, C); // divide out the content
2968 p_Test(p, r); n_Test(pGetCoeff(p), C);
2969 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2970// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2971 return start;
2972 }
2973#endif
2974
2975 if(1)
2976 {
2977 // get lcm of all denominators ----------------------------------
2978 h = n_Init(1,C);
2979 while (p!=NULL)
2980 {
2983 n_Delete(&h,C);
2984 h=d;
2985 pIter(p);
2986 }
2987 /* h now contains the 1/lcm of all denominators */
2988 if(!n_IsOne(h,C))
2989 {
2990 // multiply by the lcm of all denominators
2991 p = start;
2992 while (p!=NULL)
2993 {
2994 d=n_Mult(h,pGetCoeff(p),C);
2995 n_Normalize(d,C);
2996 p_SetCoeff(p,d,r);
2997 pIter(p);
2998 }
2999 }
3000 n_Delete(&h,C);
3001 p=start;
3002
3003 p_ContentForGB(p,r);
3004#ifdef HAVE_RATGRING
3005 if (rIsRatGRing(r))
3006 {
3007 /* quick unit detection in the rational case is done in gr_nc_bba */
3008 p_ContentRat(p, r);
3009 start=p;
3010 }
3011#endif
3012 }
3013
3014 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
3015
3016 return start;
3017}
3018
3019void p_Cleardenom_n(poly ph,const ring r,number &c)
3020{
3021 const coeffs C = r->cf;
3022 number d, h;
3023
3024 assume( ph != NULL );
3025
3026 poly p = ph;
3027
3028#if CLEARENUMERATORS
3029 if( 0 )
3030 {
3031 CPolyCoeffsEnumerator itr(ph);
3032
3033 n_ClearDenominators(itr, d, C); // multiply with common denom. d
3034 n_ClearContent(itr, h, C); // divide by the content h
3035
3036 c = n_Div(d, h, C); // d/h
3037
3038 n_Delete(&d, C);
3039 n_Delete(&h, C);
3040
3041 n_Test(c, C);
3042
3043 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3044 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3045/*
3046 if(!n_GreaterZero(pGetCoeff(ph),C))
3047 {
3048 ph = p_Neg(ph,r);
3049 c = n_InpNeg(c, C);
3050 }
3051*/
3052 return;
3053 }
3054#endif
3055
3056
3057 if( pNext(p) == NULL )
3058 {
3060 {
3061 c=n_Invers(pGetCoeff(p), C);
3062 p_SetCoeff(p, n_Init(1, C), r);
3063 }
3064 else
3065 {
3066 c=n_Init(1,C);
3067 }
3068
3069 if(!n_GreaterZero(pGetCoeff(ph),C))
3070 {
3071 ph = p_Neg(ph,r);
3072 c = n_InpNeg(c, C);
3073 }
3074
3075 return;
3076 }
3077 if (TEST_OPT_CONTENTSB) { c=n_Init(1,C); return; }
3078
3079 assume( pNext(p) != NULL );
3080
3081#if CLEARENUMERATORS
3082 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
3083 {
3084 CPolyCoeffsEnumerator itr(ph);
3085
3086 n_ClearDenominators(itr, d, C); // multiply with common denom. d
3087 n_ClearContent(itr, h, C); // divide by the content h
3088
3089 c = n_Div(d, h, C); // d/h
3090
3091 n_Delete(&d, C);
3092 n_Delete(&h, C);
3093
3094 n_Test(c, C);
3095
3096 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3097 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3098/*
3099 if(!n_GreaterZero(pGetCoeff(ph),C))
3100 {
3101 ph = p_Neg(ph,r);
3102 c = n_InpNeg(c, C);
3103 }
3104*/
3105 return;
3106 }
3107#endif
3108
3109
3110
3111
3112 if(1)
3113 {
3114 h = n_Init(1,C);
3115 while (p!=NULL)
3116 {
3119 n_Delete(&h,C);
3120 h=d;
3121 pIter(p);
3122 }
3123 c=h;
3124 /* contains the 1/lcm of all denominators */
3125 if(!n_IsOne(h,C))
3126 {
3127 p = ph;
3128 while (p!=NULL)
3129 {
3130 /* should be: // NOTE: don't use ->coef!!!!
3131 * number hh;
3132 * nGetDenom(p->coef,&hh);
3133 * nMult(&h,&hh,&d);
3134 * nNormalize(d);
3135 * nDelete(&hh);
3136 * nMult(d,p->coef,&hh);
3137 * nDelete(&d);
3138 * nDelete(&(p->coef));
3139 * p->coef =hh;
3140 */
3141 d=n_Mult(h,pGetCoeff(p),C);
3142 n_Normalize(d,C);
3143 p_SetCoeff(p,d,r);
3144 pIter(p);
3145 }
3146 if (rField_is_Q_a(r))
3147 {
3148 loop
3149 {
3150 h = n_Init(1,C);
3151 p=ph;
3152 while (p!=NULL)
3153 {
3155 n_Delete(&h,C);
3156 h=d;
3157 pIter(p);
3158 }
3159 /* contains the 1/lcm of all denominators */
3160 if(!n_IsOne(h,C))
3161 {
3162 p = ph;
3163 while (p!=NULL)
3164 {
3165 /* should be: // NOTE: don't use ->coef!!!!
3166 * number hh;
3167 * nGetDenom(p->coef,&hh);
3168 * nMult(&h,&hh,&d);
3169 * nNormalize(d);
3170 * nDelete(&hh);
3171 * nMult(d,p->coef,&hh);
3172 * nDelete(&d);
3173 * nDelete(&(p->coef));
3174 * p->coef =hh;
3175 */
3176 d=n_Mult(h,pGetCoeff(p),C);
3177 n_Normalize(d,C);
3178 p_SetCoeff(p,d,r);
3179 pIter(p);
3180 }
3181 number t=n_Mult(c,h,C);
3182 n_Delete(&c,C);
3183 c=t;
3184 }
3185 else
3186 {
3187 break;
3188 }
3189 n_Delete(&h,C);
3190 }
3191 }
3192 }
3193 }
3194
3195 if(!n_GreaterZero(pGetCoeff(ph),C))
3196 {
3197 ph = p_Neg(ph,r);
3198 c = n_InpNeg(c, C);
3199 }
3200
3201}
3202
3203 // normalization: for poly over Q: make poly primitive, integral
3204 // Qa make poly integral with leading
3205 // coefficient minimal in N
3206 // Q(t) make poly primitive, integral
3207
3208void p_ProjectiveUnique(poly ph, const ring r)
3209{
3210 if( ph == NULL )
3211 return;
3212
3213 const coeffs C = r->cf;
3214
3215 number h;
3216 poly p;
3217
3218 if (nCoeff_is_Ring(C))
3219 {
3220 p_ContentForGB(ph,r);
3221 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3222 assume( n_GreaterZero(pGetCoeff(ph),C) );
3223 return;
3224 }
3225
3227 {
3228 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3229 return;
3230 }
3231 p = ph;
3232
3233 assume(p != NULL);
3234
3235 if(pNext(p)==NULL) // a monomial
3236 {
3237 p_SetCoeff(p, n_Init(1, C), r);
3238 return;
3239 }
3240
3241 assume(pNext(p)!=NULL);
3242
3243 if(!nCoeff_is_Q(C) && !nCoeff_is_transExt(C))
3244 {
3245 h = p_GetCoeff(p, C);
3246 number hInv = n_Invers(h, C);
3247 pIter(p);
3248 while (p!=NULL)
3249 {
3250 p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r);
3251 pIter(p);
3252 }
3253 n_Delete(&hInv, C);
3254 p = ph;
3255 p_SetCoeff(p, n_Init(1, C), r);
3256 }
3257
3258 p_Cleardenom(ph, r); //removes also Content
3259
3260
3261 /* normalize ph over a transcendental extension s.t.
3262 lead (ph) is > 0 if extRing->cf == Q
3263 or lead (ph) is monic if extRing->cf == Zp*/
3264 if (nCoeff_is_transExt(C))
3265 {
3266 p= ph;
3267 h= p_GetCoeff (p, C);
3268 fraction f = (fraction) h;
3269 number n=p_GetCoeff (NUM (f),C->extRing->cf);
3270 if (rField_is_Q (C->extRing))
3271 {
3272 if (!n_GreaterZero(n,C->extRing->cf))
3273 {
3274 p=p_Neg (p,r);
3275 }
3276 }
3277 else if (rField_is_Zp(C->extRing))
3278 {
3279 if (!n_IsOne (n, C->extRing->cf))
3280 {
3281 n=n_Invers (n,C->extRing->cf);
3282 nMapFunc nMap;
3283 nMap= n_SetMap (C->extRing->cf, C);
3284 number ninv= nMap (n,C->extRing->cf, C);
3285 p=__p_Mult_nn (p, ninv, r);
3286 n_Delete (&ninv, C);
3287 n_Delete (&n, C->extRing->cf);
3288 }
3289 }
3290 p= ph;
3291 }
3292
3293 return;
3294}
3295
3296#if 0 /*unused*/
3297number p_GetAllDenom(poly ph, const ring r)
3298{
3299 number d=n_Init(1,r->cf);
3300 poly p = ph;
3301
3302 while (p!=NULL)
3303 {
3304 number h=n_GetDenom(pGetCoeff(p),r->cf);
3305 if (!n_IsOne(h,r->cf))
3306 {
3307 number dd=n_Mult(d,h,r->cf);
3308 n_Delete(&d,r->cf);
3309 d=dd;
3310 }
3311 n_Delete(&h,r->cf);
3312 pIter(p);
3313 }
3314 return d;
3315}
3316#endif
3317
3318int p_Size(poly p, const ring r)
3319{
3320 int count = 0;
3321 if (r->cf->has_simple_Alloc)
3322 return pLength(p);
3323 while ( p != NULL )
3324 {
3325 count+= n_Size( pGetCoeff( p ), r->cf );
3326 pIter( p );
3327 }
3328 return count;
3329}
3330
3331/*2
3332*make p homogeneous by multiplying the monomials by powers of x_varnum
3333*assume: deg(var(varnum))==1
3334*/
3335poly p_Homogen (poly p, int varnum, const ring r)
3336{
3337 pFDegProc deg;
3338 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3339 deg=p_Totaldegree;
3340 else
3341 deg=r->pFDeg;
3342
3343 poly q=NULL, qn;
3344 int o,ii;
3345 sBucket_pt bp;
3346
3347 if (p!=NULL)
3348 {
3349 if ((varnum < 1) || (varnum > rVar(r)))
3350 {
3351 return NULL;
3352 }
3353 o=deg(p,r);
3354 q=pNext(p);
3355 while (q != NULL)
3356 {
3357 ii=deg(q,r);
3358 if (ii>o) o=ii;
3359 pIter(q);
3360 }
3361 q = p_Copy(p,r);
3362 bp = sBucketCreate(r);
3363 while (q != NULL)
3364 {
3365 ii = o-deg(q,r);
3366 if (ii!=0)
3367 {
3368 p_AddExp(q,varnum, (long)ii,r);
3369 p_Setm(q,r);
3370 }
3371 qn = pNext(q);
3372 pNext(q) = NULL;
3373 sBucket_Add_m(bp, q);
3374 q = qn;
3375 }
3376 sBucketDestroyAdd(bp, &q, &ii);
3377 }
3378 return q;
3379}
3380
3381/*2
3382*tests if p is homogeneous with respect to the actual weigths
3383*/
3384BOOLEAN p_IsHomogeneous (poly p, const ring r)
3385{
3386 poly qp=p;
3387 int o;
3388
3389 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3390 pFDegProc d;
3391 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3392 d=p_Totaldegree;
3393 else
3394 d=r->pFDeg;
3395 o = d(p,r);
3396 do
3397 {
3398 if (d(qp,r) != o) return FALSE;
3399 pIter(qp);
3400 }
3401 while (qp != NULL);
3402 return TRUE;
3403}
3404
3405/*----------utilities for syzygies--------------*/
3406BOOLEAN p_VectorHasUnitB(poly p, int * k, const ring r)
3407{
3408 poly q=p,qq;
3409 long unsigned i;
3410
3411 while (q!=NULL)
3412 {
3413 if (p_LmIsConstantComp(q,r))
3414 {
3415 i = __p_GetComp(q,r);
3416 qq = p;
3417 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3418 if (qq == q)
3419 {
3420 *k = i;
3421 return TRUE;
3422 }
3423 }
3424 pIter(q);
3425 }
3426 return FALSE;
3427}
3428
3429void p_VectorHasUnit(poly p, int * k, int * len, const ring r)
3430{
3431 poly q=p,qq;
3432 int j=0;
3433 long unsigned i;
3434
3435 *len = 0;
3436 while (q!=NULL)
3437 {
3438 if (p_LmIsConstantComp(q,r))
3439 {
3440 i = __p_GetComp(q,r);
3441 qq = p;
3442 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3443 if (qq == q)
3444 {
3445 j = 0;
3446 while (qq!=NULL)
3447 {
3448 if (__p_GetComp(qq,r)==i) j++;
3449 pIter(qq);
3450 }
3451 if ((*len == 0) || (j<*len))
3452 {
3453 *len = j;
3454 *k = i;
3455 }
3456 }
3457 }
3458 pIter(q);
3459 }
3460}
3461
3462poly p_TakeOutComp1(poly * p, int k, const ring r)
3463{
3464 poly q = *p;
3465
3466 if (q==NULL) return NULL;
3467
3468 poly qq=NULL,result = NULL;
3469 long unsigned kk=k;
3470 if (__p_GetComp(q,r)==kk)
3471 {
3472 result = q; /* *p */
3473 while ((q!=NULL) && (__p_GetComp(q,r)==kk))
3474 {
3475 p_SetComp(q,0,r);
3476 p_SetmComp(q,r);
3477 qq = q;
3478 pIter(q);
3479 }
3480 *p = q;
3481 pNext(qq) = NULL;
3482 }
3483 if (q==NULL) return result;
3484// if (pGetComp(q) > k) pGetComp(q)--;
3485 while (pNext(q)!=NULL)
3486 {
3487 if (__p_GetComp(pNext(q),r)==kk)
3488 {
3489 if (result==NULL)
3490 {
3491 result = pNext(q);
3492 qq = result;
3493 }
3494 else
3495 {
3496 pNext(qq) = pNext(q);
3497 pIter(qq);
3498 }
3499 pNext(q) = pNext(pNext(q));
3500 pNext(qq) =NULL;
3501 p_SetComp(qq,0,r);
3502 p_SetmComp(qq,r);
3503 }
3504 else
3505 {
3506 pIter(q);
3507// if (pGetComp(q) > k) pGetComp(q)--;
3508 }
3509 }
3510 return result;
3511}
3512
3513poly p_TakeOutComp(poly * p, int k, const ring r)
3514{
3515 poly q = *p,qq=NULL,result = NULL;
3516
3517 if (q==NULL) return NULL;
3518 BOOLEAN use_setmcomp=rOrd_SetCompRequiresSetm(r);
3519 if (__p_GetComp(q,r)==k)
3520 {
3521 result = q;
3522 do
3523 {
3524 p_SetComp(q,0,r);
3525 if (use_setmcomp) p_SetmComp(q,r);
3526 qq = q;
3527 pIter(q);
3528 }
3529 while ((q!=NULL) && (__p_GetComp(q,r)==k));
3530 *p = q;
3531 pNext(qq) = NULL;
3532 }
3533 if (q==NULL) return result;
3534 if (__p_GetComp(q,r) > k)
3535 {
3536 p_SubComp(q,1,r);
3537 if (use_setmcomp) p_SetmComp(q,r);
3538 }
3539 poly pNext_q;
3540 while ((pNext_q=pNext(q))!=NULL)
3541 {
3542 if (__p_GetComp(pNext_q,r)==k)
3543 {
3544 if (result==NULL)
3545 {
3546 result = pNext_q;
3547 qq = result;
3548 }
3549 else
3550 {
3551 pNext(qq) = pNext_q;
3552 pIter(qq);
3553 }
3554 pNext(q) = pNext(pNext_q);
3555 pNext(qq) =NULL;
3556 p_SetComp(qq,0,r);
3557 if (use_setmcomp) p_SetmComp(qq,r);
3558 }
3559 else
3560 {
3561 /*pIter(q);*/ q=pNext_q;
3562 if (__p_GetComp(q,r) > k)
3563 {
3564 p_SubComp(q,1,r);
3565 if (use_setmcomp) p_SetmComp(q,r);
3566 }
3567 }
3568 }
3569 return result;
3570}
3571
3572// Splits *p into two polys: *q which consists of all monoms with
3573// component == comp and *p of all other monoms *lq == pLength(*q)
3574void p_TakeOutComp(poly *r_p, long comp, poly *r_q, int *lq, const ring r)
3575{
3576 spolyrec pp, qq;
3577 poly p, q, p_prev;
3578 int l = 0;
3579
3580#ifndef SING_NDEBUG
3581 int lp = pLength(*r_p);
3582#endif
3583
3584 pNext(&pp) = *r_p;
3585 p = *r_p;
3586 p_prev = &pp;
3587 q = &qq;
3588
3589 while(p != NULL)
3590 {
3591 while (__p_GetComp(p,r) == comp)
3592 {
3593 pNext(q) = p;
3594 pIter(q);
3595 p_SetComp(p, 0,r);
3596 p_SetmComp(p,r);
3597 pIter(p);
3598 l++;
3599 if (p == NULL)
3600 {
3601 pNext(p_prev) = NULL;
3602 goto Finish;
3603 }
3604 }
3605 pNext(p_prev) = p;
3606 p_prev = p;
3607 pIter(p);
3608 }
3609
3610 Finish:
3611 pNext(q) = NULL;
3612 *r_p = pNext(&pp);
3613 *r_q = pNext(&qq);
3614 *lq = l;
3615#ifndef SING_NDEBUG
3616 assume(pLength(*r_p) + pLength(*r_q) == (unsigned)lp);
3617#endif
3618 p_Test(*r_p,r);
3619 p_Test(*r_q,r);
3620}
3621
3622void p_DeleteComp(poly * p,int k, const ring r)
3623{
3624 poly q;
3625 long unsigned kk=k;
3626
3627 while ((*p!=NULL) && (__p_GetComp(*p,r)==kk)) p_LmDelete(p,r);
3628 if (*p==NULL) return;
3629 q = *p;
3630 if (__p_GetComp(q,r)>kk)
3631 {
3632 p_SubComp(q,1,r);
3633 p_SetmComp(q,r);
3634 }
3635 while (pNext(q)!=NULL)
3636 {
3637 if (__p_GetComp(pNext(q),r)==kk)
3638 p_LmDelete(&(pNext(q)),r);
3639 else
3640 {
3641 pIter(q);
3642 if (__p_GetComp(q,r)>kk)
3643 {
3644 p_SubComp(q,1,r);
3645 p_SetmComp(q,r);
3646 }
3647 }
3648 }
3649}
3650
3651poly p_Vec2Poly(poly v, int k, const ring r)
3652{
3653 poly h;
3654 poly res=NULL;
3655 long unsigned kk=k;
3656
3657 while (v!=NULL)
3658 {
3659 if (__p_GetComp(v,r)==kk)
3660 {
3661 h=p_Head(v,r);
3662 p_SetComp(h,0,r);
3663 pNext(h)=res;res=h;
3664 }
3665 pIter(v);
3666 }
3667 if (res!=NULL) res=pReverse(res);
3668 return res;
3669}
3670
3671/// vector to already allocated array (len>=p_MaxComp(v,r))
3672// also used for p_Vec2Polys
3673void p_Vec2Array(poly v, poly *p, int len, const ring r)
3674{
3675 poly h;
3676 int k;
3677
3678 for(int i=len-1;i>=0;i--) p[i]=NULL;
3679 while (v!=NULL)
3680 {
3681 h=p_Head(v,r);
3682 k=__p_GetComp(h,r);
3683 if (k>len) { Werror("wrong rank:%d, should be %d",len,k); }
3684 else
3685 {
3686 p_SetComp(h,0,r);
3687 p_Setm(h,r);
3688 pNext(h)=p[k-1];p[k-1]=h;
3689 }
3690 pIter(v);
3691 }
3692 for(int i=len-1;i>=0;i--)
3693 {
3694 if (p[i]!=NULL) p[i]=pReverse(p[i]);
3695 }
3696}
3697
3698/*2
3699* convert a vector to a set of polys,
3700* allocates the polyset, (entries 0..(*len)-1)
3701* the vector will not be changed
3702*/
3703void p_Vec2Polys(poly v, poly* *p, int *len, const ring r)
3704{
3705 *len=p_MaxComp(v,r);
3706 if (*len==0) *len=1;
3707 *p=(poly*)omAlloc((*len)*sizeof(poly));
3708 p_Vec2Array(v,*p,*len,r);
3709}
3710
3711//
3712// resets the pFDeg and pLDeg: if pLDeg is not given, it is
3713// set to currRing->pLDegOrig, i.e. to the respective LDegProc which
3714// only uses pFDeg (and not p_Deg, or pTotalDegree, etc)
3715void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
3716{
3717 assume(new_FDeg != NULL);
3718 r->pFDeg = new_FDeg;
3719
3720 if (new_lDeg == NULL)
3721 new_lDeg = r->pLDegOrig;
3722
3723 r->pLDeg = new_lDeg;
3724}
3725
3726// restores pFDeg and pLDeg:
3727void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
3728{
3729 assume(old_FDeg != NULL && old_lDeg != NULL);
3730 r->pFDeg = old_FDeg;
3731 r->pLDeg = old_lDeg;
3732}
3733
3734/*-------- several access procedures to monomials -------------------- */
3735/*
3736* the module weights for std
3737*/
3741
3742static long pModDeg(poly p, ring r)
3743{
3744 long d=pOldFDeg(p, r);
3745 int c=__p_GetComp(p, r);
3746 if ((c>0) && ((r->pModW)->range(c-1))) d+= (*(r->pModW))[c-1];
3747 return d;
3748 //return pOldFDeg(p, r)+(*pModW)[p_GetComp(p, r)-1];
3749}
3750
3751void p_SetModDeg(intvec *w, ring r)
3752{
3753 if (w!=NULL)
3754 {
3755 r->pModW = w;
3756 pOldFDeg = r->pFDeg;
3757 pOldLDeg = r->pLDeg;
3758 pOldLexOrder = r->pLexOrder;
3760 r->pLexOrder = TRUE;
3761 }
3762 else
3763 {
3764 r->pModW = NULL;
3766 r->pLexOrder = pOldLexOrder;
3767 }
3768}
3769
3770/*2
3771* handle memory request for sets of polynomials (ideals)
3772* l is the length of *p, increment is the difference (may be negative)
3773*/
3774void pEnlargeSet(poly* *p, int l, int increment)
3775{
3776 poly* h;
3777
3778 if (*p==NULL)
3779 {
3780 if (increment==0) return;
3781 h=(poly*)omAlloc0(increment*sizeof(poly));
3782 }
3783 else
3784 {
3785 h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly));
3786 if (increment>0)
3787 {
3788 memset(&(h[l]),0,increment*sizeof(poly));
3789 }
3790 }
3791 *p=h;
3792}
3793
3794/*2
3795*divides p1 by its leading coefficient
3796*/
3797void p_Norm(poly p1, const ring r)
3798{
3799 if (rField_is_Ring(r))
3800 {
3801 if(!n_GreaterZero(pGetCoeff(p1),r->cf)) p1 = p_Neg(p1,r);
3802 if (!n_IsUnit(pGetCoeff(p1), r->cf)) return;
3803 // Werror("p_Norm not possible in the case of coefficient rings.");
3804 }
3805 else if (p1!=NULL)
3806 {
3807 if (pNext(p1)==NULL)
3808 {
3809 p_SetCoeff(p1,n_Init(1,r->cf),r);
3810 return;
3811 }
3812 if (!n_IsOne(pGetCoeff(p1),r->cf))
3813 {
3814 number k, c;
3815 n_Normalize(pGetCoeff(p1),r->cf);
3816 k = pGetCoeff(p1);
3817 c = n_Init(1,r->cf);
3818 pSetCoeff0(p1,c);
3819 poly h = pNext(p1);
3820 if (rField_is_Zp(r))
3821 {
3822 if (r->cf->ch>32003)
3823 {
3824 number inv=n_Invers(k,r->cf);
3825 while (h!=NULL)
3826 {
3827 c=n_Mult(pGetCoeff(h),inv,r->cf);
3828 // no need to normalize
3829 p_SetCoeff(h,c,r);
3830 pIter(h);
3831 }
3832 n_Delete(&inv,r->cf);
3833 }
3834 else
3835 {
3836 while (h!=NULL)
3837 {
3838 c=n_Div(pGetCoeff(h),k,r->cf);
3839 // no need to normalize
3840 p_SetCoeff(h,c,r);
3841 pIter(h);
3842 }
3843 }
3844 }
3845 else
3846 {
3847 while (h!=NULL)
3848 {
3849 c=n_Div(pGetCoeff(h),k,r->cf);
3850 // no need to normalize: Z/p, R
3851 // normalize already in nDiv: Q_a, Z/p_a
3852 // remains: Q
3853 if (rField_is_Q(r) && (!n_IsOne(c,r->cf))) n_Normalize(c,r->cf);
3854 p_SetCoeff(h,c,r);
3855 pIter(h);
3856 }
3857 }
3858 n_Delete(&k,r->cf);
3859 }
3860 else
3861 {
3862 //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE
3863 if (rField_is_Q(r))
3864 {
3865 poly h = pNext(p1);
3866 while (h!=NULL)
3867 {
3868 n_Normalize(pGetCoeff(h),r->cf);
3869 pIter(h);
3870 }
3871 }
3872 }
3873 }
3874}
3875
3876/*2
3877*normalize all coefficients
3878*/
3879void p_Normalize(poly p,const ring r)
3880{
3881 if ((rField_has_simple_inverse(r)) /* Z/p, GF(p,n), R, long R/C */
3882 || (r->cf->cfNormalize==ndNormalize)) /* Nemo rings, ...*/
3883 return;
3884 while (p!=NULL)
3885 {
3886 // no test befor n_Normalize: n_Normalize should fix problems
3887 n_Normalize(pGetCoeff(p),r->cf);
3888 pIter(p);
3889 }
3890}
3891
3892// splits p into polys with Exp(n) == 0 and Exp(n) != 0
3893// Poly with Exp(n) != 0 is reversed
3894static void p_SplitAndReversePoly(poly p, int n, poly *non_zero, poly *zero, const ring r)
3895{
3896 if (p == NULL)
3897 {
3898 *non_zero = NULL;
3899 *zero = NULL;
3900 return;
3901 }
3902 spolyrec sz;
3903 poly z, n_z, next;
3904 z = &sz;
3905 n_z = NULL;
3906
3907 while(p != NULL)
3908 {
3909 next = pNext(p);
3910 if (p_GetExp(p, n,r) == 0)
3911 {
3912 pNext(z) = p;
3913 pIter(z);
3914 }
3915 else
3916 {
3917 pNext(p) = n_z;
3918 n_z = p;
3919 }
3920 p = next;
3921 }
3922 pNext(z) = NULL;
3923 *zero = pNext(&sz);
3924 *non_zero = n_z;
3925}
3926/*3
3927* substitute the n-th variable by 1 in p
3928* destroy p
3929*/
3930static poly p_Subst1 (poly p,int n, const ring r)
3931{
3932 poly qq=NULL, result = NULL;
3933 poly zero=NULL, non_zero=NULL;
3934
3935 // reverse, so that add is likely to be linear
3936 p_SplitAndReversePoly(p, n, &non_zero, &zero,r);
3937
3938 while (non_zero != NULL)
3939 {
3940 assume(p_GetExp(non_zero, n,r) != 0);
3941 qq = non_zero;
3942 pIter(non_zero);
3943 qq->next = NULL;
3944 p_SetExp(qq,n,0,r);
3945 p_Setm(qq,r);
3946 result = p_Add_q(result,qq,r);
3947 }
3948 p = p_Add_q(result, zero,r);
3949 p_Test(p,r);
3950 return p;
3951}
3952
3953/*3
3954* substitute the n-th variable by number e in p
3955* destroy p
3956*/
3957static poly p_Subst2 (poly p,int n, number e, const ring r)
3958{
3959 assume( ! n_IsZero(e,r->cf) );
3960 poly qq,result = NULL;
3961 number nn, nm;
3962 poly zero, non_zero;
3963
3964 // reverse, so that add is likely to be linear
3965 p_SplitAndReversePoly(p, n, &non_zero, &zero,r);
3966
3967 while (non_zero != NULL)
3968 {
3969 assume(p_GetExp(non_zero, n, r) != 0);
3970 qq = non_zero;
3971 pIter(non_zero);
3972 qq->next = NULL;
3973 n_Power(e, p_GetExp(qq, n, r), &nn,r->cf);
3974 nm = n_Mult(nn, pGetCoeff(qq),r->cf);
3975#ifdef HAVE_RINGS
3976 if (n_IsZero(nm,r->cf))
3977 {
3978 p_LmFree(&qq,r);
3979 n_Delete(&nm,r->cf);
3980 }
3981 else
3982#endif
3983 {
3984 p_SetCoeff(qq, nm,r);
3985 p_SetExp(qq, n, 0,r);
3986 p_Setm(qq,r);
3987 result = p_Add_q(result,qq,r);
3988 }
3989 n_Delete(&nn,r->cf);
3990 }
3991 p = p_Add_q(result, zero,r);
3992 p_Test(p,r);
3993 return p;
3994}
3995
3996
3997/* delete monoms whose n-th exponent is different from zero */
3998static poly p_Subst0(poly p, int n, const ring r)
3999{
4000 spolyrec res;
4001 poly h = &res;
4002 pNext(h) = p;
4003
4004 while (pNext(h)!=NULL)
4005 {
4006 if (p_GetExp(pNext(h),n,r)!=0)
4007 {
4008 p_LmDelete(&pNext(h),r);
4009 }
4010 else
4011 {
4012 pIter(h);
4013 }
4014 }
4015 p_Test(pNext(&res),r);
4016 return pNext(&res);
4017}
4018
4019/*2
4020* substitute the n-th variable by e in p
4021* destroy p
4022*/
4023poly p_Subst(poly p, int n, poly e, const ring r)
4024{
4025#ifdef HAVE_SHIFTBBA
4026 // also don't even use p_Subst0 for Letterplace
4027 if (rIsLPRing(r))
4028 {
4029 poly subst = p_LPSubst(p, n, e, r);
4030 p_Delete(&p, r);
4031 return subst;
4032 }
4033#endif
4034
4035 if (e == NULL) return p_Subst0(p, n,r);
4036
4037 if (p_IsConstant(e,r))
4038 {
4039 if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r);
4040 else return p_Subst2(p, n, pGetCoeff(e),r);
4041 }
4042
4043#ifdef HAVE_PLURAL
4044 if (rIsPluralRing(r))
4045 {
4046 return nc_pSubst(p,n,e,r);
4047 }
4048#endif
4049
4050 int exponent,i;
4051 poly h, res, m;
4052 int *me,*ee;
4053 number nu,nu1;
4054
4055 me=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4056 ee=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4057 if (e!=NULL) p_GetExpV(e,ee,r);
4058 res=NULL;
4059 h=p;
4060 while (h!=NULL)
4061 {
4062 if ((e!=NULL) || (p_GetExp(h,n,r)==0))
4063 {
4064 m=p_Head(h,r);
4065 p_GetExpV(m,me,r);
4066 exponent=me[n];
4067 me[n]=0;
4068 for(i=rVar(r);i>0;i--)
4069 me[i]+=exponent*ee[i];
4070 p_SetExpV(m,me,r);
4071 if (e!=NULL)
4072 {
4073 n_Power(pGetCoeff(e),exponent,&nu,r->cf);
4074 nu1=n_Mult(pGetCoeff(m),nu,r->cf);
4075 n_Delete(&nu,r->cf);
4076 p_SetCoeff(m,nu1,r);
4077 }
4078 res=p_Add_q(res,m,r);
4079 }
4080 p_LmDelete(&h,r);
4081 }
4082 omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int));
4083 omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int));
4084 return res;
4085}
4086
4087/*2
4088 * returns a re-ordered convertion of a number as a polynomial,
4089 * with permutation of parameters
4090 * NOTE: this only works for Frank's alg. & trans. fields
4091 */
4092poly n_PermNumber(const number z, const int *par_perm, const int , const ring src, const ring dst)
4093{
4094#if 0
4095 PrintS("\nSource Ring: \n");
4096 rWrite(src);
4097
4098 if(0)
4099 {
4100 number zz = n_Copy(z, src->cf);
4101 PrintS("z: "); n_Write(zz, src);
4102 n_Delete(&zz, src->cf);
4103 }
4104
4105 PrintS("\nDestination Ring: \n");
4106 rWrite(dst);
4107
4108 /*Print("\nOldPar: %d\n", OldPar);
4109 for( int i = 1; i <= OldPar; i++ )
4110 {
4111 Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]);
4112 }*/
4113#endif
4114 if( z == NULL )
4115 return NULL;
4116
4117 const coeffs srcCf = src->cf;
4118 assume( srcCf != NULL );
4119
4120 assume( !nCoeff_is_GF(srcCf) );
4121 assume( src->cf->extRing!=NULL );
4122
4123 poly zz = NULL;
4124
4125 const ring srcExtRing = srcCf->extRing;
4126 assume( srcExtRing != NULL );
4127
4128 const coeffs dstCf = dst->cf;
4129 assume( dstCf != NULL );
4130
4131 if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)?
4132 {
4133 zz = (poly) z;
4134 if( zz == NULL ) return NULL;
4135 }
4136 else if (nCoeff_is_transExt(srcCf))
4137 {
4138 assume( !IS0(z) );
4139
4140 zz = NUM((fraction)z);
4141 p_Test (zz, srcExtRing);
4142
4143 if( zz == NULL ) return NULL;
4144 if( !DENIS1((fraction)z) )
4145 {
4146 if (!p_IsConstant(DEN((fraction)z),srcExtRing))
4147 WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denominator.");
4148 }
4149 }
4150 else
4151 {
4152 assume (FALSE);
4153 WerrorS("Number permutation is not implemented for this data yet!");
4154 return NULL;
4155 }
4156
4157 assume( zz != NULL );
4158 p_Test (zz, srcExtRing);
4159
4160 nMapFunc nMap = n_SetMap(srcExtRing->cf, dstCf);
4161
4162 assume( nMap != NULL );
4163
4164 poly qq;
4165 if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0))
4166 {
4167 int* perm;
4168 perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int));
4169 for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--)
4170 perm[i]=-i;
4171 qq = p_PermPoly(zz, perm, srcExtRing, dst, nMap, NULL, rVar(srcExtRing)-1);
4172 omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int));
4173 }
4174 else
4175 qq = p_PermPoly(zz, par_perm-1, srcExtRing, dst, nMap, NULL, rVar (srcExtRing)-1);
4176
4177 if(nCoeff_is_transExt(srcCf)
4178 && (!DENIS1((fraction)z))
4179 && p_IsConstant(DEN((fraction)z),srcExtRing))
4180 {
4181 number n=nMap(pGetCoeff(DEN((fraction)z)),srcExtRing->cf, dstCf);
4182 qq=p_Div_nn(qq,n,dst);
4183 n_Delete(&n,dstCf);
4184 p_Normalize(qq,dst);
4185 }
4186 p_Test (qq, dst);
4187
4188 return qq;
4189}
4190
4191
4192/*2
4193*returns a re-ordered copy of a polynomial, with permutation of the variables
4194*/
4195poly p_PermPoly (poly p, const int * perm, const ring oldRing, const ring dst,
4196 nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
4197{
4198#if 0
4199 p_Test(p, oldRing);
4200 PrintS("p_PermPoly::p: "); p_Write(p, oldRing, oldRing);
4201#endif
4202 const int OldpVariables = rVar(oldRing);
4203 poly result = NULL;
4204 poly result_last = NULL;
4205 poly aq = NULL; /* the map coefficient */
4206 poly qq; /* the mapped monomial */
4207 assume(dst != NULL);
4208 assume(dst->cf != NULL);
4209 #ifdef HAVE_PLURAL
4210 poly tmp_mm=p_One(dst);
4211 #endif
4212 while (p != NULL)
4213 {
4214 // map the coefficient
4215 if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing) || (nMap==ndCopyMap))
4216 && (nMap != NULL) )
4217 {
4218 qq = p_Init(dst);
4219 assume( nMap != NULL );
4220 number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf);
4221 n_Test (n,dst->cf);
4222 if ( nCoeff_is_algExt(dst->cf) )
4223 n_Normalize(n, dst->cf);
4224 p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!!
4225 }
4226 else
4227 {
4228 qq = p_One(dst);
4229// aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst???
4230// poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst)
4231 aq = n_PermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing, dst);
4232 p_Test(aq, dst);
4233 if ( nCoeff_is_algExt(dst->cf) )
4234 p_Normalize(aq,dst);
4235 if (aq == NULL)
4236 p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!!
4237 p_Test(aq, dst);
4238 }
4239 if (rRing_has_Comp(dst))
4240 p_SetComp(qq, p_GetComp(p, oldRing), dst);
4241 if ( n_IsZero(pGetCoeff(qq), dst->cf) )
4242 {
4243 p_LmDelete(&qq,dst);
4244 qq = NULL;
4245 }
4246 else
4247 {
4248 // map pars:
4249 int mapped_to_par = 0;
4250 for(int i = 1; i <= OldpVariables; i++)
4251 {
4252 int e = p_GetExp(p, i, oldRing);
4253 if (e != 0)
4254 {
4255 if (perm==NULL)
4256 p_SetExp(qq, i, e, dst);
4257 else if (perm[i]>0)
4258 {
4259 #ifdef HAVE_PLURAL
4260 if(use_mult)
4261 {
4262 p_SetExp(tmp_mm,perm[i],e,dst);
4263 p_Setm(tmp_mm,dst);
4264 qq=p_Mult_mm(qq,tmp_mm,dst);
4265 p_SetExp(tmp_mm,perm[i],0,dst);
4266
4267 }
4268 else
4269 #endif
4270 p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst);
4271 }
4272 else if (perm[i]<0)
4273 {
4274 number c = p_GetCoeff(qq, dst);
4275 if (rField_is_GF(dst))
4276 {
4277 assume( dst->cf->extRing == NULL );
4278 number ee = n_Param(1, dst);
4279 number eee;
4280 n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst);
4281 ee = n_Mult(c, eee, dst->cf);
4282 //nfDelete(c,dst);nfDelete(eee,dst);
4283 pSetCoeff0(qq,ee);
4284 }
4285 else if (nCoeff_is_Extension(dst->cf))
4286 {
4287 const int par = -perm[i];
4288 assume( par > 0 );
4289// WarnS("longalg missing 3");
4290#if 1
4291 const coeffs C = dst->cf;
4292 assume( C != NULL );
4293 const ring R = C->extRing;
4294 assume( R != NULL );
4295 assume( par <= rVar(R) );
4296 poly pcn; // = (number)c
4297 assume( !n_IsZero(c, C) );
4298 if( nCoeff_is_algExt(C) )
4299 pcn = (poly) c;
4300 else // nCoeff_is_transExt(C)
4301 pcn = NUM((fraction)c);
4302 if (pNext(pcn) == NULL) // c->z
4303 p_AddExp(pcn, -perm[i], e, R);
4304 else /* more difficult: we have really to multiply: */
4305 {
4306 poly mmc = p_ISet(1, R);
4307 p_SetExp(mmc, -perm[i], e, R);
4308 p_Setm(mmc, R);
4309 number nnc;
4310 // convert back to a number: number nnc = mmc;
4311 if( nCoeff_is_algExt(C) )
4312 nnc = (number) mmc;
4313 else // nCoeff_is_transExt(C)
4314 nnc = ntInit(mmc, C);
4315 p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C);
4316 n_Delete((number *)&c, C);
4317 n_Delete((number *)&nnc, C);
4318 }
4319 mapped_to_par=1;
4320#endif
4321 }
4322 }
4323 else
4324 {
4325 /* this variable maps to 0 !*/
4326 p_LmDelete(&qq, dst);
4327 break;
4328 }
4329 }
4330 }
4331 if ( mapped_to_par && (qq!= NULL) && nCoeff_is_algExt(dst->cf) )
4332 {
4333 number n = p_GetCoeff(qq, dst);
4334 n_Normalize(n, dst->cf);
4335 p_GetCoeff(qq, dst) = n;
4336 }
4337 }
4338 pIter(p);
4339
4340#if 0
4341 p_Test(aq,dst);
4342 PrintS("aq: "); p_Write(aq, dst, dst);
4343#endif
4344
4345
4346#if 1
4347 if (qq!=NULL)
4348 {
4349 p_Setm(qq,dst);
4350
4351 p_Test(aq,dst);
4352 p_Test(qq,dst);
4353
4354#if 0
4355 PrintS("qq: "); p_Write(qq, dst, dst);
4356#endif
4357
4358 if (aq!=NULL)
4359 qq=p_Mult_q(aq,qq,dst);
4360 aq = qq;
4361 while (pNext(aq) != NULL) pIter(aq);
4362 if (result_last==NULL)
4363 {
4364 result=qq;
4365 }
4366 else
4367 {
4368 pNext(result_last)=qq;
4369 }
4370 result_last=aq;
4371 aq = NULL;
4372 }
4373 else if (aq!=NULL)
4374 {
4375 p_Delete(&aq,dst);
4376 }
4377 }
4378 result=p_SortAdd(result,dst);
4379#else
4380 // if (qq!=NULL)
4381 // {
4382 // pSetm(qq);
4383 // pTest(qq);
4384 // pTest(aq);
4385 // if (aq!=NULL) qq=pMult(aq,qq);
4386 // aq = qq;
4387 // while (pNext(aq) != NULL) pIter(aq);
4388 // pNext(aq) = result;
4389 // aq = NULL;
4390 // result = qq;
4391 // }
4392 // else if (aq!=NULL)
4393 // {
4394 // pDelete(&aq);
4395 // }
4396 //}
4397 //p = result;
4398 //result = NULL;
4399 //while (p != NULL)
4400 //{
4401 // qq = p;
4402 // pIter(p);
4403 // qq->next = NULL;
4404 // result = pAdd(result, qq);
4405 //}
4406#endif
4407 p_Test(result,dst);
4408#if 0
4409 p_Test(result,dst);
4410 PrintS("result: "); p_Write(result,dst,dst);
4411#endif
4412 #ifdef HAVE_PLURAL
4413 p_LmDelete(&tmp_mm,dst);
4414 #endif
4415 return result;
4416}
4417/**************************************************************
4418 *
4419 * Jet
4420 *
4421 **************************************************************/
4422
4423poly pp_Jet(poly p, int m, const ring R)
4424{
4425 poly r=NULL;
4426 poly t=NULL;
4427
4428 while (p!=NULL)
4429 {
4430 if (p_Totaldegree(p,R)<=m)
4431 {
4432 if (r==NULL)
4433 r=p_Head(p,R);
4434 else
4435 if (t==NULL)
4436 {
4437 pNext(r)=p_Head(p,R);
4438 t=pNext(r);
4439 }
4440 else
4441 {
4442 pNext(t)=p_Head(p,R);
4443 pIter(t);
4444 }
4445 }
4446 pIter(p);
4447 }
4448 return r;
4449}
4450
4451poly p_Jet(poly p, int m,const ring R)
4452{
4453 while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R);
4454 if (p==NULL) return NULL;
4455 poly r=p;
4456 while (pNext(p)!=NULL)
4457 {
4458 if (p_Totaldegree(pNext(p),R)>m)
4459 {
4460 p_LmDelete(&pNext(p),R);
4461 }
4462 else
4463 pIter(p);
4464 }
4465 return r;
4466}
4467
4468poly pp_JetW(poly p, int m, int *w, const ring R)
4469{
4470 poly r=NULL;
4471 poly t=NULL;
4472 while (p!=NULL)
4473 {
4474 if (totaldegreeWecart_IV(p,R,w)<=m)
4475 {
4476 if (r==NULL)
4477 r=p_Head(p,R);
4478 else
4479 if (t==NULL)
4480 {
4481 pNext(r)=p_Head(p,R);
4482 t=pNext(r);
4483 }
4484 else
4485 {
4486 pNext(t)=p_Head(p,R);
4487 pIter(t);
4488 }
4489 }
4490 pIter(p);
4491 }
4492 return r;
4493}
4494
4495poly p_JetW(poly p, int m, int *w, const ring R)
4496{
4497 while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R);
4498 if (p==NULL) return NULL;
4499 poly r=p;
4500 while (pNext(p)!=NULL)
4501 {
4503 {
4504 p_LmDelete(&pNext(p),R);
4505 }
4506 else
4507 pIter(p);
4508 }
4509 return r;
4510}
4511
4512/*************************************************************/
4513int p_MinDeg(poly p,intvec *w, const ring R)
4514{
4515 if(p==NULL)
4516 return -1;
4517 int d=-1;
4518 while(p!=NULL)
4519 {
4520 int d0=0;
4521 for(int j=0;j<rVar(R);j++)
4522 if(w==NULL||j>=w->length())
4523 d0+=p_GetExp(p,j+1,R);
4524 else
4525 d0+=(*w)[j]*p_GetExp(p,j+1,R);
4526 if(d0<d||d==-1)
4527 d=d0;
4528 pIter(p);
4529 }
4530 return d;
4531}
4532
4533/***************************************************************/
4534static poly p_Invers(int n,poly u,intvec *w, const ring R)
4535{
4536 if(n<0)
4537 return NULL;
4538 number u0=n_Invers(pGetCoeff(u),R->cf);
4539 poly v=p_NSet(u0,R);
4540 if(n==0)
4541 return v;
4542 int *ww=iv2array(w,R);
4543 poly u1=p_JetW(p_Sub(p_One(R),__p_Mult_nn(u,u0,R),R),n,ww,R);
4544 if(u1==NULL)
4545 {
4546 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4547 return v;
4548 }
4549 poly v1=__p_Mult_nn(p_Copy(u1,R),u0,R);
4550 v=p_Add_q(v,p_Copy(v1,R),R);
4551 for(int i=n/p_MinDeg(u1,w,R);i>1;i--)
4552 {
4553 v1=p_JetW(p_Mult_q(v1,p_Copy(u1,R),R),n,ww,R);
4554 v=p_Add_q(v,p_Copy(v1,R),R);
4555 }
4556 p_Delete(&u1,R);
4557 p_Delete(&v1,R);
4558 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4559 return v;
4560}
4561
4562
4563poly p_Series(int n,poly p,poly u, intvec *w, const ring R)
4564{
4565 int *ww=iv2array(w,R);
4566 if(p!=NULL)
4567 {
4568 if(u==NULL)
4569 p=p_JetW(p,n,ww,R);
4570 else
4571 p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R);
4572 }
4573 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4574 return p;
4575}
4576
4577BOOLEAN p_EqualPolys(poly p1,poly p2, const ring r)
4578{
4579 while ((p1 != NULL) && (p2 != NULL))
4580 {
4581 if (! p_LmEqual(p1, p2,r))
4582 return FALSE;
4583 if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf ))
4584 return FALSE;
4585 pIter(p1);
4586 pIter(p2);
4587 }
4588 return (p1==p2);
4589}
4590
4591static inline BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
4592{
4593 assume( r1 == r2 || rSamePolyRep(r1, r2) );
4594
4595 p_LmCheckPolyRing1(p1, r1);
4596 p_LmCheckPolyRing1(p2, r2);
4597
4598 int i = r1->ExpL_Size;
4599
4600 assume( r1->ExpL_Size == r2->ExpL_Size );
4601
4602 unsigned long *ep = p1->exp;
4603 unsigned long *eq = p2->exp;
4604
4605 do
4606 {
4607 i--;
4608 if (ep[i] != eq[i]) return FALSE;
4609 }
4610 while (i);
4611
4612 return TRUE;
4613}
4614
4615BOOLEAN p_EqualPolys(poly p1,poly p2, const ring r1, const ring r2)
4616{
4617 assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual!
4618 assume( r1->cf == r2->cf );
4619
4620 while ((p1 != NULL) && (p2 != NULL))
4621 {
4622 // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !!
4623 // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r)
4624
4625 if (! p_ExpVectorEqual(p1, p2, r1, r2))
4626 return FALSE;
4627
4628 if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf ))
4629 return FALSE;
4630
4631 pIter(p1);
4632 pIter(p2);
4633 }
4634 return (p1==p2);
4635}
4636
4637/*2
4638*returns TRUE if p1 is a skalar multiple of p2
4639*assume p1 != NULL and p2 != NULL
4640*/
4641BOOLEAN p_ComparePolys(poly p1,poly p2, const ring r)
4642{
4643 number n,nn;
4644 pAssume(p1 != NULL && p2 != NULL);
4645
4646 if (!p_LmEqual(p1,p2,r)) //compare leading mons
4647 return FALSE;
4648 if ((pNext(p1)==NULL) && (pNext(p2)!=NULL))
4649 return FALSE;
4650 if ((pNext(p2)==NULL) && (pNext(p1)!=NULL))
4651 return FALSE;
4652 if (pLength(p1) != pLength(p2))
4653 return FALSE;
4654 #ifdef HAVE_RINGS
4655 if (rField_is_Ring(r))
4656 {
4657 if (!n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf)) return FALSE;
4658 }
4659 #endif
4660 n=n_Div(pGetCoeff(p1),pGetCoeff(p2),r->cf);
4661 while ((p1 != NULL) /*&& (p2 != NULL)*/)
4662 {
4663 if ( ! p_LmEqual(p1, p2,r))
4664 {
4665 n_Delete(&n, r->cf);
4666 return FALSE;
4667 }
4668 if (!n_Equal(pGetCoeff(p1), nn = n_Mult(pGetCoeff(p2),n, r->cf), r->cf))
4669 {
4670 n_Delete(&n, r->cf);
4671 n_Delete(&nn, r->cf);
4672 return FALSE;
4673 }
4674 n_Delete(&nn, r->cf);
4675 pIter(p1);
4676 pIter(p2);
4677 }
4678 n_Delete(&n, r->cf);
4679 return TRUE;
4680}
4681
4682/*2
4683* returns the length of a (numbers of monomials)
4684* respect syzComp
4685*/
4686poly p_Last(const poly p, int &l, const ring r)
4687{
4688 if (p == NULL)
4689 {
4690 l = 0;
4691 return NULL;
4692 }
4693 l = 1;
4694 poly a = p;
4695 if (! rIsSyzIndexRing(r))
4696 {
4697 poly next = pNext(a);
4698 while (next!=NULL)
4699 {
4700 a = next;
4701 next = pNext(a);
4702 l++;
4703 }
4704 }
4705 else
4706 {
4707 long unsigned curr_limit = rGetCurrSyzLimit(r);
4708 poly pp = a;
4709 while ((a=pNext(a))!=NULL)
4710 {
4711 if (__p_GetComp(a,r)<=curr_limit/*syzComp*/)
4712 l++;
4713 else break;
4714 pp = a;
4715 }
4716 a=pp;
4717 }
4718 return a;
4719}
4720
4721int p_Var(poly m,const ring r)
4722{
4723 if (m==NULL) return 0;
4724 if (pNext(m)!=NULL) return 0;
4725 int i,e=0;
4726 for (i=rVar(r); i>0; i--)
4727 {
4728 int exp=p_GetExp(m,i,r);
4729 if (exp==1)
4730 {
4731 if (e==0) e=i;
4732 else return 0;
4733 }
4734 else if (exp!=0)
4735 {
4736 return 0;
4737 }
4738 }
4739 return e;
4740}
4741
4742/*2
4743*the minimal index of used variables - 1
4744*/
4745int p_LowVar (poly p, const ring r)
4746{
4747 int k,l,lex;
4748
4749 if (p == NULL) return -1;
4750
4751 k = 32000;/*a very large dummy value*/
4752 while (p != NULL)
4753 {
4754 l = 1;
4755 lex = p_GetExp(p,l,r);
4756 while ((l < (rVar(r))) && (lex == 0))
4757 {
4758 l++;
4759 lex = p_GetExp(p,l,r);
4760 }
4761 l--;
4762 if (l < k) k = l;
4763 pIter(p);
4764 }
4765 return k;
4766}
4767
4768/*2
4769* verschiebt die Indizees der Modulerzeugenden um i
4770*/
4771void p_Shift (poly * p,int i, const ring r)
4772{
4773 poly qp1 = *p,qp2 = *p;/*working pointers*/
4774 int j = p_MaxComp(*p,r),k = p_MinComp(*p,r);
4775
4776 if (j+i < 0) return ;
4777 BOOLEAN toPoly= ((j == -i) && (j == k));
4778 while (qp1 != NULL)
4779 {
4780 if (toPoly || (__p_GetComp(qp1,r)+i > 0))
4781 {
4782 p_AddComp(qp1,i,r);
4783 p_SetmComp(qp1,r);
4784 qp2 = qp1;
4785 pIter(qp1);
4786 }
4787 else
4788 {
4789 if (qp2 == *p)
4790 {
4791 pIter(*p);
4792 p_LmDelete(&qp2,r);
4793 qp2 = *p;
4794 qp1 = *p;
4795 }
4796 else
4797 {
4798 qp2->next = qp1->next;
4799 if (qp1!=NULL) p_LmDelete(&qp1,r);
4800 qp1 = qp2->next;
4801 }
4802 }
4803 }
4804}
4805
4806/***************************************************************
4807 *
4808 * Storage Managament Routines
4809 *
4810 ***************************************************************/
4811
4812
4813static inline unsigned long GetBitFields(const long e,
4814 const unsigned int s, const unsigned int n)
4815{
4816#define Sy_bit_L(x) (((unsigned long)1L)<<(x))
4817 unsigned int i = 0;
4818 unsigned long ev = 0L;
4819 assume(n > 0 && s < BIT_SIZEOF_LONG);
4820 do
4821 {
4823 if (e > (long) i) ev |= Sy_bit_L(s+i);
4824 else break;
4825 i++;
4826 }
4827 while (i < n);
4828 return ev;
4829}
4830
4831// Short Exponent Vectors are used for fast divisibility tests
4832// ShortExpVectors "squeeze" an exponent vector into one word as follows:
4833// Let n = BIT_SIZEOF_LONG / pVariables.
4834// If n == 0 (i.e. pVariables > BIT_SIZE_OF_LONG), let m == the number
4835// of non-zero exponents. If (m>BIT_SIZEOF_LONG), then sev = ~0, else
4836// first m bits of sev are set to 1.
4837// Otherwise (i.e. pVariables <= BIT_SIZE_OF_LONG)
4838// represented by a bit-field of length n (resp. n+1 for some
4839// exponents). If the value of an exponent is greater or equal to n, then
4840// all of its respective n bits are set to 1. If the value of an exponent
4841// is smaller than n, say m, then only the first m bits of the respective
4842// n bits are set to 1, the others are set to 0.
4843// This way, we have:
4844// exp1 / exp2 ==> (ev1 & ~ev2) == 0, i.e.,
4845// if (ev1 & ~ev2) then exp1 does not divide exp2
4846unsigned long p_GetShortExpVector(const poly p, const ring r)
4847{
4848 assume(p != NULL);
4849 unsigned long ev = 0; // short exponent vector
4850 unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4851 unsigned int m1; // highest bit which is filled with (n+1)
4852 unsigned int i=0;
4853 int j=1;
4854
4855 if (n == 0)
4856 {
4857 if (r->N <2*BIT_SIZEOF_LONG)
4858 {
4859 n=1;
4860 m1=0;
4861 }
4862 else
4863 {
4864 for (; j<=r->N; j++)
4865 {
4866 if (p_GetExp(p,j,r) > 0) i++;
4867 if (i == BIT_SIZEOF_LONG) break;
4868 }
4869 if (i>0)
4870 ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4871 return ev;
4872 }
4873 }
4874 else
4875 {
4876 m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4877 }
4878
4879 n++;
4880 while (i<m1)
4881 {
4882 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4883 i += n;
4884 j++;
4885 }
4886
4887 n--;
4888 while (i<BIT_SIZEOF_LONG)
4889 {
4890 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4891 i += n;
4892 j++;
4893 }
4894 return ev;
4895}
4896
4897
4898/// p_GetShortExpVector of p * pp
4899unsigned long p_GetShortExpVector(const poly p, const poly pp, const ring r)
4900{
4901 assume(p != NULL);
4902 assume(pp != NULL);
4903
4904 unsigned long ev = 0; // short exponent vector
4905 unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4906 unsigned int m1; // highest bit which is filled with (n+1)
4907 int j=1;
4908 unsigned long i = 0L;
4909
4910 if (n == 0)
4911 {
4912 if (r->N <2*BIT_SIZEOF_LONG)
4913 {
4914 n=1;
4915 m1=0;
4916 }
4917 else
4918 {
4919 for (; j<=r->N; j++)
4920 {
4921 if (p_GetExp(p,j,r) > 0 || p_GetExp(pp,j,r) > 0) i++;
4922 if (i == BIT_SIZEOF_LONG) break;
4923 }
4924 if (i>0)
4925 ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4926 return ev;
4927 }
4928 }
4929 else
4930 {
4931 m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4932 }
4933
4934 n++;
4935 while (i<m1)
4936 {
4937 ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4938 i += n;
4939 j++;
4940 }
4941
4942 n--;
4943 while (i<BIT_SIZEOF_LONG)
4944 {
4945 ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4946 i += n;
4947 j++;
4948 }
4949 return ev;
4950}
4951
4952
4953
4954/***************************************************************
4955 *
4956 * p_ShallowDelete
4957 *
4958 ***************************************************************/
4959#undef LINKAGE
4960#define LINKAGE
4961#undef p_Delete__T
4962#define p_Delete__T p_ShallowDelete
4963#undef n_Delete__T
4964#define n_Delete__T(n, r) do {} while (0)
4965
4967
4968/***************************************************************/
4969/*
4970* compare a and b
4971*/
4972int p_Compare(const poly a, const poly b, const ring R)
4973{
4974 int r=p_Cmp(a,b,R);
4975 if ((r==0)&&(a!=NULL))
4976 {
4977 number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf);
4978 /* compare lead coeffs */
4979 r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */
4980 n_Delete(&h,R->cf);
4981 }
4982 else if (a==NULL)
4983 {
4984 if (b==NULL)
4985 {
4986 /* compare 0, 0 */
4987 r=0;
4988 }
4989 else if(p_IsConstant(b,R))
4990 {
4991 /* compare 0, const */
4992 r = 1-2*n_GreaterZero(pGetCoeff(b),R->cf); /* -1: <, 1: > */
4993 }
4994 }
4995 else if (b==NULL)
4996 {
4997 if (p_IsConstant(a,R))
4998 {
4999 /* compare const, 0 */
5000 r = -1+2*n_GreaterZero(pGetCoeff(a),R->cf); /* -1: <, 1: > */
5001 }
5002 }
5003 return(r);
5004}
5005
5006poly p_GcdMon(poly f, poly g, const ring r)
5007{
5008 assume(f!=NULL);
5009 assume(g!=NULL);
5010 assume(pNext(f)==NULL);
5011 poly G=p_Head(f,r);
5012 poly h=g;
5013 int *mf=(int*)omAlloc((r->N+1)*sizeof(int));
5014 p_GetExpV(f,mf,r);
5015 int *mh=(int*)omAlloc((r->N+1)*sizeof(int));
5016 BOOLEAN const_mon;
5017 BOOLEAN one_coeff=n_IsOne(pGetCoeff(G),r->cf);
5018 loop
5019 {
5020 if (h==NULL) break;
5021 if(!one_coeff)
5022 {
5023 number n=n_SubringGcd(pGetCoeff(G),pGetCoeff(h),r->cf);
5024 one_coeff=n_IsOne(n,r->cf);
5025 p_SetCoeff(G,n,r);
5026 }
5027 p_GetExpV(h,mh,r);
5028 const_mon=TRUE;
5029 for(unsigned j=r->N;j!=0;j--)
5030 {
5031 if (mh[j]<mf[j]) mf[j]=mh[j];
5032 if (mf[j]>0) const_mon=FALSE;
5033 }
5034 if (one_coeff && const_mon) break;
5035 pIter(h);
5036 }
5037 mf[0]=0;
5038 p_SetExpV(G,mf,r); // included is p_SetComp, p_Setm
5039 omFreeSize(mf,(r->N+1)*sizeof(int));
5040 omFreeSize(mh,(r->N+1)*sizeof(int));
5041 return G;
5042}
5043
5044poly p_CopyPowerProduct0(const poly p, number n, const ring r)
5045{
5047 poly np;
5048 omTypeAllocBin(poly, np, r->PolyBin);
5049 p_SetRingOfLm(np, r);
5050 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
5051 pNext(np) = NULL;
5052 pSetCoeff0(np, n);
5053 return np;
5054}
5055
5056poly p_CopyPowerProduct(const poly p, const ring r)
5057{
5058 if (p == NULL) return NULL;
5059 return p_CopyPowerProduct0(p,n_Init(1,r->cf),r);
5060}
5061
5062poly p_Head0(const poly p, const ring r)
5063{
5064 if (p==NULL) return NULL;
5065 if (pGetCoeff(p)==NULL) return p_CopyPowerProduct0(p,NULL,r);
5066 return p_Head(p,r);
5067}
5068int p_MaxExpPerVar(poly p, int i, const ring r)
5069{
5070 int m=0;
5071 while(p!=NULL)
5072 {
5073 int mm=p_GetExp(p,i,r);
5074 if (mm>m) m=mm;
5075 pIter(p);
5076 }
5077 return m;
5078}
5079
Concrete implementation of enumerators over polynomials.
All the auxiliary stuff.
long int64
Definition: auxiliary.h:68
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
#define BIT_SIZEOF_LONG
Definition: auxiliary.h:80
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:676
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:56
int l
Definition: cfEzgcd.cc:100
int m
Definition: cfEzgcd.cc:128
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:72
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
return
Definition: cfGcdAlgExt.cc:218
Variable x
Definition: cfModGcd.cc:4082
int p
Definition: cfModGcd.cc:4078
g
Definition: cfModGcd.cc:4090
CanonicalForm cf
Definition: cfModGcd.cc:4083
CanonicalForm b
Definition: cfModGcd.cc:4103
FILE * f
Definition: checklibs.c:9
poly singclap_pdivide(poly f, poly g, const ring r)
Definition: clapsing.cc:624
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
Definition: intvec.h:23
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
Definition: coeffs.h:636
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1....
Definition: coeffs.h:783
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:451
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1,...
Definition: coeffs.h:695
static FORCE_INLINE number n_GetDenom(number &n, const coeffs r)
return the denominator of n (if elements of r are by nature not fractional, result is 1)
Definition: coeffs.h:603
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:839
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
Definition: coeffs.h:846
number ndCopyMap(number a, const coeffs src, const coeffs dst)
Definition: numbers.cc:255
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:712
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:35
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:38
static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
in Z: return the gcd of 'a' and 'b' in Z/nZ, Z/2^kZ: computed as in the case Z in Z/pZ,...
Definition: coeffs.h:664
#define n_New(n, r)
Definition: coeffs.h:440
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of 'a'; raise an error if 'a' is not invertible
Definition: coeffs.h:564
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:515
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition: coeffs.h:622
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
Definition: coeffs.h:494
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:700
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:557
static FORCE_INLINE void n_Power(number a, int b, number *res, const coeffs r)
fill res with the power a^b
Definition: coeffs.h:632
static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
Definition: coeffs.h:767
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
Definition: coeffs.h:615
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition: coeffs.h:806
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition: coeffs.h:464
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition: coeffs.h:570
static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
in Z: 1 in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that is co-prime with k i...
Definition: coeffs.h:532
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of 'a' and 'b', i.e., a-b
Definition: coeffs.h:655
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
Definition: coeffs.h:935
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:730
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
Definition: coeffs.h:421
static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym, CFArray &inv_cache, const coeffs r)
Definition: coeffs.h:764
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:455
static FORCE_INLINE void n_Write(number n, const coeffs r, const BOOLEAN bShortOut=TRUE)
Definition: coeffs.h:591
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
Definition: coeffs.h:800
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
Definition: coeffs.h:885
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:538
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition: coeffs.h:928
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition: coeffs.h:753
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:910
static FORCE_INLINE const char * n_Read(const char *s, number *a, const coeffs r)
!!! Recommendation: This method is too cryptic to be part of the user- !!! interface....
Definition: coeffs.h:598
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff 'a' and 'b' represent the same number; they may have different representations.
Definition: coeffs.h:460
static FORCE_INLINE number n_GetNumerator(number &n, const coeffs r)
return the numerator of n (if elements of r are by nature not fractional, result is n)
Definition: coeffs.h:608
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition: coeffs.h:666
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:578
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition: coeffs.h:468
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:918
#define Print
Definition: emacs.cc:80
#define WarnS
Definition: emacs.cc:78
return result
Definition: facAbsBiFact.cc:75
const CanonicalForm int s
Definition: facAbsFact.cc:51
const CanonicalForm int const CFList const Variable & y
Definition: facAbsFact.cc:53
CanonicalForm res
Definition: facAbsFact.cc:60
const CanonicalForm & w
Definition: facAbsFact.cc:51
CanonicalForm subst(const CanonicalForm &f, const CFList &a, const CFList &b, const CanonicalForm &Rstar, bool isFunctionField)
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
int j
Definition: facHensel.cc:110
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials
static int max(int a, int b)
Definition: fast_mult.cc:264
VAR short errorreported
Definition: feFopen.cc:23
void WerrorS(const char *s)
Definition: feFopen.cc:24
const char * eati(const char *s, int *i)
Definition: reporter.cc:373
int exponent(const CanonicalForm &f, int q)
int exponent ( const CanonicalForm & f, int q )
#define D(A)
Definition: gentable.cc:131
#define STATIC_VAR
Definition: globaldefs.h:7
#define VAR
Definition: globaldefs.h:5
STATIC_VAR poly last
Definition: hdegree.cc:1151
STATIC_VAR int offset
Definition: janet.cc:29
STATIC_VAR TreeM * G
Definition: janet.cc:31
STATIC_VAR Poly * h
Definition: janet.cc:971
ListNode * next
Definition: janet.h:31
if(yy_init)
Definition: libparse.cc:1420
static bool rIsSCA(const ring r)
Definition: nc.h:190
poly nc_pSubst(poly p, int n, poly e, const ring r)
substitute the n-th variable by e in p destroy p e is not a constant
Definition: old.gring.cc:3203
LINLINE number nlAdd(number la, number li, const coeffs r)
Definition: longrat.cc:2701
LINLINE number nlSub(number la, number li, const coeffs r)
Definition: longrat.cc:2767
LINLINE void nlDelete(number *a, const coeffs r)
Definition: longrat.cc:2666
BOOLEAN nlGreaterZero(number za, const coeffs r)
Definition: longrat.cc:1308
number nlGcd(number a, number b, const coeffs r)
Definition: longrat.cc:1345
void nlNormalize(number &x, const coeffs r)
Definition: longrat.cc:1486
#define assume(x)
Definition: mod2.h:387
int dReportError(const char *fmt,...)
Definition: dError.cc:43
#define p_SetCoeff0(p, n, r)
Definition: monomials.h:60
#define p_GetComp(p, r)
Definition: monomials.h:64
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:177
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:199
#define pSetCoeff0(p, n)
Definition: monomials.h:59
#define p_GetCoeff(p, r)
Definition: monomials.h:50
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define POLY_NEGWEIGHT_OFFSET
Definition: monomials.h:236
#define __p_GetComp(p, r)
Definition: monomials.h:63
#define p_SetRingOfLm(p, r)
Definition: monomials.h:144
#define rRing_has_Comp(r)
Definition: monomials.h:266
#define pAssume(cond)
Definition: monomials.h:90
gmp_float exp(const gmp_float &a)
Definition: mpr_complex.cc:357
The main handler for Singular numbers which are suitable for Singular polynomials.
Definition: lq.h:40
number ndGcd(number, number, const coeffs r)
Definition: numbers.cc:165
void ndNormalize(number &, const coeffs)
Definition: numbers.cc:163
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define NULL
Definition: omList.c:12
#define TEST_OPT_INTSTRATEGY
Definition: options.h:110
#define TEST_OPT_PROT
Definition: options.h:103
#define TEST_OPT_CONTENTSB
Definition: options.h:127
poly p_Diff(poly a, int k, const ring r)
Definition: p_polys.cc:1894
poly p_GetMaxExpP(poly p, const ring r)
return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0,...
Definition: p_polys.cc:1138
poly p_DivideM(poly a, poly b, const ring r)
Definition: p_polys.cc:1574
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition: p_polys.cc:1226
void p_Setm_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:554
poly pp_Jet(poly p, int m, const ring R)
Definition: p_polys.cc:4423
STATIC_VAR pLDegProc pOldLDeg
Definition: p_polys.cc:3739
void p_Cleardenom_n(poly ph, const ring r, number &c)
Definition: p_polys.cc:3019
long pLDegb(poly p, int *l, const ring r)
Definition: p_polys.cc:811
long pLDeg1_Totaldegree(poly p, int *l, const ring r)
Definition: p_polys.cc:975
long p_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:596
poly p_Farey(poly p, number N, const ring r)
Definition: p_polys.cc:54
void p_Content_n(poly ph, number &c, const ring r)
Definition: p_polys.cc:2349
long pLDeg1_WFirstTotalDegree(poly p, int *l, const ring r)
Definition: p_polys.cc:1038
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition: p_polys.cc:3727
long pLDeg1c_WFirstTotalDegree(poly p, int *l, const ring r)
Definition: p_polys.cc:1068
poly n_PermNumber(const number z, const int *par_perm, const int, const ring src, const ring dst)
Definition: p_polys.cc:4092
static poly p_DiffOpM(poly a, poly b, BOOLEAN multiply, const ring r)
Definition: p_polys.cc:1930
poly p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes div...
Definition: p_polys.cc:1866
int p_Size(poly p, const ring r)
Definition: p_polys.cc:3318
void p_Setm_Dummy(poly p, const ring r)
Definition: p_polys.cc:541
static poly p_Invers(int n, poly u, intvec *w, const ring R)
Definition: p_polys.cc:4534
poly p_GcdMon(poly f, poly g, const ring r)
polynomial gcd for f=mon
Definition: p_polys.cc:5006
BOOLEAN p_ComparePolys(poly p1, poly p2, const ring r)
returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL
Definition: p_polys.cc:4641
int p_LowVar(poly p, const ring r)
the minimal index of used variables - 1
Definition: p_polys.cc:4745
BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r)
divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g),...
Definition: p_polys.cc:1638
poly p_Homogen(poly p, int varnum, const ring r)
Definition: p_polys.cc:3335
poly p_Subst(poly p, int n, poly e, const ring r)
Definition: p_polys.cc:4023
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition: p_polys.cc:4591
BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r)
Definition: p_polys.cc:1329
void p_Content(poly ph, const ring r)
Definition: p_polys.cc:2291
int p_Weight(int i, const ring r)
Definition: p_polys.cc:705
void p_Setm_TotalDegree(poly p, const ring r)
Definition: p_polys.cc:547
poly p_CopyPowerProduct(const poly p, const ring r)
like p_Head, but with coefficient 1
Definition: p_polys.cc:5056
poly pp_DivideM(poly a, poly b, const ring r)
Definition: p_polys.cc:1629
STATIC_VAR int _componentsExternal
Definition: p_polys.cc:148
void p_SimpleContent(poly ph, int smax, const ring r)
Definition: p_polys.cc:2629
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition: p_polys.cc:1297
STATIC_VAR long * _componentsShifted
Definition: p_polys.cc:147
void p_Vec2Polys(poly v, poly **p, int *len, const ring r)
Definition: p_polys.cc:3703
static poly p_Subst0(poly p, int n, const ring r)
Definition: p_polys.cc:3998
poly p_DiffOp(poly a, poly b, BOOLEAN multiply, const ring r)
Definition: p_polys.cc:1969
static unsigned long p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
Definition: p_polys.cc:1107
poly p_Jet(poly p, int m, const ring R)
Definition: p_polys.cc:4451
poly p_TakeOutComp1(poly *p, int k, const ring r)
Definition: p_polys.cc:3462
poly p_TakeOutComp(poly *p, int k, const ring r)
Definition: p_polys.cc:3513
long pLDeg1c_Deg(poly p, int *l, const ring r)
Definition: p_polys.cc:941
long pLDeg1(poly p, int *l, const ring r)
Definition: p_polys.cc:841
static number * pnBin(int exp, const ring r)
Definition: p_polys.cc:2054
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
Definition: p_polys.cc:4771
static void pnFreeBin(number *bin, int exp, const coeffs r)
Definition: p_polys.cc:2085
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4195
poly p_Power(poly p, int i, const ring r)
Definition: p_polys.cc:2193
poly p_Div_nn(poly p, const number n, const ring r)
Definition: p_polys.cc:1501
void p_Normalize(poly p, const ring r)
Definition: p_polys.cc:3879
void p_DeleteComp(poly *p, int k, const ring r)
Definition: p_polys.cc:3622
poly p_mInit(const char *st, BOOLEAN &ok, const ring r)
Definition: p_polys.cc:1442
poly p_MDivide(poly a, poly b, const ring r)
Definition: p_polys.cc:1488
void p_ContentRat(poly &ph, const ring r)
Definition: p_polys.cc:1740
void p_Norm(poly p1, const ring r)
Definition: p_polys.cc:3797
poly p_Div_mm(poly p, const poly m, const ring r)
divide polynomial by monomial
Definition: p_polys.cc:1534
int p_GetVariables(poly p, int *e, const ring r)
set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0)
Definition: p_polys.cc:1267
int p_MinDeg(poly p, intvec *w, const ring R)
Definition: p_polys.cc:4513
int p_MaxExpPerVar(poly p, int i, const ring r)
max exponent of variable x_i in p
Definition: p_polys.cc:5068
STATIC_VAR BOOLEAN pOldLexOrder
Definition: p_polys.cc:3740
int p_Compare(const poly a, const poly b, const ring R)
Definition: p_polys.cc:4972
void p_Setm_Syz(poly p, ring r, int *Components, long *ShiftedComponents)
Definition: p_polys.cc:531
STATIC_VAR pFDegProc pOldFDeg
Definition: p_polys.cc:3738
void p_LmDeleteAndNextRat(poly *p, int ishift, ring r)
Definition: p_polys.cc:1696
unsigned long p_GetShortExpVector(const poly p, const ring r)
Definition: p_polys.cc:4846
VAR BOOLEAN pSetm_error
Definition: p_polys.cc:150
long pLDeg1_Deg(poly p, int *l, const ring r)
Definition: p_polys.cc:910
poly p_Series(int n, poly p, poly u, intvec *w, const ring R)
Definition: p_polys.cc:4563
void p_ProjectiveUnique(poly ph, const ring r)
Definition: p_polys.cc:3208
long p_WTotaldegree(poly p, const ring r)
Definition: p_polys.cc:613
long p_DegW(poly p, const int *w, const ring R)
Definition: p_polys.cc:690
p_SetmProc p_GetSetmProc(const ring r)
Definition: p_polys.cc:560
void p_Setm_General(poly p, const ring r)
Definition: p_polys.cc:158
BOOLEAN p_OneComp(poly p, const ring r)
return TRUE if all monoms have the same component
Definition: p_polys.cc:1208
poly p_Cleardenom(poly p, const ring r)
Definition: p_polys.cc:2910
long pLDeg1c(poly p, int *l, const ring r)
Definition: p_polys.cc:877
void p_Split(poly p, poly *h)
Definition: p_polys.cc:1320
long pLDeg1c_Totaldegree(poly p, int *l, const ring r)
Definition: p_polys.cc:1005
poly p_GetCoeffRat(poly p, int ishift, ring r)
Definition: p_polys.cc:1718
BOOLEAN p_VectorHasUnitB(poly p, int *k, const ring r)
Definition: p_polys.cc:3406
long pLDeg0c(poly p, int *l, const ring r)
Definition: p_polys.cc:770
poly p_Vec2Poly(poly v, int k, const ring r)
Definition: p_polys.cc:3651
poly p_LcmRat(const poly a, const poly b, const long lCompM, const ring r)
Definition: p_polys.cc:1673
unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max)
return the maximal exponent of p in form of the maximal long var
Definition: p_polys.cc:1175
static poly p_TwoMonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:2102
void p_SetModDeg(intvec *w, ring r)
Definition: p_polys.cc:3751
BOOLEAN p_HasNotCFRing(poly p1, poly p2, const ring r)
Definition: p_polys.cc:1345
long pLDeg0(poly p, int *l, const ring r)
Definition: p_polys.cc:739
int p_Var(poly m, const ring r)
Definition: p_polys.cc:4721
poly p_One(const ring r)
Definition: p_polys.cc:1313
poly p_Sub(poly p1, poly p2, const ring r)
Definition: p_polys.cc:1986
void p_VectorHasUnit(poly p, int *k, int *len, const ring r)
Definition: p_polys.cc:3429
static void p_SplitAndReversePoly(poly p, int n, poly *non_zero, poly *zero, const ring r)
Definition: p_polys.cc:3894
int p_IsUnivariate(poly p, const ring r)
return i, if poly depends only on var(i)
Definition: p_polys.cc:1247
STATIC_VAR int * _components
Definition: p_polys.cc:146
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
Definition: p_polys.cc:1469
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition: p_polys.cc:3715
void pEnlargeSet(poly **p, int l, int increment)
Definition: p_polys.cc:3774
long p_WDegree(poly p, const ring r)
Definition: p_polys.cc:714
static long pModDeg(poly p, ring r)
Definition: p_polys.cc:3742
BOOLEAN p_IsHomogeneous(poly p, const ring r)
Definition: p_polys.cc:3384
poly p_Head0(const poly p, const ring r)
like p_Head, but allow NULL coeff
Definition: p_polys.cc:5062
static poly p_MonMultC(poly p, poly q, const ring rr)
Definition: p_polys.cc:2040
static poly p_Pow_charp(poly p, int i, const ring r)
Definition: p_polys.cc:2181
poly pp_JetW(poly p, int m, int *w, const ring R)
Definition: p_polys.cc:4468
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:587
static poly p_Subst1(poly p, int n, const ring r)
Definition: p_polys.cc:3930
poly p_Last(const poly p, int &l, const ring r)
Definition: p_polys.cc:4686
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition: p_polys.cc:5044
static void p_MonMult(poly p, poly q, const ring r)
Definition: p_polys.cc:2020
number p_InitContent(poly ph, const ring r)
Definition: p_polys.cc:2700
void p_Vec2Array(poly v, poly *p, int len, const ring r)
vector to already allocated array (len>=p_MaxComp(v,r))
Definition: p_polys.cc:3673
static poly p_MonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:1996
void p_ContentForGB(poly ph, const ring r)
Definition: p_polys.cc:2420
static poly p_Subst2(poly p, int n, number e, const ring r)
Definition: p_polys.cc:3957
void p_Lcm(const poly a, const poly b, poly m, const ring r)
Definition: p_polys.cc:1651
static unsigned long GetBitFields(const long e, const unsigned int s, const unsigned int n)
Definition: p_polys.cc:4813
poly p_ChineseRemainder(poly *xx, number *x, number *q, int rl, CFArray &inv_cache, const ring R)
Definition: p_polys.cc:88
const char * p_Read(const char *st, poly &rc, const ring r)
Definition: p_polys.cc:1370
#define Sy_bit_L(x)
poly p_JetW(poly p, int m, int *w, const ring R)
Definition: p_polys.cc:4495
BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r)
Definition: p_polys.cc:4577
static poly p_Pow(poly p, int i, const ring r)
Definition: p_polys.cc:2167
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1107
static void p_ExpVectorSum(poly pr, poly p1, poly p2, const ring r)
Definition: p_polys.h:1425
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:936
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:723
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1114
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:120
static void p_ExpVectorAdd(poly p1, poly p2, const ring r)
Definition: p_polys.h:1411
static unsigned long p_SubComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:453
static long p_AddExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:606
static poly p_LmInit(poly p, const ring r)
Definition: p_polys.h:1335
#define p_LmEqual(p1, p2, r)
Definition: p_polys.h:1731
static int p_Cmp(poly p1, poly p2, ring r)
Definition: p_polys.h:1735
void p_Write(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:342
static void p_SetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1544
static int p_Comp_k_n(poly a, poly b, int k, ring r)
Definition: p_polys.h:640
static void p_SetCompP(poly p, int i, ring r)
Definition: p_polys.h:254
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:313
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:247
static long p_IncrExp(poly p, int v, ring r)
Definition: p_polys.h:591
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition: p_polys.h:1440
static unsigned long p_AddComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:447
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
#define p_SetmComp
Definition: p_polys.h:244
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:412
static poly pReverse(poly p)
Definition: p_polys.h:335
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:1006
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition: p_polys.h:860
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1580
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469
static long p_MultExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:621
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:2011
static poly p_GetExp_k_n(poly p, int l, int k, const ring r)
Definition: p_polys.h:1372
static BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1912
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:292
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
static long p_DecrExp(poly p, int v, ring r)
Definition: p_polys.h:598
static unsigned pLength(poly a)
Definition: p_polys.h:191
static void p_GetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1520
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:112
static long p_GetOrder(poly p, ring r)
Definition: p_polys.h:421
static poly p_LmFreeAndNext(poly p, ring)
Definition: p_polys.h:711
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition: p_polys.h:1051
static void p_LmFree(poly p, ring)
Definition: p_polys.h:683
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1320
static poly p_LmDeleteAndNext(poly p, const ring r)
Definition: p_polys.h:755
static poly p_SortAdd(poly p, const ring r, BOOLEAN revert=FALSE)
Definition: p_polys.h:1219
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:846
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1507
#define p_Test(p, r)
Definition: p_polys.h:162
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:971
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:373
poly singclap_gcd(poly f, poly g, const ring r)
polynomial gcd via singclap_gcd_r resp. idSyzygies destroys f and g
Definition: polys.cc:380
void PrintS(const char *s)
Definition: reporter.cc:284
void Werror(const char *fmt,...)
Definition: reporter.cc:189
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
Definition: ring.cc:1993
void rWrite(ring r, BOOLEAN details)
Definition: ring.cc:226
int r_IsRingVar(const char *n, char **names, int N)
Definition: ring.cc:212
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
Definition: ring.cc:1799
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:530
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:510
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:501
void(* p_SetmProc)(poly p, const ring r)
Definition: ring.h:39
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
ro_typ ord_typ
Definition: ring.h:220
long(* pFDegProc)(poly p, ring r)
Definition: ring.h:38
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:724
long(* pLDegProc)(poly p, int *length, ring r)
Definition: ring.h:37
static BOOLEAN rIsRatGRing(const ring r)
Definition: ring.h:427
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:600
@ ro_wp64
Definition: ring.h:55
@ ro_syz
Definition: ring.h:60
@ ro_cp
Definition: ring.h:58
@ ro_dp
Definition: ring.h:52
@ ro_is
Definition: ring.h:61
@ ro_wp_neg
Definition: ring.h:56
@ ro_wp
Definition: ring.h:53
@ ro_isTemp
Definition: ring.h:61
@ ro_am
Definition: ring.h:54
@ ro_syzcomp
Definition: ring.h:59
static int rInternalChar(const ring r)
Definition: ring.h:690
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411
@ ringorder_lp
Definition: ring.h:77
@ ringorder_a
Definition: ring.h:70
@ ringorder_am
Definition: ring.h:88
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_rs
opposite of ls
Definition: ring.h:92
@ ringorder_C
Definition: ring.h:73
@ ringorder_S
S?
Definition: ring.h:75
@ ringorder_ds
Definition: ring.h:84
@ ringorder_Dp
Definition: ring.h:80
@ ringorder_unspec
Definition: ring.h:94
@ ringorder_L
Definition: ring.h:89
@ ringorder_Ds
Definition: ring.h:85
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_rp
Definition: ring.h:79
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_no
Definition: ring.h:69
@ ringorder_Wp
Definition: ring.h:82
@ ringorder_ws
Definition: ring.h:86
@ ringorder_Ws
Definition: ring.h:87
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:93
@ ringorder_ls
Definition: ring.h:83
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
@ ringorder_M
Definition: ring.h:74
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:540
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:507
static BOOLEAN rField_has_Units(const ring r)
Definition: ring.h:491
static BOOLEAN rIsNCRing(const ring r)
Definition: ring.h:421
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:721
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:522
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:593
union sro_ord::@1 data
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition: ring.h:549
#define rField_is_Ring(R)
Definition: ring.h:486
Definition: ring.h:219
void sBucket_Add_m(sBucket_pt bucket, poly p)
Definition: sbuckets.cc:173
sBucket_pt sBucketCreate(const ring r)
Definition: sbuckets.cc:96
void sBucketDestroyAdd(sBucket_pt bucket, poly *p, int *length)
Definition: sbuckets.h:68
static short scaLastAltVar(ring r)
Definition: sca.h:25
static short scaFirstAltVar(ring r)
Definition: sca.h:18
poly p_LPSubst(poly p, int n, poly e, const ring r)
Definition: shiftop.cc:912
int status int void size_t count
Definition: si_signals.h:59
#define IDELEMS(i)
Definition: simpleideals.h:23
#define R
Definition: sirandom.c:27
#define loop
Definition: structs.h:75
number ntInit(long i, const coeffs cf)
Definition: transext.cc:704
int * iv2array(intvec *iv, const ring R)
Definition: weight.cc:200
long totaldegreeWecart_IV(poly p, ring r, const int *w)
Definition: weight.cc:231