My Project
Macros | Functions
p_polys.h File Reference
#include "misc/mylimits.h"
#include "misc/intvec.h"
#include "coeffs/coeffs.h"
#include "polys/monomials/monomials.h"
#include "polys/monomials/ring.h"
#include "polys/templates/p_MemAdd.h"
#include "polys/templates/p_MemCmp.h"
#include "polys/templates/p_Procs.h"
#include "polys/sbuckets.h"
#include "polys/nc/nc.h"

Go to the source code of this file.

Macros

#define pIfThen(cond, check)   do {if (cond) {check;}} while (0)
 
#define p_Test(p, r)   _p_Test(p, r, PDEBUG)
 
#define p_LmTest(p, r)   _p_LmTest(p, r, PDEBUG)
 
#define pp_Test(p, lmRing, tailRing)   _pp_Test(p, lmRing, tailRing, PDEBUG)
 
#define p_SetmComp   p_Setm
 
#define __p_Mult_nn(p, n, r)   r->p_Procs->p_Mult_nn(p, n, r)
 
#define __pp_Mult_nn(p, n, r)   r->p_Procs->pp_Mult_nn(p, n, r)
 
#define _p_LmCmpAction(p, q, r, actionE, actionG, actionS)
 
#define pDivAssume(x)   do {} while (0)
 
#define p_LmCmpAction(p, q, r, actionE, actionG, actionS)    _p_LmCmpAction(p, q, r, actionE, actionG, actionS)
 
#define p_LmEqual(p1, p2, r)   p_ExpVectorEqual(p1, p2, r)
 

Functions

poly p_Farey (poly p, number N, const ring r)
 
poly p_ChineseRemainder (poly *xx, number *x, number *q, int rl, CFArray &inv_cache, const ring R)
 
unsigned long p_GetShortExpVector (const poly a, const ring r)
 
unsigned long p_GetShortExpVector (const poly p, const poly pp, const ring r)
 p_GetShortExpVector of p * pp More...
 
BOOLEAN p_DivisibleByRingCase (poly f, poly g, const ring r)
 divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account More...
 
poly p_One (const ring r)
 
int p_MinDeg (poly p, intvec *w, const ring R)
 
long p_DegW (poly p, const int *w, const ring R)
 
BOOLEAN p_OneComp (poly p, const ring r)
 return TRUE if all monoms have the same component More...
 
int p_IsPurePower (const poly p, const ring r)
 return i, if head depends only on var(i) More...
 
int p_IsUnivariate (poly p, const ring r)
 return i, if poly depends only on var(i) More...
 
int p_GetVariables (poly p, int *e, const ring r)
 set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0) More...
 
poly p_ISet (long i, const ring r)
 returns the poly representing the integer i More...
 
poly p_NSet (number n, const ring r)
 returns the poly representing the number n, destroys n More...
 
void p_Vec2Polys (poly v, poly **p, int *len, const ring r)
 
poly p_Vec2Poly (poly v, int k, const ring r)
 
void p_Vec2Array (poly v, poly *p, int len, const ring r)
 julia: vector to already allocated array (len=p_MaxComp(v,r)) More...
 
void p_ShallowDelete (poly *p, const ring r)
 
poly p_Sub (poly a, poly b, const ring r)
 
poly p_Power (poly p, int i, const ring r)
 
BOOLEAN pIsMonomOf (poly p, poly m)
 
BOOLEAN pHaveCommonMonoms (poly p, poly q)
 
BOOLEAN p_LmCheckIsFromRing (poly p, ring r)
 
BOOLEAN p_LmCheckPolyRing (poly p, ring r)
 
BOOLEAN p_CheckIsFromRing (poly p, ring r)
 
BOOLEAN p_CheckPolyRing (poly p, ring r)
 
BOOLEAN p_CheckRing (ring r)
 
BOOLEAN _p_Test (poly p, ring r, int level)
 
BOOLEAN _p_LmTest (poly p, ring r, int level)
 
BOOLEAN _pp_Test (poly p, ring lmRing, ring tailRing, int level)
 
static unsigned pLength (poly a)
 
poly p_Last (const poly a, int &l, const ring r)
 
void p_Norm (poly p1, const ring r)
 
void p_Normalize (poly p, const ring r)
 
void p_ProjectiveUnique (poly p, const ring r)
 
void p_ContentForGB (poly p, const ring r)
 
void p_Content (poly p, const ring r)
 
void p_Content_n (poly p, number &c, const ring r)
 
void p_SimpleContent (poly p, int s, const ring r)
 
number p_InitContent (poly ph, const ring r)
 
poly p_Cleardenom (poly p, const ring r)
 
void p_Cleardenom_n (poly p, const ring r, number &c)
 
int p_Size (poly p, const ring r)
 
poly p_Homogen (poly p, int varnum, const ring r)
 
BOOLEAN p_IsHomogeneous (poly p, const ring r)
 
static void p_Setm (poly p, const ring r)
 
p_SetmProc p_GetSetmProc (const ring r)
 
poly p_Subst (poly p, int n, poly e, const ring r)
 
static unsigned long p_SetComp (poly p, unsigned long c, ring r)
 
static void p_SetCompP (poly p, int i, ring r)
 
static void p_SetCompP (poly p, int i, ring lmRing, ring tailRing)
 
static long p_MaxComp (poly p, ring lmRing, ring tailRing)
 
static long p_MaxComp (poly p, ring lmRing)
 
static long p_MinComp (poly p, ring lmRing, ring tailRing)
 
static long p_MinComp (poly p, ring lmRing)
 
static poly pReverse (poly p)
 
void pEnlargeSet (poly **p, int length, int increment)
 
void p_String0 (poly p, ring lmRing, ring tailRing)
 print p according to ShortOut in lmRing & tailRing More...
 
char * p_String (poly p, ring lmRing, ring tailRing)
 
void p_Write (poly p, ring lmRing, ring tailRing)
 
void p_Write0 (poly p, ring lmRing, ring tailRing)
 
void p_wrp (poly p, ring lmRing, ring tailRing)
 
void p_String0Short (const poly p, ring lmRing, ring tailRing)
 print p in a short way, if possible More...
 
void p_String0Long (const poly p, ring lmRing, ring tailRing)
 print p in a long way More...
 
static long p_FDeg (const poly p, const ring r)
 
static long p_LDeg (const poly p, int *l, const ring r)
 
long p_WFirstTotalDegree (poly p, ring r)
 
long p_WTotaldegree (poly p, const ring r)
 
long p_WDegree (poly p, const ring r)
 
long pLDeg0 (poly p, int *l, ring r)
 
long pLDeg0c (poly p, int *l, ring r)
 
long pLDegb (poly p, int *l, ring r)
 
long pLDeg1 (poly p, int *l, ring r)
 
long pLDeg1c (poly p, int *l, ring r)
 
long pLDeg1_Deg (poly p, int *l, ring r)
 
long pLDeg1c_Deg (poly p, int *l, ring r)
 
long pLDeg1_Totaldegree (poly p, int *l, ring r)
 
long pLDeg1c_Totaldegree (poly p, int *l, ring r)
 
long pLDeg1_WFirstTotalDegree (poly p, int *l, ring r)
 
long pLDeg1c_WFirstTotalDegree (poly p, int *l, ring r)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r1, const ring r2)
 same as the usual p_EqualPolys for polys belonging to equal rings More...
 
long p_Deg (poly a, const ring r)
 
static number p_SetCoeff (poly p, number n, ring r)
 
static long p_GetOrder (poly p, ring r)
 
static unsigned long p_AddComp (poly p, unsigned long v, ring r)
 
static unsigned long p_SubComp (poly p, unsigned long v, ring r)
 
static long p_GetExp (const poly p, const unsigned long iBitmask, const int VarOffset)
 get a single variable exponent @Note: the integer VarOffset encodes: More...
 
static unsigned long p_SetExp (poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
 set a single variable exponent @Note: VarOffset encodes the position in p->exp More...
 
static long p_GetExp (const poly p, const ring r, const int VarOffset)
 
static long p_SetExp (poly p, const long e, const ring r, const int VarOffset)
 
static long p_GetExp (const poly p, const int v, const ring r)
 get v^th exponent for a monomial More...
 
static long p_SetExp (poly p, const int v, const long e, const ring r)
 set v^th exponent for a monomial More...
 
static long p_IncrExp (poly p, int v, ring r)
 
static long p_DecrExp (poly p, int v, ring r)
 
static long p_AddExp (poly p, int v, long ee, ring r)
 
static long p_SubExp (poly p, int v, long ee, ring r)
 
static long p_MultExp (poly p, int v, long ee, ring r)
 
static long p_GetExpSum (poly p1, poly p2, int i, ring r)
 
static long p_GetExpDiff (poly p1, poly p2, int i, ring r)
 
static int p_Comp_k_n (poly a, poly b, int k, ring r)
 
static poly p_New (const ring, omBin bin)
 
static poly p_New (ring r)
 
static void p_LmFree (poly p, ring)
 
static void p_LmFree (poly *p, ring)
 
static poly p_LmFreeAndNext (poly p, ring)
 
static void p_LmDelete (poly p, const ring r)
 
static void p_LmDelete0 (poly p, const ring r)
 
static void p_LmDelete (poly *p, const ring r)
 
static poly p_LmDeleteAndNext (poly p, const ring r)
 
unsigned long p_GetMaxExpL (poly p, const ring r, unsigned long l_max=0)
 return the maximal exponent of p in form of the maximal long var More...
 
poly p_GetMaxExpP (poly p, ring r)
 return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set More...
 
static unsigned long p_GetMaxExp (const unsigned long l, const ring r)
 
static unsigned long p_GetMaxExp (const poly p, const ring r)
 
static unsigned long p_GetTotalDegree (const unsigned long l, const ring r, const int number_of_exps)
 
static poly p_Copy_noCheck (poly p, const ring r)
 returns a copy of p (without any additional testing) More...
 
static poly p_Copy (poly p, const ring r)
 returns a copy of p More...
 
static poly p_Head (const poly p, const ring r)
 copy the (leading) term of p More...
 
poly p_Head0 (const poly p, const ring r)
 like p_Head, but allow NULL coeff More...
 
poly p_CopyPowerProduct (const poly p, const ring r)
 like p_Head, but with coefficient 1 More...
 
poly p_CopyPowerProduct0 (const poly p, const number n, const ring r)
 like p_Head, but with coefficient n More...
 
static poly p_Copy (poly p, const ring lmRing, const ring tailRing)
 returns a copy of p with Lm(p) from lmRing and Tail(p) from tailRing More...
 
static void p_Delete (poly *p, const ring r)
 
static void p_Delete (poly *p, const ring lmRing, const ring tailRing)
 
static poly p_ShallowCopyDelete (poly p, const ring r, omBin bin)
 
static poly p_Add_q (poly p, poly q, const ring r)
 
static poly p_Add_q (poly p, poly q, int &lp, int lq, const ring r)
 like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q) More...
 
static poly p_Mult_nn (poly p, number n, const ring r)
 
static poly p_Mult_nn (poly p, number n, const ring lmRing, const ring tailRing)
 
static poly pp_Mult_nn (poly p, number n, const ring r)
 
static BOOLEAN p_LmIsConstantComp (const poly p, const ring r)
 
static BOOLEAN p_LmIsConstant (const poly p, const ring r)
 
static poly pp_Mult_mm (poly p, poly m, const ring r)
 
static poly pp_mm_Mult (poly p, poly m, const ring r)
 
static poly p_Mult_mm (poly p, poly m, const ring r)
 
static poly p_mm_Mult (poly p, poly m, const ring r)
 
static poly p_Minus_mm_Mult_qq (poly p, const poly m, const poly q, int &lp, int lq, const poly spNoether, const ring r)
 
static poly p_Minus_mm_Mult_qq (poly p, const poly m, const poly q, const ring r)
 
static poly pp_Mult_Coeff_mm_DivSelect (poly p, const poly m, const ring r)
 
static poly pp_Mult_Coeff_mm_DivSelect (poly p, int &lp, const poly m, const ring r)
 
static poly p_Neg (poly p, const ring r)
 
poly _p_Mult_q (poly p, poly q, const int copy, const ring r)
 Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2, !rIsPluralRing(r) More...
 
static poly p_Mult_q (poly p, poly q, const ring r)
 
static poly pp_Mult_qq (poly p, poly q, const ring r)
 
static poly p_Plus_mm_Mult_qq (poly p, poly m, poly q, int &lp, int lq, const ring r)
 
static poly p_Plus_mm_Mult_qq (poly p, poly m, poly q, const ring r)
 
static poly p_Merge_q (poly p, poly q, const ring r)
 
static poly p_SortAdd (poly p, const ring r, BOOLEAN revert=FALSE)
 
static poly p_SortMerge (poly p, const ring r, BOOLEAN revert=FALSE)
 
static char * p_String (poly p, ring p_ring)
 
static void p_String0 (poly p, ring p_ring)
 
static void p_Write (poly p, ring p_ring)
 
static void p_Write0 (poly p, ring p_ring)
 
static void p_wrp (poly p, ring p_ring)
 
static void p_MemAdd_NegWeightAdjust (poly p, const ring r)
 
static void p_MemSub_NegWeightAdjust (poly p, const ring r)
 
static void p_ExpVectorCopy (poly d_p, poly s_p, const ring r)
 
static poly p_Init (const ring r, omBin bin)
 
static poly p_Init (const ring r)
 
static poly p_LmInit (poly p, const ring r)
 
static poly p_LmInit (poly s_p, const ring s_r, const ring d_r, omBin d_bin)
 
static poly p_LmInit (poly s_p, const ring s_r, const ring d_r)
 
static poly p_GetExp_k_n (poly p, int l, int k, const ring r)
 
static poly p_LmShallowCopyDelete (poly p, const ring r)
 
static void p_ExpVectorAdd (poly p1, poly p2, const ring r)
 
static void p_ExpVectorSum (poly pr, poly p1, poly p2, const ring r)
 
static void p_ExpVectorSub (poly p1, poly p2, const ring r)
 
static void p_ExpVectorAddSub (poly p1, poly p2, poly p3, const ring r)
 
static void p_ExpVectorDiff (poly pr, poly p1, poly p2, const ring r)
 
static BOOLEAN p_ExpVectorEqual (poly p1, poly p2, const ring r)
 
static long p_Totaldegree (poly p, const ring r)
 
static void p_GetExpV (poly p, int *ev, const ring r)
 
static void p_GetExpVL (poly p, int64 *ev, const ring r)
 
static int64 p_GetExpVLV (poly p, int64 *ev, const ring r)
 
static void p_SetExpV (poly p, int *ev, const ring r)
 
static void p_SetExpVL (poly p, int64 *ev, const ring r)
 
static void p_SetExpVLV (poly p, int64 *ev, int64 comp, const ring r)
 
static int p_LmCmp (poly p, poly q, const ring r)
 
static int p_LtCmp (poly p, poly q, const ring r)
 
static int p_LtCmpNoAbs (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnDiffM (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnDiffP (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnEqM (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnEqP (poly p, poly q, const ring r)
 
BOOLEAN p_ComparePolys (poly p1, poly p2, const ring r)
 returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL More...
 
static int p_Cmp (poly p1, poly p2, ring r)
 
static int p_CmpPolys (poly p1, poly p2, ring r)
 
static BOOLEAN _p_LmDivisibleByNoComp (poly a, poly b, const ring r)
 return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long vars, instead of single exponents (2) Clearly, if la > lb, then FALSE (3) Suppose la <= lb, and consider first bits of single exponents in l: if TRUE, then value of these bits is la ^ lb if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., la ^ lb != la - lb More...
 
static BOOLEAN _p_LmDivisibleByNoComp (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN _p_LmDivisibleByNoCompPart (poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
 
static BOOLEAN _p_LmDivisibleByPart (poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
 
static BOOLEAN p_LmDivisibleByPart (poly a, poly b, const ring r, const int start, const int end)
 
static BOOLEAN _p_LmDivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN _p_LmDivisibleBy (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN p_LmDivisibleByNoComp (poly a, poly b, const ring r)
 
static BOOLEAN p_LmDivisibleByNoComp (poly a, const ring ra, poly b, const ring rb)
 
static BOOLEAN p_LmDivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN p_DivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN p_DivisibleBy (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN p_LmDivisibleBy (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN p_LmShortDivisibleBy (poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
 
static BOOLEAN p_LmShortDivisibleByNoComp (poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
 
static BOOLEAN p_LmShortDivisibleBy (poly a, unsigned long sev_a, const ring r_a, poly b, unsigned long not_sev_b, const ring r_b)
 
static BOOLEAN p_IsConstantComp (const poly p, const ring r)
 like the respective p_LmIs* routines, except that p might be empty More...
 
static BOOLEAN p_IsConstant (const poly p, const ring r)
 
static BOOLEAN p_IsOne (const poly p, const ring R)
 either poly(1) or gen(k)?! More...
 
static BOOLEAN p_IsConstantPoly (const poly p, const ring r)
 
static BOOLEAN p_IsUnit (const poly p, const ring r)
 
static BOOLEAN p_LmExpVectorAddIsOk (const poly p1, const poly p2, const ring r)
 
void p_Split (poly p, poly *r)
 
BOOLEAN p_HasNotCF (poly p1, poly p2, const ring r)
 
BOOLEAN p_HasNotCFRing (poly p1, poly p2, const ring r)
 
poly p_mInit (const char *s, BOOLEAN &ok, const ring r)
 
const char * p_Read (const char *s, poly &p, const ring r)
 
poly p_MDivide (poly a, poly b, const ring r)
 
poly p_DivideM (poly a, poly b, const ring r)
 
poly pp_DivideM (poly a, poly b, const ring r)
 
poly p_Div_nn (poly p, const number n, const ring r)
 
void p_Lcm (const poly a, const poly b, poly m, const ring r)
 
poly p_Lcm (const poly a, const poly b, const ring r)
 
poly p_LcmRat (const poly a, const poly b, const long lCompM, const ring r)
 
poly p_GetCoeffRat (poly p, int ishift, ring r)
 
void p_LmDeleteAndNextRat (poly *p, int ishift, ring r)
 
void p_ContentRat (poly &ph, const ring r)
 
poly p_Diff (poly a, int k, const ring r)
 
poly p_DiffOp (poly a, poly b, BOOLEAN multiply, const ring r)
 
int p_Weight (int c, const ring r)
 
poly p_PolyDiv (poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
 assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor: More...
 
BOOLEAN p_VectorHasUnitB (poly p, int *k, const ring r)
 
void p_VectorHasUnit (poly p, int *k, int *len, const ring r)
 
poly p_TakeOutComp1 (poly *p, int k, const ring r)
 
void p_TakeOutComp (poly *p, long comp, poly *q, int *lq, const ring r)
 
poly p_TakeOutComp (poly *p, int k, const ring r)
 
void p_DeleteComp (poly *p, int k, const ring r)
 
void pSetDegProcs (ring r, pFDegProc new_FDeg, pLDegProc new_lDeg=NULL)
 
void pRestoreDegProcs (ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
 
void p_SetModDeg (intvec *w, ring r)
 
poly pp_Jet (poly p, int m, const ring R)
 
poly p_Jet (poly p, int m, const ring R)
 
poly pp_JetW (poly p, int m, int *w, const ring R)
 
poly p_JetW (poly p, int m, int *w, const ring R)
 
poly n_PermNumber (const number z, const int *par_perm, const int OldPar, const ring src, const ring dst)
 
poly p_PermPoly (poly p, const int *perm, const ring OldRing, const ring dst, nMapFunc nMap, const int *par_perm=NULL, int OldPar=0, BOOLEAN use_mult=FALSE)
 
poly p_Series (int n, poly p, poly u, intvec *w, const ring R)
 
int p_Var (poly mi, const ring r)
 
int p_LowVar (poly p, const ring r)
 the minimal index of used variables - 1 More...
 
void p_Shift (poly *p, int i, const ring r)
 shifts components of the vector p by i More...
 
int p_Compare (const poly a, const poly b, const ring R)
 
poly p_GcdMon (poly f, poly g, const ring r)
 polynomial gcd for f=mon More...
 
poly p_Div_mm (poly p, const poly m, const ring r)
 divide polynomial by monomial More...
 
int p_MaxExpPerVar (poly p, int i, const ring r)
 max exponent of variable x_i in p More...
 

Macro Definition Documentation

◆ __p_Mult_nn

#define __p_Mult_nn (   p,
  n,
 
)    r->p_Procs->p_Mult_nn(p, n, r)

Definition at line 971 of file p_polys.h.

◆ __pp_Mult_nn

#define __pp_Mult_nn (   p,
  n,
 
)    r->p_Procs->pp_Mult_nn(p, n, r)

Definition at line 1002 of file p_polys.h.

◆ _p_LmCmpAction

#define _p_LmCmpAction (   p,
  q,
  r,
  actionE,
  actionG,
  actionS 
)
Value:
p_MemCmp_LengthGeneral_OrdGeneral(p->exp, q->exp, r->CmpL_Size, r->ordsgn, \
actionE, actionG, actionS)
int p
Definition: cfModGcd.cc:4078
#define p_MemCmp_LengthGeneral_OrdGeneral(s1, s2, length, ordsgn, actionE, actionG, actionS)
Definition: p_MemCmp.h:719

Definition at line 1276 of file p_polys.h.

◆ p_LmCmpAction

#define p_LmCmpAction (   p,
  q,
  r,
  actionE,
  actionG,
  actionS 
)     _p_LmCmpAction(p, q, r, actionE, actionG, actionS)

Definition at line 1727 of file p_polys.h.

◆ p_LmEqual

#define p_LmEqual (   p1,
  p2,
 
)    p_ExpVectorEqual(p1, p2, r)

Definition at line 1731 of file p_polys.h.

◆ p_LmTest

#define p_LmTest (   p,
 
)    _p_LmTest(p, r, PDEBUG)

Definition at line 163 of file p_polys.h.

◆ p_SetmComp

#define p_SetmComp   p_Setm

Definition at line 244 of file p_polys.h.

◆ p_Test

#define p_Test (   p,
 
)    _p_Test(p, r, PDEBUG)

Definition at line 162 of file p_polys.h.

◆ pDivAssume

#define pDivAssume (   x)    do {} while (0)

Definition at line 1282 of file p_polys.h.

◆ pIfThen

#define pIfThen (   cond,
  check 
)    do {if (cond) {check;}} while (0)

Definition at line 156 of file p_polys.h.

◆ pp_Test

#define pp_Test (   p,
  lmRing,
  tailRing 
)    _pp_Test(p, lmRing, tailRing, PDEBUG)

Definition at line 164 of file p_polys.h.

Function Documentation

◆ _p_LmDivisibleBy() [1/2]

static BOOLEAN _p_LmDivisibleBy ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1883 of file p_polys.h.

1884{
1885 if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b))
1886 return _p_LmDivisibleByNoComp(a, r_a, b, r_b);
1887 return FALSE;
1888}
#define FALSE
Definition: auxiliary.h:96
CanonicalForm b
Definition: cfModGcd.cc:4103
#define p_GetComp(p, r)
Definition: monomials.h:64
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1773

◆ _p_LmDivisibleBy() [2/2]

static BOOLEAN _p_LmDivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1877 of file p_polys.h.

1878{
1879 if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1880 return _p_LmDivisibleByNoComp(a, b, r);
1881 return FALSE;
1882}

◆ _p_LmDivisibleByNoComp() [1/2]

static BOOLEAN _p_LmDivisibleByNoComp ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1822 of file p_polys.h.

1823{
1824 int i=r_a->N;
1825 pAssume1(r_a->N == r_b->N);
1826
1827 do
1828 {
1829 if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1830 return FALSE;
1831 i--;
1832 }
1833 while (i);
1834/*#ifdef HAVE_RINGS
1835 return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1836#else
1837*/
1838 return TRUE;
1839//#endif
1840}
#define TRUE
Definition: auxiliary.h:100
int i
Definition: cfEzgcd.cc:132
#define pAssume1(cond)
Definition: monomials.h:171
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469

◆ _p_LmDivisibleByNoComp() [2/2]

static BOOLEAN _p_LmDivisibleByNoComp ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long vars, instead of single exponents (2) Clearly, if la > lb, then FALSE (3) Suppose la <= lb, and consider first bits of single exponents in l: if TRUE, then value of these bits is la ^ lb if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., la ^ lb != la - lb

Definition at line 1773 of file p_polys.h.

1774{
1775 int i=r->VarL_Size - 1;
1776 unsigned long divmask = r->divmask;
1777 unsigned long la, lb;
1778
1779 if (r->VarL_LowIndex >= 0)
1780 {
1781 i += r->VarL_LowIndex;
1782 do
1783 {
1784 la = a->exp[i];
1785 lb = b->exp[i];
1786 if ((la > lb) ||
1787 (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1788 {
1790 return FALSE;
1791 }
1792 i--;
1793 }
1794 while (i>=r->VarL_LowIndex);
1795 }
1796 else
1797 {
1798 do
1799 {
1800 la = a->exp[r->VarL_Offset[i]];
1801 lb = b->exp[r->VarL_Offset[i]];
1802 if ((la > lb) ||
1803 (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1804 {
1806 return FALSE;
1807 }
1808 i--;
1809 }
1810 while (i>=0);
1811 }
1812/*#ifdef HAVE_RINGS
1813 pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf));
1814 return (!rField_is_Ring(r)) || n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf);
1815#else
1816*/
1818 return TRUE;
1819//#endif
1820}
BOOLEAN p_DebugLmDivisibleByNoComp(poly a, poly b, ring r)
Definition: pDebug.cc:141
#define pDivAssume(x)
Definition: p_polys.h:1282

◆ _p_LmDivisibleByNoCompPart()

static BOOLEAN _p_LmDivisibleByNoCompPart ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1843 of file p_polys.h.

1844{
1845 int i=end;
1846 pAssume1(r_a->N == r_b->N);
1847
1848 do
1849 {
1850 if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1851 return FALSE;
1852 i--;
1853 }
1854 while (i>=start);
1855/*#ifdef HAVE_RINGS
1856 return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1857#else
1858*/
1859 return TRUE;
1860//#endif
1861}

◆ _p_LmDivisibleByPart()

static BOOLEAN _p_LmDivisibleByPart ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1862 of file p_polys.h.

1863{
1864 if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b))
1865 return _p_LmDivisibleByNoCompPart(a, r_a, b, r_b,start,end);
1866 return FALSE;
1867}
static BOOLEAN _p_LmDivisibleByNoCompPart(poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
Definition: p_polys.h:1843

◆ _p_LmTest()

BOOLEAN _p_LmTest ( poly  p,
ring  r,
int  level 
)

Definition at line 323 of file pDebug.cc.

324{
325 if (level < 0 || p == NULL) return TRUE;
326 poly pnext = pNext(p);
327 pNext(p) = NULL;
328 BOOLEAN test_res = _p_Test(p, r, level);
329 pNext(p) = pnext;
330 return test_res;
331}
int BOOLEAN
Definition: auxiliary.h:87
int level(const CanonicalForm &f)
#define pNext(p)
Definition: monomials.h:36
#define NULL
Definition: omList.c:12
BOOLEAN _p_Test(poly p, ring r, int level)
Definition: pDebug.cc:212

◆ _p_Mult_q()

poly _p_Mult_q ( poly  p,
poly  q,
const int  copy,
const ring  r 
)

Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2, !rIsPluralRing(r)

Definition at line 313 of file p_Mult_q.cc.

314{
315 assume(r != NULL);
316#ifdef HAVE_RINGS
317 if (!nCoeff_is_Domain(r->cf))
318 return _p_Mult_q_Normal_ZeroDiv(p, q, copy, r);
319#endif
320 int lp, lq, l;
321 poly pt;
322
323 // MIN_LENGTH_FACTORY must be >= MIN_LENGTH_FACTORY_QQ, MIN_FLINT_QQ, MIN_FLINT_Zp 20
325
326 if (lp < lq)
327 {
328 pt = p;
329 p = q;
330 q = pt;
331 l = lp;
332 lp = lq;
333 lq = l;
334 }
335 BOOLEAN pure_polys=(p_GetComp(p,r)==0) && (p_GetComp(q,r)==0);
336 #ifdef HAVE_FLINT
337 #if __FLINT_RELEASE >= 20503
338 if (lq>MIN_FLINT_QQ)
339 {
340 fmpq_mpoly_ctx_t ctx;
341 if (pure_polys && rField_is_Q(r) && !convSingRFlintR(ctx,r))
342 {
343 // lq is a lower bound for the length of p and q
344 poly res=Flint_Mult_MP(p,lq,q,lq,ctx,r);
345 if (!copy)
346 {
347 p_Delete(&p,r);
348 p_Delete(&q,r);
349 }
350 return res;
351 }
352 }
353 if (lq>MIN_FLINT_Zp)
354 {
355 nmod_mpoly_ctx_t ctx;
356 if (pure_polys && rField_is_Zp(r) && !convSingRFlintR(ctx,r))
357 {
358 // lq is a lower bound for the length of p and q
359 poly res=Flint_Mult_MP(p,lq,q,lq,ctx,r);
360 if (!copy)
361 {
362 p_Delete(&p,r);
363 p_Delete(&q,r);
364 }
365 return res;
366 }
367 }
368 if (lq>MIN_FLINT_Z)
369 {
370 fmpz_mpoly_ctx_t ctx;
371 if (pure_polys && rField_is_Z(r) && !convSingRFlintR(ctx,r))
372 {
373 // lq is a lower bound for the length of p and q
374 poly res=Flint_Mult_MP(p,lq,q,lq,ctx,r);
375 if (!copy)
376 {
377 p_Delete(&p,r);
378 p_Delete(&q,r);
379 }
380 return res;
381 }
382 }
383 #endif
384 #endif
386 return _p_Mult_q_Normal(p, q, copy, r);
387 else if (pure_polys
388 && (((lq >= MIN_LENGTH_FACTORY)
389 && (r->cf->convSingNFactoryN!=ndConvSingNFactoryN))
391 && rField_is_Q(r))))
392 {
393 poly h=singclap_pmult(p,q,r);
394 if (!copy)
395 {
396 p_Delete(&p,r);
397 p_Delete(&q,r);
398 }
399 return h;
400 }
401 else
402 {
403 lp=pLength(p);
404 lq=pLength(q);
405 return _p_Mult_q_Bucket(p, lp, q, lq, copy, r);
406 }
407}
int l
Definition: cfEzgcd.cc:100
poly singclap_pmult(poly f, poly g, const ring r)
Definition: clapsing.cc:577
static FORCE_INLINE BOOLEAN nCoeff_is_Domain(const coeffs r)
returns TRUE, if r is a field or r has no zero divisors (i.e is a domain)
Definition: coeffs.h:739
CanonicalForm res
Definition: facAbsFact.cc:60
CFArray copy(const CFList &list)
write elements of list into an array
STATIC_VAR Poly * h
Definition: janet.cc:971
#define assume(x)
Definition: mod2.h:387
Definition: lq.h:40
CanonicalForm ndConvSingNFactoryN(number, BOOLEAN, const coeffs)
Definition: numbers.cc:276
#define TEST_OPT_NOT_BUCKETS
Definition: options.h:105
static void pqLengthApprox(poly p, poly q, int &lp, int &lq, const int min)
Definition: p_Mult_q.cc:69
#define MIN_LENGTH_FACTORY
Definition: p_Mult_q.cc:304
#define MIN_FLINT_Z
Definition: p_Mult_q.cc:308
#define MIN_FLINT_QQ
Definition: p_Mult_q.cc:306
static poly _p_Mult_q_Normal(poly p, poly q, const int copy, const ring r)
Definition: p_Mult_q.cc:223
#define MIN_LENGTH_FACTORY_QQ
Definition: p_Mult_q.cc:305
static poly _p_Mult_q_Bucket(poly p, const int lp, poly q, const int lq, const int copy, const ring r)
Definition: p_Mult_q.cc:100
static poly _p_Mult_q_Normal_ZeroDiv(poly p, poly q, const int copy, const ring r)
Definition: p_Mult_q.cc:195
#define MIN_FLINT_Zp
Definition: p_Mult_q.cc:307
#define MIN_LENGTH_BUCKET
Definition: p_Mult_q.h:21
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
static unsigned pLength(poly a)
Definition: p_polys.h:191
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:510
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:501
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:507

◆ _p_Test()

BOOLEAN _p_Test ( poly  p,
ring  r,
int  level 
)

Definition at line 212 of file pDebug.cc.

213{
214 assume(r->cf !=NULL);
215
216 if (PDEBUG > level) level = PDEBUG;
217 if (level < 0 || p == NULL) return TRUE;
218
219 poly p_prev = NULL;
220
221 #ifndef OM_NDEBUG
222 #ifndef X_OMALLOC
223 // check addr with level+1 so as to check bin/page of addr
224 _pPolyAssumeReturnMsg(omTestBinAddrSize(p, (omSizeWOfBin(r->PolyBin))*SIZEOF_LONG, level+1)
225 == omError_NoError, "memory error",p,r);
226 #endif
227 #endif
228
230
231 // this checks that p does not contain a loop: rather expensive O(length^2)
232 #ifndef OM_NDEBUG
233 if (level > 1)
235 #endif
236
237 int ismod = p_GetComp(p, r) != 0;
238
239 while (p != NULL)
240 {
241 // ring check
243 #ifndef OM_NDEBUG
244 #ifndef X_OMALLOC
245 // omAddr check
246 _pPolyAssumeReturnMsg(omTestBinAddrSize(p, (omSizeWOfBin(r->PolyBin))*SIZEOF_LONG, 1)
247 == omError_NoError, "memory error",p,r);
248 #endif
249 #endif
250 // number/coef check
251 _pPolyAssumeReturnMsg(p->coef != NULL || (n_GetChar(r->cf) >= 2), "NULL coef",p,r);
252
253 #ifdef LDEBUG
254 _pPolyAssumeReturnMsg(n_Test(p->coef,r->cf),"coeff err",p,r);
255 #endif
256 _pPolyAssumeReturnMsg(!n_IsZero(p->coef, r->cf), "Zero coef",p,r);
257
258 // check for valid comp
259 _pPolyAssumeReturnMsg(p_GetComp(p, r) >= 0 && (p_GetComp(p, r)<65000), "component out of range ?",p,r);
260 // check for mix poly/vec representation
261 _pPolyAssumeReturnMsg(ismod == (p_GetComp(p, r) != 0), "mixed poly/vector",p,r);
262
263 // special check for ringorder_s/S
264 if ((r->typ!=NULL) && (r->typ[0].ord_typ == ro_syzcomp))
265 {
266 long c1, cc1, ccc1, ec1;
267 sro_ord* o = &(r->typ[0]);
268
269 c1 = p_GetComp(p, r);
270 if (o->data.syzcomp.Components!=NULL)
271 {
272 cc1 = o->data.syzcomp.Components[c1];
273 ccc1 = o->data.syzcomp.ShiftedComponents[cc1];
274 }
275 else { cc1=0; ccc1=0; }
276 _pPolyAssumeReturnMsg(c1 == 0 || cc1 != 0, "Component <-> TrueComponent zero mismatch",p,r);
277 _pPolyAssumeReturnMsg(c1 == 0 || ccc1 != 0,"Component <-> ShiftedComponent zero mismatch",p,r);
278 ec1 = p->exp[o->data.syzcomp.place];
279 //pPolyAssumeReturnMsg(ec1 == ccc1, "Shifted comp out of sync. should %d, is %d");
280 if (ec1 != ccc1)
281 {
282 dPolyReportError(p,r,"Shifted comp out of sync. should %d, is %d",ccc1,ec1);
283 return FALSE;
284 }
285 }
286
287 // check that p_Setm works ok
288 if (level > 0)
289 {
290 poly p_should_equal = p_DebugInit(p, r, r);
291 _pPolyAssumeReturnMsg(p_ExpVectorEqual(p, p_should_equal, r), "p_Setm field(s) out of sync",p,r);
292 p_LmFree(p_should_equal, r);
293 }
294
295 // check order
296 if (p_prev != NULL)
297 {
298 int cmp = p_LmCmp(p_prev, p, r);
299 if (cmp == 0)
300 {
301 _pPolyAssumeReturnMsg(0, "monoms p and p->next are equal", p_prev, r);
302 }
303 else
304 _pPolyAssumeReturnMsg(p_LmCmp(p_prev, p, r) == 1, "wrong order", p_prev, r);
305
306 // check that compare worked sensibly
307 if (level > 1 && p_GetComp(p_prev, r) == p_GetComp(p, r))
308 {
309 int i;
310 for (i=r->N; i>0; i--)
311 {
312 if (p_GetExp(p_prev, i, r) != p_GetExp(p, i, r)) break;
313 }
314 _pPolyAssumeReturnMsg(i > 0, "Exponents equal but compare different", p_prev, r);
315 }
316 }
317 p_prev = p;
318 pIter(p);
319 }
320 return TRUE;
321}
#define PDEBUG
Definition: auxiliary.h:170
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:712
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition: coeffs.h:464
static FORCE_INLINE int n_GetChar(const coeffs r)
Return the characteristic of the coeff. domain.
Definition: coeffs.h:444
#define pFalseReturn(cond)
Definition: monomials.h:139
#define pIter(p)
Definition: monomials.h:37
#define _pPolyAssumeReturnMsg(cond, msg, p, r)
Definition: monomials.h:124
#define omSizeWOfBin(bin_ptr)
@ omError_NoError
Definition: omError.h:18
#define omTestList(ptr, level)
Definition: omList.h:81
static poly p_DebugInit(poly p, ring src_ring, ring dest_ring)
Definition: pDebug.cc:195
BOOLEAN dPolyReportError(poly p, ring r, const char *fmt,...)
Definition: pDebug.cc:42
BOOLEAN p_CheckRing(ring r)
Definition: pDebug.cc:128
BOOLEAN p_LmCheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:71
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition: p_polys.cc:4591
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1580
static void p_LmFree(poly p, ring)
Definition: p_polys.h:683
@ ro_syzcomp
Definition: ring.h:59
union sro_ord::@1 data
Definition: ring.h:219
#define omTestBinAddrSize(A, B, C)
Definition: xalloc.h:272

◆ _pp_Test()

BOOLEAN _pp_Test ( poly  p,
ring  lmRing,
ring  tailRing,
int  level 
)

Definition at line 333 of file pDebug.cc.

334{
335 if (PDEBUG > level) level = PDEBUG;
336 if (level < 0 || p == NULL) return TRUE;
337 if (pNext(p) == NULL || lmRing == tailRing) return _p_Test(p, lmRing, level);
338
339 pFalseReturn(_p_LmTest(p, lmRing, level));
340 pFalseReturn(_p_Test(pNext(p), tailRing, level));
341
342 // check that lm > Lm(tail)
343 if (level > 1)
344 {
345 poly lm = p;
346 poly tail = p_DebugInit(pNext(p), tailRing, lmRing);
347 poly pnext = pNext(lm);
348 pNext(lm) = tail;
349 BOOLEAN cmp = p_LmCmp(lm, tail, lmRing);
350 if (cmp != 1)
351 dPolyReportError(lm, lmRing, "wrong order: lm <= Lm(tail)");
352 p_LmFree(tail, lmRing);
353 pNext(lm) = pnext;
354 return (cmp == 1);
355 }
356 return TRUE;
357}
BOOLEAN _p_LmTest(poly p, ring r, int level)
Definition: pDebug.cc:323

◆ n_PermNumber()

poly n_PermNumber ( const number  z,
const int *  par_perm,
const int  OldPar,
const ring  src,
const ring  dst 
)

Definition at line 4092 of file p_polys.cc.

4093{
4094#if 0
4095 PrintS("\nSource Ring: \n");
4096 rWrite(src);
4097
4098 if(0)
4099 {
4100 number zz = n_Copy(z, src->cf);
4101 PrintS("z: "); n_Write(zz, src);
4102 n_Delete(&zz, src->cf);
4103 }
4104
4105 PrintS("\nDestination Ring: \n");
4106 rWrite(dst);
4107
4108 /*Print("\nOldPar: %d\n", OldPar);
4109 for( int i = 1; i <= OldPar; i++ )
4110 {
4111 Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]);
4112 }*/
4113#endif
4114 if( z == NULL )
4115 return NULL;
4116
4117 const coeffs srcCf = src->cf;
4118 assume( srcCf != NULL );
4119
4120 assume( !nCoeff_is_GF(srcCf) );
4121 assume( src->cf->extRing!=NULL );
4122
4123 poly zz = NULL;
4124
4125 const ring srcExtRing = srcCf->extRing;
4126 assume( srcExtRing != NULL );
4127
4128 const coeffs dstCf = dst->cf;
4129 assume( dstCf != NULL );
4130
4131 if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)?
4132 {
4133 zz = (poly) z;
4134 if( zz == NULL ) return NULL;
4135 }
4136 else if (nCoeff_is_transExt(srcCf))
4137 {
4138 assume( !IS0(z) );
4139
4140 zz = NUM((fraction)z);
4141 p_Test (zz, srcExtRing);
4142
4143 if( zz == NULL ) return NULL;
4144 if( !DENIS1((fraction)z) )
4145 {
4146 if (!p_IsConstant(DEN((fraction)z),srcExtRing))
4147 WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denominator.");
4148 }
4149 }
4150 else
4151 {
4152 assume (FALSE);
4153 WerrorS("Number permutation is not implemented for this data yet!");
4154 return NULL;
4155 }
4156
4157 assume( zz != NULL );
4158 p_Test (zz, srcExtRing);
4159
4160 nMapFunc nMap = n_SetMap(srcExtRing->cf, dstCf);
4161
4162 assume( nMap != NULL );
4163
4164 poly qq;
4165 if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0))
4166 {
4167 int* perm;
4168 perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int));
4169 for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--)
4170 perm[i]=-i;
4171 qq = p_PermPoly(zz, perm, srcExtRing, dst, nMap, NULL, rVar(srcExtRing)-1);
4172 omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int));
4173 }
4174 else
4175 qq = p_PermPoly(zz, par_perm-1, srcExtRing, dst, nMap, NULL, rVar (srcExtRing)-1);
4176
4177 if(nCoeff_is_transExt(srcCf)
4178 && (!DENIS1((fraction)z))
4179 && p_IsConstant(DEN((fraction)z),srcExtRing))
4180 {
4181 number n=nMap(pGetCoeff(DEN((fraction)z)),srcExtRing->cf, dstCf);
4182 qq=p_Div_nn(qq,n,dst);
4183 n_Delete(&n,dstCf);
4184 p_Normalize(qq,dst);
4185 }
4186 p_Test (qq, dst);
4187
4188 return qq;
4189}
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:451
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:839
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:700
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:455
static FORCE_INLINE void n_Write(number n, const coeffs r, const BOOLEAN bShortOut=TRUE)
Definition: coeffs.h:591
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:910
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:918
#define WarnS
Definition: emacs.cc:78
void WerrorS(const char *s)
Definition: feFopen.cc:24
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
The main handler for Singular numbers which are suitable for Singular polynomials.
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc0(size)
Definition: omAllocDecl.h:211
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4195
poly p_Div_nn(poly p, const number n, const ring r)
Definition: p_polys.cc:1501
void p_Normalize(poly p, const ring r)
Definition: p_polys.cc:3879
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:2011
#define p_Test(p, r)
Definition: p_polys.h:162
void PrintS(const char *s)
Definition: reporter.cc:284
void rWrite(ring r, BOOLEAN details)
Definition: ring.cc:226
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:600
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:593

◆ p_Add_q() [1/2]

static poly p_Add_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 936 of file p_polys.h.

937{
938 assume( (p != q) || (p == NULL && q == NULL) );
939 if (q==NULL) return p;
940 if (p==NULL) return q;
941 int shorter;
942 return r->p_Procs->p_Add_q(p, q, shorter, r);
943}

◆ p_Add_q() [2/2]

static poly p_Add_q ( poly  p,
poly  q,
int &  lp,
int  lq,
const ring  r 
)
inlinestatic

like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q)

Definition at line 946 of file p_polys.h.

947{
948 assume( (p != q) || (p == NULL && q == NULL) );
949 if (q==NULL) return p;
950 if (p==NULL) { lp=lq; return q; }
951 int shorter;
952 poly res = r->p_Procs->p_Add_q(p, q, shorter, r);
953 lp += lq - shorter;
954 return res;
955}

◆ p_AddComp()

static unsigned long p_AddComp ( poly  p,
unsigned long  v,
ring  r 
)
inlinestatic

Definition at line 447 of file p_polys.h.

448{
451 return __p_GetComp(p,r) += v;
452}
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:199
#define pAssume2(cond)
Definition: monomials.h:193
#define __p_GetComp(p, r)
Definition: monomials.h:63
#define rRing_has_Comp(r)
Definition: monomials.h:266

◆ p_AddExp()

static long p_AddExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 606 of file p_polys.h.

607{
609 int e = p_GetExp(p,v,r);
610 e += ee;
611 return p_SetExp(p,v,e,r);
612}
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488

◆ p_CheckIsFromRing()

BOOLEAN p_CheckIsFromRing ( poly  p,
ring  r 
)

Definition at line 102 of file pDebug.cc.

103{
104 while (p!=NULL)
105 {
107 pIter(p);
108 }
109 return TRUE;
110}

◆ p_CheckPolyRing()

BOOLEAN p_CheckPolyRing ( poly  p,
ring  r 
)

Definition at line 112 of file pDebug.cc.

113{
114 #ifndef X_OMALLOC
115 pAssumeReturn(r != NULL && r->PolyBin != NULL);
116 #endif
117 return p_CheckIsFromRing(p, r);
118}
#define pAssumeReturn(cond)
Definition: monomials.h:78
BOOLEAN p_CheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:102

◆ p_CheckRing()

BOOLEAN p_CheckRing ( ring  r)

Definition at line 128 of file pDebug.cc.

129{
130 #ifndef X_OMALLOC
131 pAssumeReturn(r != NULL && r->PolyBin != NULL);
132 #endif
133 return TRUE;
134}

◆ p_ChineseRemainder()

poly p_ChineseRemainder ( poly *  xx,
number *  x,
number *  q,
int  rl,
CFArray inv_cache,
const ring  R 
)

Definition at line 88 of file p_polys.cc.

89{
90 poly r,h,hh;
91 int j;
92 poly res_p=NULL;
93 loop
94 {
95 /* search the lead term */
96 r=NULL;
97 for(j=rl-1;j>=0;j--)
98 {
99 h=xx[j];
100 if ((h!=NULL)
101 &&((r==NULL)||(p_LmCmp(r,h,R)==-1)))
102 r=h;
103 }
104 /* nothing found -> return */
105 if (r==NULL) break;
106 /* create the monomial in h */
107 h=p_Head(r,R);
108 /* collect the coeffs in x[..]*/
109 for(j=rl-1;j>=0;j--)
110 {
111 hh=xx[j];
112 if ((hh!=NULL) && (p_LmCmp(h,hh,R)==0))
113 {
114 x[j]=pGetCoeff(hh);
115 hh=p_LmFreeAndNext(hh,R);
116 xx[j]=hh;
117 }
118 else
119 x[j]=n_Init(0, R->cf);
120 }
121 number n=n_ChineseRemainderSym(x,q,rl,TRUE,inv_cache,R->cf);
122 for(j=rl-1;j>=0;j--)
123 {
124 x[j]=NULL; // n_Init(0...) takes no memory
125 }
126 if (n_IsZero(n,R->cf)) p_Delete(&h,R);
127 else
128 {
129 //Print("new mon:");pWrite(h);
130 p_SetCoeff(h,n,R);
131 pNext(h)=res_p;
132 res_p=h; // building res_p in reverse order!
133 }
134 }
135 res_p=pReverse(res_p);
136 p_Test(res_p, R);
137 return res_p;
138}
Variable x
Definition: cfModGcd.cc:4082
static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym, CFArray &inv_cache, const coeffs r)
Definition: coeffs.h:764
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:538
int j
Definition: facHensel.cc:110
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:412
static poly pReverse(poly p)
Definition: p_polys.h:335
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition: p_polys.h:860
static poly p_LmFreeAndNext(poly p, ring)
Definition: p_polys.h:711
#define R
Definition: sirandom.c:27
#define loop
Definition: structs.h:75

◆ p_Cleardenom()

poly p_Cleardenom ( poly  p,
const ring  r 
)

Definition at line 2910 of file p_polys.cc.

2911{
2912 if( p == NULL )
2913 return NULL;
2914
2915 assume( r != NULL );
2916 assume( r->cf != NULL );
2917 const coeffs C = r->cf;
2918
2919#if CLEARENUMERATORS
2920 if( 0 )
2921 {
2923 n_ClearDenominators(itr, C);
2924 n_ClearContent(itr, C); // divide out the content
2925 p_Test(p, r); n_Test(pGetCoeff(p), C);
2926 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2927// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2928 return p;
2929 }
2930#endif
2931
2932 number d, h;
2933
2934 if (rField_is_Ring(r))
2935 {
2936 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2937 return p;
2938 }
2939
2941 {
2942 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2943 return p;
2944 }
2945
2946 assume(p != NULL);
2947
2948 if(pNext(p)==NULL)
2949 {
2950 if (!TEST_OPT_CONTENTSB)
2951 p_SetCoeff(p,n_Init(1,C),r);
2952 else if(!n_GreaterZero(pGetCoeff(p),C))
2953 p = p_Neg(p,r);
2954 return p;
2955 }
2956
2957 assume(pNext(p)!=NULL);
2958 poly start=p;
2959
2960#if 0 && CLEARENUMERATORS
2961//CF: does not seem to work that well..
2962
2963 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
2964 {
2966 n_ClearDenominators(itr, C);
2967 n_ClearContent(itr, C); // divide out the content
2968 p_Test(p, r); n_Test(pGetCoeff(p), C);
2969 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2970// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2971 return start;
2972 }
2973#endif
2974
2975 if(1)
2976 {
2977 // get lcm of all denominators ----------------------------------
2978 h = n_Init(1,C);
2979 while (p!=NULL)
2980 {
2983 n_Delete(&h,C);
2984 h=d;
2985 pIter(p);
2986 }
2987 /* h now contains the 1/lcm of all denominators */
2988 if(!n_IsOne(h,C))
2989 {
2990 // multiply by the lcm of all denominators
2991 p = start;
2992 while (p!=NULL)
2993 {
2994 d=n_Mult(h,pGetCoeff(p),C);
2995 n_Normalize(d,C);
2996 p_SetCoeff(p,d,r);
2997 pIter(p);
2998 }
2999 }
3000 n_Delete(&h,C);
3001 p=start;
3002
3003 p_ContentForGB(p,r);
3004#ifdef HAVE_RATGRING
3005 if (rIsRatGRing(r))
3006 {
3007 /* quick unit detection in the rational case is done in gr_nc_bba */
3008 p_ContentRat(p, r);
3009 start=p;
3010 }
3011#endif
3012 }
3013
3014 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
3015
3016 return start;
3017}
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
Definition: coeffs.h:636
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1,...
Definition: coeffs.h:695
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
Definition: coeffs.h:494
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition: coeffs.h:806
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
Definition: coeffs.h:935
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
Definition: coeffs.h:885
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition: coeffs.h:928
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:578
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition: coeffs.h:468
#define TEST_OPT_INTSTRATEGY
Definition: options.h:110
#define TEST_OPT_CONTENTSB
Definition: options.h:127
void p_ContentRat(poly &ph, const ring r)
Definition: p_polys.cc:1740
void p_ContentForGB(poly ph, const ring r)
Definition: p_polys.cc:2420
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1107
static BOOLEAN rIsRatGRing(const ring r)
Definition: ring.h:427
#define rField_is_Ring(R)
Definition: ring.h:486

◆ p_Cleardenom_n()

void p_Cleardenom_n ( poly  p,
const ring  r,
number &  c 
)

Definition at line 3019 of file p_polys.cc.

3020{
3021 const coeffs C = r->cf;
3022 number d, h;
3023
3024 assume( ph != NULL );
3025
3026 poly p = ph;
3027
3028#if CLEARENUMERATORS
3029 if( 0 )
3030 {
3031 CPolyCoeffsEnumerator itr(ph);
3032
3033 n_ClearDenominators(itr, d, C); // multiply with common denom. d
3034 n_ClearContent(itr, h, C); // divide by the content h
3035
3036 c = n_Div(d, h, C); // d/h
3037
3038 n_Delete(&d, C);
3039 n_Delete(&h, C);
3040
3041 n_Test(c, C);
3042
3043 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3044 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3045/*
3046 if(!n_GreaterZero(pGetCoeff(ph),C))
3047 {
3048 ph = p_Neg(ph,r);
3049 c = n_InpNeg(c, C);
3050 }
3051*/
3052 return;
3053 }
3054#endif
3055
3056
3057 if( pNext(p) == NULL )
3058 {
3060 {
3061 c=n_Invers(pGetCoeff(p), C);
3062 p_SetCoeff(p, n_Init(1, C), r);
3063 }
3064 else
3065 {
3066 c=n_Init(1,C);
3067 }
3068
3069 if(!n_GreaterZero(pGetCoeff(ph),C))
3070 {
3071 ph = p_Neg(ph,r);
3072 c = n_InpNeg(c, C);
3073 }
3074
3075 return;
3076 }
3077 if (TEST_OPT_CONTENTSB) { c=n_Init(1,C); return; }
3078
3079 assume( pNext(p) != NULL );
3080
3081#if CLEARENUMERATORS
3082 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
3083 {
3084 CPolyCoeffsEnumerator itr(ph);
3085
3086 n_ClearDenominators(itr, d, C); // multiply with common denom. d
3087 n_ClearContent(itr, h, C); // divide by the content h
3088
3089 c = n_Div(d, h, C); // d/h
3090
3091 n_Delete(&d, C);
3092 n_Delete(&h, C);
3093
3094 n_Test(c, C);
3095
3096 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3097 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3098/*
3099 if(!n_GreaterZero(pGetCoeff(ph),C))
3100 {
3101 ph = p_Neg(ph,r);
3102 c = n_InpNeg(c, C);
3103 }
3104*/
3105 return;
3106 }
3107#endif
3108
3109
3110
3111
3112 if(1)
3113 {
3114 h = n_Init(1,C);
3115 while (p!=NULL)
3116 {
3119 n_Delete(&h,C);
3120 h=d;
3121 pIter(p);
3122 }
3123 c=h;
3124 /* contains the 1/lcm of all denominators */
3125 if(!n_IsOne(h,C))
3126 {
3127 p = ph;
3128 while (p!=NULL)
3129 {
3130 /* should be: // NOTE: don't use ->coef!!!!
3131 * number hh;
3132 * nGetDenom(p->coef,&hh);
3133 * nMult(&h,&hh,&d);
3134 * nNormalize(d);
3135 * nDelete(&hh);
3136 * nMult(d,p->coef,&hh);
3137 * nDelete(&d);
3138 * nDelete(&(p->coef));
3139 * p->coef =hh;
3140 */
3141 d=n_Mult(h,pGetCoeff(p),C);
3142 n_Normalize(d,C);
3143 p_SetCoeff(p,d,r);
3144 pIter(p);
3145 }
3146 if (rField_is_Q_a(r))
3147 {
3148 loop
3149 {
3150 h = n_Init(1,C);
3151 p=ph;
3152 while (p!=NULL)
3153 {
3155 n_Delete(&h,C);
3156 h=d;
3157 pIter(p);
3158 }
3159 /* contains the 1/lcm of all denominators */
3160 if(!n_IsOne(h,C))
3161 {
3162 p = ph;
3163 while (p!=NULL)
3164 {
3165 /* should be: // NOTE: don't use ->coef!!!!
3166 * number hh;
3167 * nGetDenom(p->coef,&hh);
3168 * nMult(&h,&hh,&d);
3169 * nNormalize(d);
3170 * nDelete(&hh);
3171 * nMult(d,p->coef,&hh);
3172 * nDelete(&d);
3173 * nDelete(&(p->coef));
3174 * p->coef =hh;
3175 */
3176 d=n_Mult(h,pGetCoeff(p),C);
3177 n_Normalize(d,C);
3178 p_SetCoeff(p,d,r);
3179 pIter(p);
3180 }
3181 number t=n_Mult(c,h,C);
3182 n_Delete(&c,C);
3183 c=t;
3184 }
3185 else
3186 {
3187 break;
3188 }
3189 n_Delete(&h,C);
3190 }
3191 }
3192 }
3193 }
3194
3195 if(!n_GreaterZero(pGetCoeff(ph),C))
3196 {
3197 ph = p_Neg(ph,r);
3198 c = n_InpNeg(c, C);
3199 }
3200
3201}
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of 'a'; raise an error if 'a' is not invertible
Definition: coeffs.h:564
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:557
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
Definition: coeffs.h:615
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:540

◆ p_Cmp()

static int p_Cmp ( poly  p1,
poly  p2,
ring  r 
)
inlinestatic

Definition at line 1735 of file p_polys.h.

1736{
1737 if (p2==NULL)
1738 {
1739 if (p1==NULL) return 0;
1740 return 1;
1741 }
1742 if (p1==NULL)
1743 return -1;
1744 return p_LmCmp(p1,p2,r);
1745}

◆ p_CmpPolys()

static int p_CmpPolys ( poly  p1,
poly  p2,
ring  r 
)
inlinestatic

Definition at line 1747 of file p_polys.h.

1748{
1749 if (p2==NULL)
1750 {
1751 if (p1==NULL) return 0;
1752 return 1;
1753 }
1754 if (p1==NULL)
1755 return -1;
1756 return p_ComparePolys(p1,p2,r);
1757}
BOOLEAN p_ComparePolys(poly p1, poly p2, const ring r)
returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL
Definition: p_polys.cc:4641

◆ p_Comp_k_n()

static int p_Comp_k_n ( poly  a,
poly  b,
int  k,
ring  r 
)
inlinestatic

Definition at line 640 of file p_polys.h.

641{
642 if ((a==NULL) || (b==NULL) ) return FALSE;
643 p_LmCheckPolyRing2(a, r);
645 pAssume2(k > 0 && k <= r->N);
646 int i=k;
647 for(;i<=r->N;i++)
648 {
649 if (p_GetExp(a,i,r) != p_GetExp(b,i,r)) return FALSE;
650 // if (a->exp[(r->VarOffset[i] & 0xffffff)] != b->exp[(r->VarOffset[i] & 0xffffff)]) return FALSE;
651 }
652 return TRUE;
653}
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:56
int k
Definition: cfEzgcd.cc:99

◆ p_Compare()

int p_Compare ( const poly  a,
const poly  b,
const ring  R 
)

Definition at line 4972 of file p_polys.cc.

4973{
4974 int r=p_Cmp(a,b,R);
4975 if ((r==0)&&(a!=NULL))
4976 {
4977 number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf);
4978 /* compare lead coeffs */
4979 r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */
4980 n_Delete(&h,R->cf);
4981 }
4982 else if (a==NULL)
4983 {
4984 if (b==NULL)
4985 {
4986 /* compare 0, 0 */
4987 r=0;
4988 }
4989 else if(p_IsConstant(b,R))
4990 {
4991 /* compare 0, const */
4992 r = 1-2*n_GreaterZero(pGetCoeff(b),R->cf); /* -1: <, 1: > */
4993 }
4994 }
4995 else if (b==NULL)
4996 {
4997 if (p_IsConstant(a,R))
4998 {
4999 /* compare const, 0 */
5000 r = -1+2*n_GreaterZero(pGetCoeff(a),R->cf); /* -1: <, 1: > */
5001 }
5002 }
5003 return(r);
5004}
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of 'a' and 'b', i.e., a-b
Definition: coeffs.h:655
static int p_Cmp(poly p1, poly p2, ring r)
Definition: p_polys.h:1735

◆ p_ComparePolys()

BOOLEAN p_ComparePolys ( poly  p1,
poly  p2,
const ring  r 
)

returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL

Definition at line 4641 of file p_polys.cc.

4642{
4643 number n,nn;
4644 pAssume(p1 != NULL && p2 != NULL);
4645
4646 if (!p_LmEqual(p1,p2,r)) //compare leading mons
4647 return FALSE;
4648 if ((pNext(p1)==NULL) && (pNext(p2)!=NULL))
4649 return FALSE;
4650 if ((pNext(p2)==NULL) && (pNext(p1)!=NULL))
4651 return FALSE;
4652 if (pLength(p1) != pLength(p2))
4653 return FALSE;
4654 #ifdef HAVE_RINGS
4655 if (rField_is_Ring(r))
4656 {
4657 if (!n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf)) return FALSE;
4658 }
4659 #endif
4660 n=n_Div(pGetCoeff(p1),pGetCoeff(p2),r->cf);
4661 while ((p1 != NULL) /*&& (p2 != NULL)*/)
4662 {
4663 if ( ! p_LmEqual(p1, p2,r))
4664 {
4665 n_Delete(&n, r->cf);
4666 return FALSE;
4667 }
4668 if (!n_Equal(pGetCoeff(p1), nn = n_Mult(pGetCoeff(p2),n, r->cf), r->cf))
4669 {
4670 n_Delete(&n, r->cf);
4671 n_Delete(&nn, r->cf);
4672 return FALSE;
4673 }
4674 n_Delete(&nn, r->cf);
4675 pIter(p1);
4676 pIter(p2);
4677 }
4678 n_Delete(&n, r->cf);
4679 return TRUE;
4680}
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition: coeffs.h:753
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff 'a' and 'b' represent the same number; they may have different representations.
Definition: coeffs.h:460
#define pAssume(cond)
Definition: monomials.h:90
#define p_LmEqual(p1, p2, r)
Definition: p_polys.h:1731

◆ p_Content()

void p_Content ( poly  p,
const ring  r 
)

Definition at line 2291 of file p_polys.cc.

2292{
2293 if (ph==NULL) return;
2294 const coeffs cf=r->cf;
2295 if (pNext(ph)==NULL)
2296 {
2297 p_SetCoeff(ph,n_Init(1,cf),r);
2298 return;
2299 }
2300 if ((cf->cfSubringGcd==ndGcd)
2301 || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2302 return;
2303 number h;
2304 if ((rField_is_Q(r))
2305 || (rField_is_Q_a(r))
2306 || (rField_is_Zp_a)(r)
2307 || (rField_is_Z(r))
2308 )
2309 {
2310 h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2311 }
2312 else
2313 {
2314 h=n_Copy(pGetCoeff(ph),cf);
2315 }
2316 poly p;
2317 if(n_IsOne(h,cf))
2318 {
2319 goto content_finish;
2320 }
2321 p=ph;
2322 // take the SubringGcd of all coeffs
2323 while (p!=NULL)
2324 {
2326 number d=n_SubringGcd(h,pGetCoeff(p),cf);
2327 n_Delete(&h,cf);
2328 h = d;
2329 if(n_IsOne(h,cf))
2330 {
2331 goto content_finish;
2332 }
2333 pIter(p);
2334 }
2335 // if found<>1, divide by it
2336 p = ph;
2337 while (p!=NULL)
2338 {
2339 number d = n_ExactDiv(pGetCoeff(p),h,cf);
2340 p_SetCoeff(p,d,r);
2341 pIter(p);
2342 }
2343content_finish:
2344 n_Delete(&h,r->cf);
2345 // and last: check leading sign:
2346 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2347}
CanonicalForm cf
Definition: cfModGcd.cc:4083
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition: coeffs.h:622
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition: coeffs.h:666
number ndGcd(number, number, const coeffs r)
Definition: numbers.cc:165
number p_InitContent(poly ph, const ring r)
Definition: p_polys.cc:2700
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:530

◆ p_Content_n()

void p_Content_n ( poly  p,
number &  c,
const ring  r 
)

Definition at line 2349 of file p_polys.cc.

2350{
2351 const coeffs cf=r->cf;
2352 if (ph==NULL)
2353 {
2354 c=n_Init(1,cf);
2355 return;
2356 }
2357 if (pNext(ph)==NULL)
2358 {
2359 c=pGetCoeff(ph);
2360 p_SetCoeff0(ph,n_Init(1,cf),r);
2361 }
2362 if ((cf->cfSubringGcd==ndGcd)
2363 || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2364 {
2365 c=n_Init(1,r->cf);
2366 return;
2367 }
2368 number h;
2369 if ((rField_is_Q(r))
2370 || (rField_is_Q_a(r))
2371 || (rField_is_Zp_a)(r)
2372 || (rField_is_Z(r))
2373 )
2374 {
2375 h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2376 }
2377 else
2378 {
2379 h=n_Copy(pGetCoeff(ph),cf);
2380 }
2381 poly p;
2382 if(n_IsOne(h,cf))
2383 {
2384 goto content_finish;
2385 }
2386 p=ph;
2387 // take the SubringGcd of all coeffs
2388 while (p!=NULL)
2389 {
2391 number d=n_SubringGcd(h,pGetCoeff(p),cf);
2392 n_Delete(&h,cf);
2393 h = d;
2394 if(n_IsOne(h,cf))
2395 {
2396 goto content_finish;
2397 }
2398 pIter(p);
2399 }
2400 // if found<>1, divide by it
2401 p = ph;
2402 while (p!=NULL)
2403 {
2404 number d = n_ExactDiv(pGetCoeff(p),h,cf);
2405 p_SetCoeff(p,d,r);
2406 pIter(p);
2407 }
2408content_finish:
2409 c=h;
2410 // and last: check leading sign:
2411 if(!n_GreaterZero(pGetCoeff(ph),r->cf))
2412 {
2413 c = n_InpNeg(c,r->cf);
2414 ph = p_Neg(ph,r);
2415 }
2416}
#define p_SetCoeff0(p, n, r)
Definition: monomials.h:60

◆ p_ContentForGB()

void p_ContentForGB ( poly  p,
const ring  r 
)

Definition at line 2420 of file p_polys.cc.

2421{
2422 if(TEST_OPT_CONTENTSB) return;
2423 assume( ph != NULL );
2424
2425 assume( r != NULL ); assume( r->cf != NULL );
2426
2427
2428#if CLEARENUMERATORS
2429 if( 0 )
2430 {
2431 const coeffs C = r->cf;
2432 // experimentall (recursive enumerator treatment) of alg. Ext!
2433 CPolyCoeffsEnumerator itr(ph);
2434 n_ClearContent(itr, r->cf);
2435
2436 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2437 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2438
2439 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2440 return;
2441 }
2442#endif
2443
2444
2445#ifdef HAVE_RINGS
2446 if (rField_is_Ring(r))
2447 {
2448 if (rField_has_Units(r))
2449 {
2450 number k = n_GetUnit(pGetCoeff(ph),r->cf);
2451 if (!n_IsOne(k,r->cf))
2452 {
2453 number tmpGMP = k;
2454 k = n_Invers(k,r->cf);
2455 n_Delete(&tmpGMP,r->cf);
2456 poly h = pNext(ph);
2457 p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r);
2458 while (h != NULL)
2459 {
2460 p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r);
2461 pIter(h);
2462 }
2463// assume( n_GreaterZero(pGetCoeff(ph),r->cf) );
2464// if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2465 }
2466 n_Delete(&k,r->cf);
2467 }
2468 return;
2469 }
2470#endif
2471 number h,d;
2472 poly p;
2473
2474 if(pNext(ph)==NULL)
2475 {
2476 p_SetCoeff(ph,n_Init(1,r->cf),r);
2477 }
2478 else
2479 {
2480 assume( pNext(ph) != NULL );
2481#if CLEARENUMERATORS
2482 if( nCoeff_is_Q(r->cf) )
2483 {
2484 // experimentall (recursive enumerator treatment) of alg. Ext!
2485 CPolyCoeffsEnumerator itr(ph);
2486 n_ClearContent(itr, r->cf);
2487
2488 p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf);
2489 assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ??
2490
2491 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2492 return;
2493 }
2494#endif
2495
2496 n_Normalize(pGetCoeff(ph),r->cf);
2497 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2498 if (rField_is_Q(r)||(getCoeffType(r->cf)==n_transExt)) // should not be used anymore if CLEARENUMERATORS is 1
2499 {
2500 h=p_InitContent(ph,r);
2501 p=ph;
2502 }
2503 else
2504 {
2505 h=n_Copy(pGetCoeff(ph),r->cf);
2506 p = pNext(ph);
2507 }
2508 while (p!=NULL)
2509 {
2510 n_Normalize(pGetCoeff(p),r->cf);
2511 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2512 n_Delete(&h,r->cf);
2513 h = d;
2514 if(n_IsOne(h,r->cf))
2515 {
2516 break;
2517 }
2518 pIter(p);
2519 }
2520 //number tmp;
2521 if(!n_IsOne(h,r->cf))
2522 {
2523 p = ph;
2524 while (p!=NULL)
2525 {
2526 //d = nDiv(pGetCoeff(p),h);
2527 //tmp = nExactDiv(pGetCoeff(p),h);
2528 //if (!nEqual(d,tmp))
2529 //{
2530 // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2531 // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2532 // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2533 //}
2534 //nDelete(&tmp);
2535 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2536 p_SetCoeff(p,d,r);
2537 pIter(p);
2538 }
2539 }
2540 n_Delete(&h,r->cf);
2541 if (rField_is_Q_a(r))
2542 {
2543 // special handling for alg. ext.:
2544 if (getCoeffType(r->cf)==n_algExt)
2545 {
2546 h = n_Init(1, r->cf->extRing->cf);
2547 p=ph;
2548 while (p!=NULL)
2549 { // each monom: coeff in Q_a
2550 poly c_n_n=(poly)pGetCoeff(p);
2551 poly c_n=c_n_n;
2552 while (c_n!=NULL)
2553 { // each monom: coeff in Q
2554 d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf);
2555 n_Delete(&h,r->cf->extRing->cf);
2556 h=d;
2557 pIter(c_n);
2558 }
2559 pIter(p);
2560 }
2561 /* h contains the 1/lcm of all denominators in c_n_n*/
2562 //n_Normalize(h,r->cf->extRing->cf);
2563 if(!n_IsOne(h,r->cf->extRing->cf))
2564 {
2565 p=ph;
2566 while (p!=NULL)
2567 { // each monom: coeff in Q_a
2568 poly c_n=(poly)pGetCoeff(p);
2569 while (c_n!=NULL)
2570 { // each monom: coeff in Q
2571 d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf);
2572 n_Normalize(d,r->cf->extRing->cf);
2573 n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf);
2574 pGetCoeff(c_n)=d;
2575 pIter(c_n);
2576 }
2577 pIter(p);
2578 }
2579 }
2580 n_Delete(&h,r->cf->extRing->cf);
2581 }
2582 /*else
2583 {
2584 // special handling for rat. functions.:
2585 number hzz =NULL;
2586 p=ph;
2587 while (p!=NULL)
2588 { // each monom: coeff in Q_a (Z_a)
2589 fraction f=(fraction)pGetCoeff(p);
2590 poly c_n=NUM(f);
2591 if (hzz==NULL)
2592 {
2593 hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf);
2594 pIter(c_n);
2595 }
2596 while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf)))
2597 { // each monom: coeff in Q (Z)
2598 d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf);
2599 n_Delete(&hzz,r->cf->extRing->cf);
2600 hzz=d;
2601 pIter(c_n);
2602 }
2603 pIter(p);
2604 }
2605 // hzz contains the gcd of all numerators in f
2606 h=n_Invers(hzz,r->cf->extRing->cf);
2607 n_Delete(&hzz,r->cf->extRing->cf);
2608 n_Normalize(h,r->cf->extRing->cf);
2609 if(!n_IsOne(h,r->cf->extRing->cf))
2610 {
2611 p=ph;
2612 while (p!=NULL)
2613 { // each monom: coeff in Q_a (Z_a)
2614 fraction f=(fraction)pGetCoeff(p);
2615 NUM(f)=__p_Mult_nn(NUM(f),h,r->cf->extRing);
2616 p_Normalize(NUM(f),r->cf->extRing);
2617 pIter(p);
2618 }
2619 }
2620 n_Delete(&h,r->cf->extRing->cf);
2621 }*/
2622 }
2623 }
2624 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2625}
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:35
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:38
static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
in Z: 1 in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that is co-prime with k i...
Definition: coeffs.h:532
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
Definition: coeffs.h:421
static BOOLEAN rField_has_Units(const ring r)
Definition: ring.h:491

◆ p_ContentRat()

void p_ContentRat ( poly &  ph,
const ring  r 
)

Definition at line 1740 of file p_polys.cc.

1743{
1744 // init array of RatLeadCoeffs
1745 // poly p_GetCoeffRat(poly p, int ishift, ring r);
1746
1747 int len=pLength(ph);
1748 poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs
1749 poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms
1750 int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs
1751 int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs
1752 int k = 0;
1753 poly p = p_Copy(ph, r); // ph will be needed below
1754 int mintdeg = p_Totaldegree(p, r);
1755 int minlen = len;
1756 int dd = 0; int i;
1757 int HasConstantCoef = 0;
1758 int is = r->real_var_start - 1;
1759 while (p!=NULL)
1760 {
1761 LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat istead of p_HeadRat(p, is, currRing); !
1762 C[k] = p_GetCoeffRat(p, is, r);
1763 D[k] = p_Totaldegree(C[k], r);
1764 mintdeg = si_min(mintdeg,D[k]);
1765 L[k] = pLength(C[k]);
1766 minlen = si_min(minlen,L[k]);
1767 if (p_IsConstant(C[k], r))
1768 {
1769 // C[k] = const, so the content will be numerical
1770 HasConstantCoef = 1;
1771 // smth like goto cleanup and return(pContent(p));
1772 }
1773 p_LmDeleteAndNextRat(&p, is, r);
1774 k++;
1775 }
1776
1777 // look for 1 element of minimal degree and of minimal length
1778 k--;
1779 poly d;
1780 int mindeglen = len;
1781 if (k<=0) // this poly is not a ratgring poly -> pContent
1782 {
1783 p_Delete(&C[0], r);
1784 p_Delete(&LM[0], r);
1785 p_ContentForGB(ph, r);
1786 goto cleanup;
1787 }
1788
1789 int pmindeglen;
1790 for(i=0; i<=k; i++)
1791 {
1792 if (D[i] == mintdeg)
1793 {
1794 if (L[i] < mindeglen)
1795 {
1796 mindeglen=L[i];
1797 pmindeglen = i;
1798 }
1799 }
1800 }
1801 d = p_Copy(C[pmindeglen], r);
1802 // there are dd>=1 mindeg elements
1803 // and pmideglen is the coordinate of one of the smallest among them
1804
1805 // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r));
1806 // return naGcd(d,d2,currRing);
1807
1808 // adjoin pContentRat here?
1809 for(i=0; i<=k; i++)
1810 {
1811 d=singclap_gcd(d,p_Copy(C[i], r), r);
1812 if (p_Totaldegree(d, r)==0)
1813 {
1814 // cleanup, pContent, return
1815 p_Delete(&d, r);
1816 for(;k>=0;k--)
1817 {
1818 p_Delete(&C[k], r);
1819 p_Delete(&LM[k], r);
1820 }
1821 p_ContentForGB(ph, r);
1822 goto cleanup;
1823 }
1824 }
1825 for(i=0; i<=k; i++)
1826 {
1827 poly h=singclap_pdivide(C[i],d, r);
1828 p_Delete(&C[i], r);
1829 C[i]=h;
1830 }
1831
1832 // zusammensetzen,
1833 p=NULL; // just to be sure
1834 for(i=0; i<=k; i++)
1835 {
1836 p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r);
1837 C[i]=NULL; LM[i]=NULL;
1838 }
1839 p_Delete(&ph, r); // do not need it anymore
1840 ph = p;
1841 // aufraeumen, return
1842cleanup:
1843 omFree(C);
1844 omFree(LM);
1845 omFree(D);
1846 omFree(L);
1847}
poly singclap_pdivide(poly f, poly g, const ring r)
Definition: clapsing.cc:624
#define D(A)
Definition: gentable.cc:131
#define omFree(addr)
Definition: omAllocDecl.h:261
void p_LmDeleteAndNextRat(poly *p, int ishift, ring r)
Definition: p_polys.cc:1696
poly p_GetCoeffRat(poly p, int ishift, ring r)
Definition: p_polys.cc:1718
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:936
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1114
static poly p_GetExp_k_n(poly p, int l, int k, const ring r)
Definition: p_polys.h:1372
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:846
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1507
poly singclap_gcd(poly f, poly g, const ring r)
polynomial gcd via singclap_gcd_r resp. idSyzygies destroys f and g
Definition: polys.cc:380

◆ p_Copy() [1/2]

static poly p_Copy ( poly  p,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

returns a copy of p with Lm(p) from lmRing and Tail(p) from tailRing

Definition at line 883 of file p_polys.h.

884{
885 if (p != NULL)
886 {
887#ifndef PDEBUG
888 if (tailRing == lmRing)
889 return p_Copy_noCheck(p, tailRing);
890#endif
891 poly pres = p_Head(p, lmRing);
892 if (pNext(p)!=NULL)
893 pNext(pres) = p_Copy_noCheck(pNext(p), tailRing);
894 return pres;
895 }
896 else
897 return NULL;
898}
static poly p_Copy_noCheck(poly p, const ring r)
returns a copy of p (without any additional testing)
Definition: p_polys.h:836

◆ p_Copy() [2/2]

static poly p_Copy ( poly  p,
const ring  r 
)
inlinestatic

returns a copy of p

Definition at line 846 of file p_polys.h.

847{
848 if (p!=NULL)
849 {
850 p_Test(p,r);
851 const poly pp = p_Copy_noCheck(p, r);
852 p_Test(pp,r);
853 return pp;
854 }
855 else
856 return NULL;
857}
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:676

◆ p_Copy_noCheck()

static poly p_Copy_noCheck ( poly  p,
const ring  r 
)
inlinestatic

returns a copy of p (without any additional testing)

Definition at line 836 of file p_polys.h.

837{
838 /*assume(p!=NULL);*/
839 assume(r != NULL);
840 assume(r->p_Procs != NULL);
841 assume(r->p_Procs->p_Copy != NULL);
842 return r->p_Procs->p_Copy(p, r);
843}

◆ p_CopyPowerProduct()

poly p_CopyPowerProduct ( const poly  p,
const ring  r 
)

like p_Head, but with coefficient 1

Definition at line 5056 of file p_polys.cc.

5057{
5058 if (p == NULL) return NULL;
5059 return p_CopyPowerProduct0(p,n_Init(1,r->cf),r);
5060}
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition: p_polys.cc:5044

◆ p_CopyPowerProduct0()

poly p_CopyPowerProduct0 ( const poly  p,
const number  n,
const ring  r 
)

like p_Head, but with coefficient n

Definition at line 5044 of file p_polys.cc.

5045{
5047 poly np;
5048 omTypeAllocBin(poly, np, r->PolyBin);
5049 p_SetRingOfLm(np, r);
5050 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
5051 pNext(np) = NULL;
5052 pSetCoeff0(np, n);
5053 return np;
5054}
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:177
#define pSetCoeff0(p, n)
Definition: monomials.h:59
#define p_SetRingOfLm(p, r)
Definition: monomials.h:144
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203

◆ p_DecrExp()

static long p_DecrExp ( poly  p,
int  v,
ring  r 
)
inlinestatic

Definition at line 598 of file p_polys.h.

599{
601 int e = p_GetExp(p,v,r);
602 pAssume2(e > 0);
603 e--;
604 return p_SetExp(p,v,e,r);
605}

◆ p_Deg()

long p_Deg ( poly  a,
const ring  r 
)

Definition at line 587 of file p_polys.cc.

588{
589 p_LmCheckPolyRing(a, r);
590// assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume!
591 return p_GetOrder(a, r);
592}
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:120
static long p_GetOrder(poly p, ring r)
Definition: p_polys.h:421

◆ p_DegW()

long p_DegW ( poly  p,
const int *  w,
const ring  R 
)

Definition at line 690 of file p_polys.cc.

691{
692 p_Test(p, R);
693 assume( w != NULL );
694 long r=-LONG_MAX;
695
696 while (p!=NULL)
697 {
698 long t=totaldegreeWecart_IV(p,R,w);
699 if (t>r) r=t;
700 pIter(p);
701 }
702 return r;
703}
const CanonicalForm & w
Definition: facAbsFact.cc:51
long totaldegreeWecart_IV(poly p, ring r, const int *w)
Definition: weight.cc:231

◆ p_Delete() [1/2]

static void p_Delete ( poly *  p,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

Definition at line 908 of file p_polys.h.

909{
910 assume( p!= NULL );
911 if (*p != NULL)
912 {
913#ifndef PDEBUG
914 if (tailRing == lmRing)
915 {
916 p_Delete(p, tailRing);
917 return;
918 }
919#endif
920 if (pNext(*p) != NULL)
921 p_Delete(&pNext(*p), tailRing);
922 p_LmDelete(p, lmRing);
923 }
924}
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:723

◆ p_Delete() [2/2]

static void p_Delete ( poly *  p,
const ring  r 
)
inlinestatic

Definition at line 901 of file p_polys.h.

902{
903 assume( p!= NULL );
904 assume( r!= NULL );
905 if ((*p)!=NULL) r->p_Procs->p_Delete(p, r);
906}

◆ p_DeleteComp()

void p_DeleteComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3622 of file p_polys.cc.

3623{
3624 poly q;
3625 long unsigned kk=k;
3626
3627 while ((*p!=NULL) && (__p_GetComp(*p,r)==kk)) p_LmDelete(p,r);
3628 if (*p==NULL) return;
3629 q = *p;
3630 if (__p_GetComp(q,r)>kk)
3631 {
3632 p_SubComp(q,1,r);
3633 p_SetmComp(q,r);
3634 }
3635 while (pNext(q)!=NULL)
3636 {
3637 if (__p_GetComp(pNext(q),r)==kk)
3638 p_LmDelete(&(pNext(q)),r);
3639 else
3640 {
3641 pIter(q);
3642 if (__p_GetComp(q,r)>kk)
3643 {
3644 p_SubComp(q,1,r);
3645 p_SetmComp(q,r);
3646 }
3647 }
3648 }
3649}
static unsigned long p_SubComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:453
#define p_SetmComp
Definition: p_polys.h:244

◆ p_Diff()

poly p_Diff ( poly  a,
int  k,
const ring  r 
)

Definition at line 1894 of file p_polys.cc.

1895{
1896 poly res, f, last;
1897 number t;
1898
1899 last = res = NULL;
1900 while (a!=NULL)
1901 {
1902 if (p_GetExp(a,k,r)!=0)
1903 {
1904 f = p_LmInit(a,r);
1905 t = n_Init(p_GetExp(a,k,r),r->cf);
1906 pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf));
1907 n_Delete(&t,r->cf);
1908 if (n_IsZero(pGetCoeff(f),r->cf))
1909 p_LmDelete(&f,r);
1910 else
1911 {
1912 p_DecrExp(f,k,r);
1913 p_Setm(f,r);
1914 if (res==NULL)
1915 {
1916 res=last=f;
1917 }
1918 else
1919 {
1920 pNext(last)=f;
1921 last=f;
1922 }
1923 }
1924 }
1925 pIter(a);
1926 }
1927 return res;
1928}
FILE * f
Definition: checklibs.c:9
STATIC_VAR poly last
Definition: hdegree.cc:1151
static poly p_LmInit(poly p, const ring r)
Definition: p_polys.h:1335
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static long p_DecrExp(poly p, int v, ring r)
Definition: p_polys.h:598

◆ p_DiffOp()

poly p_DiffOp ( poly  a,
poly  b,
BOOLEAN  multiply,
const ring  r 
)

Definition at line 1969 of file p_polys.cc.

1970{
1971 poly result=NULL;
1972 poly h;
1973 for(;a!=NULL;pIter(a))
1974 {
1975 for(h=b;h!=NULL;pIter(h))
1976 {
1977 result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r);
1978 }
1979 }
1980 return result;
1981}
return result
Definition: facAbsBiFact.cc:75
static poly p_DiffOpM(poly a, poly b, BOOLEAN multiply, const ring r)
Definition: p_polys.cc:1930

◆ p_Div_mm()

poly p_Div_mm ( poly  p,
const poly  m,
const ring  r 
)

divide polynomial by monomial

Definition at line 1534 of file p_polys.cc.

1535{
1536 p_Test(p, r);
1537 p_Test(m, r);
1538 poly result = p;
1539 poly prev = NULL;
1540 number n=pGetCoeff(m);
1541 while (p!=NULL)
1542 {
1543 number nc = n_Div(pGetCoeff(p),n,r->cf);
1544 n_Normalize(nc,r->cf);
1545 if (!n_IsZero(nc,r->cf))
1546 {
1547 p_SetCoeff(p,nc,r);
1548 prev=p;
1549 p_ExpVectorSub(p,m,r);
1550 pIter(p);
1551 }
1552 else
1553 {
1554 if (prev==NULL)
1555 {
1556 p_LmDelete(&result,r);
1557 p=result;
1558 }
1559 else
1560 {
1561 p_LmDelete(&pNext(prev),r);
1562 p=pNext(prev);
1563 }
1564 }
1565 }
1566 p_Test(result,r);
1567 return(result);
1568}
int m
Definition: cfEzgcd.cc:128
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition: p_polys.h:1440

◆ p_Div_nn()

poly p_Div_nn ( poly  p,
const number  n,
const ring  r 
)

Definition at line 1501 of file p_polys.cc.

1502{
1503 pAssume(!n_IsZero(n,r->cf));
1504 p_Test(p, r);
1505 poly result = p;
1506 poly prev = NULL;
1507 while (p!=NULL)
1508 {
1509 number nc = n_Div(pGetCoeff(p),n,r->cf);
1510 if (!n_IsZero(nc,r->cf))
1511 {
1512 p_SetCoeff(p,nc,r);
1513 prev=p;
1514 pIter(p);
1515 }
1516 else
1517 {
1518 if (prev==NULL)
1519 {
1520 p_LmDelete(&result,r);
1521 p=result;
1522 }
1523 else
1524 {
1525 p_LmDelete(&pNext(prev),r);
1526 p=pNext(prev);
1527 }
1528 }
1529 }
1530 p_Test(result,r);
1531 return(result);
1532}

◆ p_DivideM()

poly p_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1574 of file p_polys.cc.

1575{
1576 if (a==NULL) { p_Delete(&b,r); return NULL; }
1577 poly result=a;
1578
1579 if(!p_IsConstant(b,r))
1580 {
1581 if (rIsNCRing(r))
1582 {
1583 WerrorS("p_DivideM not implemented for non-commuative rings");
1584 return NULL;
1585 }
1586 poly prev=NULL;
1587 while (a!=NULL)
1588 {
1589 if (p_DivisibleBy(b,a,r))
1590 {
1591 p_ExpVectorSub(a,b,r);
1592 prev=a;
1593 pIter(a);
1594 }
1595 else
1596 {
1597 if (prev==NULL)
1598 {
1599 p_LmDelete(&result,r);
1600 a=result;
1601 }
1602 else
1603 {
1604 p_LmDelete(&pNext(prev),r);
1605 a=pNext(prev);
1606 }
1607 }
1608 }
1609 }
1610 if (result!=NULL)
1611 {
1612 number inv=pGetCoeff(b);
1613 //if ((!rField_is_Ring(r)) || n_IsUnit(inv,r->cf))
1614 if (rField_is_Zp(r))
1615 {
1616 inv = n_Invers(inv,r->cf);
1617 __p_Mult_nn(result,inv,r);
1618 n_Delete(&inv, r->cf);
1619 }
1620 else
1621 {
1622 result = p_Div_nn(result,inv,r);
1623 }
1624 }
1625 p_Delete(&b, r);
1626 return result;
1627}
static BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1912
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:971
static BOOLEAN rIsNCRing(const ring r)
Definition: ring.h:421

◆ p_DivisibleBy() [1/2]

static BOOLEAN p_DivisibleBy ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1921 of file p_polys.h.

1922{
1924 pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r_a));
1925 if (a != NULL) {
1926 return _p_LmDivisibleBy(a, r_a, b, r_b);
1927 }
1928 return FALSE;
1929}
#define pIfThen1(cond, check)
Definition: monomials.h:179
static BOOLEAN _p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1877

◆ p_DivisibleBy() [2/2]

static BOOLEAN p_DivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1912 of file p_polys.h.

1913{
1915 pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r));
1916
1917 if (a != NULL && (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)))
1918 return _p_LmDivisibleByNoComp(a,b,r);
1919 return FALSE;
1920}

◆ p_DivisibleByRingCase()

BOOLEAN p_DivisibleByRingCase ( poly  f,
poly  g,
const ring  r 
)

divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account

Definition at line 1638 of file p_polys.cc.

1639{
1640 int exponent;
1641 for(int i = (int)rVar(r); i>0; i--)
1642 {
1643 exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r);
1644 if (exponent < 0) return FALSE;
1645 }
1646 return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf);
1647}
g
Definition: cfModGcd.cc:4090
int exponent(const CanonicalForm &f, int q)
int exponent ( const CanonicalForm & f, int q )

◆ p_EqualPolys() [1/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 4577 of file p_polys.cc.

4578{
4579 while ((p1 != NULL) && (p2 != NULL))
4580 {
4581 if (! p_LmEqual(p1, p2,r))
4582 return FALSE;
4583 if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf ))
4584 return FALSE;
4585 pIter(p1);
4586 pIter(p2);
4587 }
4588 return (p1==p2);
4589}
#define p_GetCoeff(p, r)
Definition: monomials.h:50

◆ p_EqualPolys() [2/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r1,
const ring  r2 
)

same as the usual p_EqualPolys for polys belonging to equal rings

Definition at line 4615 of file p_polys.cc.

4616{
4617 assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual!
4618 assume( r1->cf == r2->cf );
4619
4620 while ((p1 != NULL) && (p2 != NULL))
4621 {
4622 // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !!
4623 // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r)
4624
4625 if (! p_ExpVectorEqual(p1, p2, r1, r2))
4626 return FALSE;
4627
4628 if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf ))
4629 return FALSE;
4630
4631 pIter(p1);
4632 pIter(p2);
4633 }
4634 return (p1==p2);
4635}
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
Definition: ring.cc:1799

◆ p_ExpVectorAdd()

static void p_ExpVectorAdd ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1411 of file p_polys.h.

1412{
1413 p_LmCheckPolyRing1(p1, r);
1414 p_LmCheckPolyRing1(p2, r);
1415#if PDEBUG >= 1
1416 for (int i=1; i<=r->N; i++)
1417 pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1418 pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1419#endif
1420
1421 p_MemAdd_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1423}
#define p_MemAdd_LengthGeneral(r, s, length)
Definition: p_MemAdd.h:173
static void p_MemAdd_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1292

◆ p_ExpVectorAddSub()

static void p_ExpVectorAddSub ( poly  p1,
poly  p2,
poly  p3,
const ring  r 
)
inlinestatic

Definition at line 1456 of file p_polys.h.

1457{
1458 p_LmCheckPolyRing1(p1, r);
1459 p_LmCheckPolyRing1(p2, r);
1460 p_LmCheckPolyRing1(p3, r);
1461#if PDEBUG >= 1
1462 for (int i=1; i<=r->N; i++)
1463 pAssume1(p_GetExp(p1, i, r) + p_GetExp(p2, i, r) >= p_GetExp(p3, i, r));
1464 pAssume1(p_GetComp(p1, r) == 0 ||
1465 (p_GetComp(p2, r) - p_GetComp(p3, r) == 0) ||
1466 (p_GetComp(p1, r) == p_GetComp(p2, r) - p_GetComp(p3, r)));
1467#endif
1468
1469 p_MemAddSub_LengthGeneral(p1->exp, p2->exp, p3->exp, r->ExpL_Size);
1470 // no need to adjust in case of NegWeights
1471}
#define p_MemAddSub_LengthGeneral(r, s, t, length)
Definition: p_MemAdd.h:312

◆ p_ExpVectorCopy()

static void p_ExpVectorCopy ( poly  d_p,
poly  s_p,
const ring  r 
)
inlinestatic

Definition at line 1313 of file p_polys.h.

1314{
1315 p_LmCheckPolyRing1(d_p, r);
1316 p_LmCheckPolyRing1(s_p, r);
1317 memcpy(d_p->exp, s_p->exp, r->ExpL_Size*sizeof(long));
1318}

◆ p_ExpVectorDiff()

static void p_ExpVectorDiff ( poly  pr,
poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1474 of file p_polys.h.

1475{
1476 p_LmCheckPolyRing1(p1, r);
1477 p_LmCheckPolyRing1(p2, r);
1478 p_LmCheckPolyRing1(pr, r);
1479#if PDEBUG >= 2
1480 for (int i=1; i<=r->N; i++)
1481 pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1482 pAssume1(!rRing_has_Comp(r) || p_GetComp(p1, r) == p_GetComp(p2, r));
1483#endif
1484
1485 p_MemDiff_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1487}
#define p_MemDiff_LengthGeneral(r, s1, s2, length)
Definition: p_MemAdd.h:262
static void p_MemSub_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1302

◆ p_ExpVectorEqual()

static BOOLEAN p_ExpVectorEqual ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1489 of file p_polys.h.

1490{
1491 p_LmCheckPolyRing1(p1, r);
1492 p_LmCheckPolyRing1(p2, r);
1493
1494 unsigned i = r->ExpL_Size;
1495 unsigned long *ep = p1->exp;
1496 unsigned long *eq = p2->exp;
1497
1498 do
1499 {
1500 i--;
1501 if (ep[i] != eq[i]) return FALSE;
1502 }
1503 while (i!=0);
1504 return TRUE;
1505}

◆ p_ExpVectorSub()

static void p_ExpVectorSub ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1440 of file p_polys.h.

1441{
1442 p_LmCheckPolyRing1(p1, r);
1443 p_LmCheckPolyRing1(p2, r);
1444#if PDEBUG >= 1
1445 for (int i=1; i<=r->N; i++)
1446 pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1447 pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0 ||
1448 p_GetComp(p1, r) == p_GetComp(p2, r));
1449#endif
1450
1451 p_MemSub_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1453}
#define p_MemSub_LengthGeneral(r, s, length)
Definition: p_MemAdd.h:291

◆ p_ExpVectorSum()

static void p_ExpVectorSum ( poly  pr,
poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1425 of file p_polys.h.

1426{
1427 p_LmCheckPolyRing1(p1, r);
1428 p_LmCheckPolyRing1(p2, r);
1429 p_LmCheckPolyRing1(pr, r);
1430#if PDEBUG >= 1
1431 for (int i=1; i<=r->N; i++)
1432 pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1433 pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1434#endif
1435
1436 p_MemSum_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1438}
#define p_MemSum_LengthGeneral(r, s1, s2, length)
Definition: p_MemAdd.h:86

◆ p_Farey()

poly p_Farey ( poly  p,
number  N,
const ring  r 
)

Definition at line 54 of file p_polys.cc.

55{
56 poly h=p_Copy(p,r);
57 poly hh=h;
58 while(h!=NULL)
59 {
60 number c=pGetCoeff(h);
61 pSetCoeff0(h,n_Farey(c,N,r->cf));
62 n_Delete(&c,r->cf);
63 pIter(h);
64 }
65 while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf)))
66 {
67 p_LmDelete(&hh,r);
68 }
69 h=hh;
70 while((h!=NULL) && (pNext(h)!=NULL))
71 {
72 if(n_IsZero(pGetCoeff(pNext(h)),r->cf))
73 {
74 p_LmDelete(&pNext(h),r);
75 }
76 else pIter(h);
77 }
78 return hh;
79}
static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
Definition: coeffs.h:767

◆ p_FDeg()

static long p_FDeg ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 380 of file p_polys.h.

380{ return r->pFDeg(p,r); }

◆ p_GcdMon()

poly p_GcdMon ( poly  f,
poly  g,
const ring  r 
)

polynomial gcd for f=mon

Definition at line 5006 of file p_polys.cc.

5007{
5008 assume(f!=NULL);
5009 assume(g!=NULL);
5010 assume(pNext(f)==NULL);
5011 poly G=p_Head(f,r);
5012 poly h=g;
5013 int *mf=(int*)omAlloc((r->N+1)*sizeof(int));
5014 p_GetExpV(f,mf,r);
5015 int *mh=(int*)omAlloc((r->N+1)*sizeof(int));
5016 BOOLEAN const_mon;
5017 BOOLEAN one_coeff=n_IsOne(pGetCoeff(G),r->cf);
5018 loop
5019 {
5020 if (h==NULL) break;
5021 if(!one_coeff)
5022 {
5023 number n=n_SubringGcd(pGetCoeff(G),pGetCoeff(h),r->cf);
5024 one_coeff=n_IsOne(n,r->cf);
5025 p_SetCoeff(G,n,r);
5026 }
5027 p_GetExpV(h,mh,r);
5028 const_mon=TRUE;
5029 for(unsigned j=r->N;j!=0;j--)
5030 {
5031 if (mh[j]<mf[j]) mf[j]=mh[j];
5032 if (mf[j]>0) const_mon=FALSE;
5033 }
5034 if (one_coeff && const_mon) break;
5035 pIter(h);
5036 }
5037 mf[0]=0;
5038 p_SetExpV(G,mf,r); // included is p_SetComp, p_Setm
5039 omFreeSize(mf,(r->N+1)*sizeof(int));
5040 omFreeSize(mh,(r->N+1)*sizeof(int));
5041 return G;
5042}
STATIC_VAR TreeM * G
Definition: janet.cc:31
#define omAlloc(size)
Definition: omAllocDecl.h:210
static void p_SetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1544
static void p_GetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1520

◆ p_GetCoeffRat()

poly p_GetCoeffRat ( poly  p,
int  ishift,
ring  r 
)

Definition at line 1718 of file p_polys.cc.

1719{
1720 poly q = pNext(p);
1721 poly res; // = p_Head(p,r);
1722 res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally
1723 p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r);
1724 poly s;
1725 long cmp = p_GetComp(p, r);
1726 while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) )
1727 {
1728 s = p_GetExp_k_n(q, ishift+1, r->N, r);
1729 p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r);
1730 res = p_Add_q(res,s,r);
1731 q = pNext(q);
1732 }
1733 cmp = 0;
1734 p_SetCompP(res,cmp,r);
1735 return res;
1736}
const CanonicalForm int s
Definition: facAbsFact.cc:51
static int p_Comp_k_n(poly a, poly b, int k, ring r)
Definition: p_polys.h:640
static void p_SetCompP(poly p, int i, ring r)
Definition: p_polys.h:254

◆ p_GetExp() [1/3]

static long p_GetExp ( const poly  p,
const int  v,
const ring  r 
)
inlinestatic

get v^th exponent for a monomial

Definition at line 572 of file p_polys.h.

573{
575 pAssume2(v>0 && v <= r->N);
576 pAssume2(r->VarOffset[v] != -1);
577 return p_GetExp(p, r->bitmask, r->VarOffset[v]);
578}

◆ p_GetExp() [2/3]

static long p_GetExp ( const poly  p,
const ring  r,
const int  VarOffset 
)
inlinestatic

Definition at line 555 of file p_polys.h.

556{
558 pAssume2(VarOffset != -1);
559 return p_GetExp(p, r->bitmask, VarOffset);
560}

◆ p_GetExp() [3/3]

static long p_GetExp ( const poly  p,
const unsigned long  iBitmask,
const int  VarOffset 
)
inlinestatic

get a single variable exponent @Note: the integer VarOffset encodes:

  1. the position of a variable in the exponent vector p->exp (lower 24 bits)
  2. number of bits to shift to the right in the upper 8 bits (which takes at most 6 bits for 64 bit) Thus VarOffset always has 2 zero higher bits!

Definition at line 469 of file p_polys.h.

470{
471 pAssume2((VarOffset >> (24 + 6)) == 0);
472#if 0
473 int pos=(VarOffset & 0xffffff);
474 int bitpos=(VarOffset >> 24);
475 unsigned long exp=(p->exp[pos] >> bitmask) & iBitmask;
476 return exp;
477#else
478 return (long)
479 ((p->exp[(VarOffset & 0xffffff)] >> (VarOffset >> 24))
480 & iBitmask);
481#endif
482}
gmp_float exp(const gmp_float &a)
Definition: mpr_complex.cc:357

◆ p_GetExp_k_n()

static poly p_GetExp_k_n ( poly  p,
int  l,
int  k,
const ring  r 
)
inlinestatic

Definition at line 1372 of file p_polys.h.

1373{
1374 if (p == NULL) return NULL;
1376 poly np;
1377 omTypeAllocBin(poly, np, r->PolyBin);
1378 p_SetRingOfLm(np, r);
1379 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1380 pNext(np) = NULL;
1381 pSetCoeff0(np, n_Init(1, r->cf));
1382 int i;
1383 for(i=l;i<=k;i++)
1384 {
1385 //np->exp[(r->VarOffset[i] & 0xffffff)] =0;
1386 p_SetExp(np,i,0,r);
1387 }
1388 p_Setm(np,r);
1389 return np;
1390}

◆ p_GetExpDiff()

static long p_GetExpDiff ( poly  p1,
poly  p2,
int  i,
ring  r 
)
inlinestatic

Definition at line 635 of file p_polys.h.

636{
637 return p_GetExp(p1,i,r) - p_GetExp(p2,i,r);
638}

◆ p_GetExpSum()

static long p_GetExpSum ( poly  p1,
poly  p2,
int  i,
ring  r 
)
inlinestatic

Definition at line 629 of file p_polys.h.

630{
631 p_LmCheckPolyRing2(p1, r);
632 p_LmCheckPolyRing2(p2, r);
633 return p_GetExp(p1,i,r) + p_GetExp(p2,i,r);
634}

◆ p_GetExpV()

static void p_GetExpV ( poly  p,
int *  ev,
const ring  r 
)
inlinestatic

Definition at line 1520 of file p_polys.h.

1521{
1523 for (unsigned j = r->N; j!=0; j--)
1524 ev[j] = p_GetExp(p, j, r);
1525
1526 ev[0] = p_GetComp(p, r);
1527}

◆ p_GetExpVL()

static void p_GetExpVL ( poly  p,
int64 ev,
const ring  r 
)
inlinestatic

Definition at line 1529 of file p_polys.h.

1530{
1532 for (unsigned j = r->N; j!=0; j--)
1533 ev[j-1] = p_GetExp(p, j, r);
1534}

◆ p_GetExpVLV()

static int64 p_GetExpVLV ( poly  p,
int64 ev,
const ring  r 
)
inlinestatic

Definition at line 1536 of file p_polys.h.

1537{
1539 for (unsigned j = r->N; j!=0; j--)
1540 ev[j-1] = p_GetExp(p, j, r);
1541 return (int64)p_GetComp(p,r);
1542}
long int64
Definition: auxiliary.h:68

◆ p_GetMaxExp() [1/2]

static unsigned long p_GetMaxExp ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 804 of file p_polys.h.

805{
806 return p_GetMaxExp(p_GetMaxExpL(p, r), r);
807}
static unsigned long p_GetMaxExp(const unsigned long l, const ring r)
Definition: p_polys.h:781
unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max=0)
return the maximal exponent of p in form of the maximal long var
Definition: p_polys.cc:1175

◆ p_GetMaxExp() [2/2]

static unsigned long p_GetMaxExp ( const unsigned long  l,
const ring  r 
)
inlinestatic

Definition at line 781 of file p_polys.h.

782{
783 unsigned long bitmask = r->bitmask;
784 unsigned long max = (l & bitmask);
785 unsigned long j = r->ExpPerLong - 1;
786
787 if (j > 0)
788 {
789 unsigned long i = r->BitsPerExp;
790 long e;
791 loop
792 {
793 e = ((l >> i) & bitmask);
794 if ((unsigned long) e > max)
795 max = e;
796 j--;
797 if (j==0) break;
798 i += r->BitsPerExp;
799 }
800 }
801 return max;
802}
static int max(int a, int b)
Definition: fast_mult.cc:264

◆ p_GetMaxExpL()

unsigned long p_GetMaxExpL ( poly  p,
const ring  r,
unsigned long  l_max = 0 
)

return the maximal exponent of p in form of the maximal long var

Definition at line 1175 of file p_polys.cc.

1176{
1177 unsigned long l_p, divmask = r->divmask;
1178 int i;
1179
1180 while (p != NULL)
1181 {
1182 l_p = p->exp[r->VarL_Offset[0]];
1183 if (l_p > l_max ||
1184 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1185 l_max = p_GetMaxExpL2(l_max, l_p, r);
1186 for (i=1; i<r->VarL_Size; i++)
1187 {
1188 l_p = p->exp[r->VarL_Offset[i]];
1189 // do the divisibility trick to find out whether l has an exponent
1190 if (l_p > l_max ||
1191 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1192 l_max = p_GetMaxExpL2(l_max, l_p, r);
1193 }
1194 pIter(p);
1195 }
1196 return l_max;
1197}
static unsigned long p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
Definition: p_polys.cc:1107

◆ p_GetMaxExpP()

poly p_GetMaxExpP ( poly  p,
ring  r 
)

return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set

Definition at line 1138 of file p_polys.cc.

1139{
1140 p_CheckPolyRing(p, r);
1141 if (p == NULL) return p_Init(r);
1142 poly max = p_LmInit(p, r);
1143 pIter(p);
1144 if (p == NULL) return max;
1145 int i, offset;
1146 unsigned long l_p, l_max;
1147 unsigned long divmask = r->divmask;
1148
1149 do
1150 {
1151 offset = r->VarL_Offset[0];
1152 l_p = p->exp[offset];
1153 l_max = max->exp[offset];
1154 // do the divisibility trick to find out whether l has an exponent
1155 if (l_p > l_max ||
1156 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1157 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1158
1159 for (i=1; i<r->VarL_Size; i++)
1160 {
1161 offset = r->VarL_Offset[i];
1162 l_p = p->exp[offset];
1163 l_max = max->exp[offset];
1164 // do the divisibility trick to find out whether l has an exponent
1165 if (l_p > l_max ||
1166 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1167 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1168 }
1169 pIter(p);
1170 }
1171 while (p != NULL);
1172 return max;
1173}
STATIC_VAR int offset
Definition: janet.cc:29
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:112
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1320

◆ p_GetOrder()

static long p_GetOrder ( poly  p,
ring  r 
)
inlinestatic

Definition at line 421 of file p_polys.h.

422{
424 if (r->typ==NULL) return ((p)->exp[r->pOrdIndex]);
425 int i=0;
426 loop
427 {
428 switch(r->typ[i].ord_typ)
429 {
430 case ro_am:
431 case ro_wp_neg:
432 return ((p->exp[r->pOrdIndex])-POLY_NEGWEIGHT_OFFSET);
433 case ro_syzcomp:
434 case ro_syz:
435 case ro_cp:
436 i++;
437 break;
438 //case ro_dp:
439 //case ro_wp:
440 default:
441 return ((p)->exp[r->pOrdIndex]);
442 }
443 }
444}
#define POLY_NEGWEIGHT_OFFSET
Definition: monomials.h:236
@ ro_syz
Definition: ring.h:60
@ ro_cp
Definition: ring.h:58
@ ro_wp_neg
Definition: ring.h:56
@ ro_am
Definition: ring.h:54

◆ p_GetSetmProc()

p_SetmProc p_GetSetmProc ( const ring  r)

Definition at line 560 of file p_polys.cc.

561{
562 // covers lp, rp, ls,
563 if (r->typ == NULL) return p_Setm_Dummy;
564
565 if (r->OrdSize == 1)
566 {
567 if (r->typ[0].ord_typ == ro_dp &&
568 r->typ[0].data.dp.start == 1 &&
569 r->typ[0].data.dp.end == r->N &&
570 r->typ[0].data.dp.place == r->pOrdIndex)
571 return p_Setm_TotalDegree;
572 if (r->typ[0].ord_typ == ro_wp &&
573 r->typ[0].data.wp.start == 1 &&
574 r->typ[0].data.wp.end == r->N &&
575 r->typ[0].data.wp.place == r->pOrdIndex &&
576 r->typ[0].data.wp.weights == r->firstwv)
578 }
579 return p_Setm_General;
580}
void p_Setm_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:554
void p_Setm_Dummy(poly p, const ring r)
Definition: p_polys.cc:541
void p_Setm_TotalDegree(poly p, const ring r)
Definition: p_polys.cc:547
void p_Setm_General(poly p, const ring r)
Definition: p_polys.cc:158
@ ro_dp
Definition: ring.h:52
@ ro_wp
Definition: ring.h:53

◆ p_GetShortExpVector() [1/2]

unsigned long p_GetShortExpVector ( const poly  a,
const ring  r 
)

Definition at line 4846 of file p_polys.cc.

4847{
4848 assume(p != NULL);
4849 unsigned long ev = 0; // short exponent vector
4850 unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4851 unsigned int m1; // highest bit which is filled with (n+1)
4852 unsigned int i=0;
4853 int j=1;
4854
4855 if (n == 0)
4856 {
4857 if (r->N <2*BIT_SIZEOF_LONG)
4858 {
4859 n=1;
4860 m1=0;
4861 }
4862 else
4863 {
4864 for (; j<=r->N; j++)
4865 {
4866 if (p_GetExp(p,j,r) > 0) i++;
4867 if (i == BIT_SIZEOF_LONG) break;
4868 }
4869 if (i>0)
4870 ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4871 return ev;
4872 }
4873 }
4874 else
4875 {
4876 m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4877 }
4878
4879 n++;
4880 while (i<m1)
4881 {
4882 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4883 i += n;
4884 j++;
4885 }
4886
4887 n--;
4888 while (i<BIT_SIZEOF_LONG)
4889 {
4890 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4891 i += n;
4892 j++;
4893 }
4894 return ev;
4895}
#define BIT_SIZEOF_LONG
Definition: auxiliary.h:80
static unsigned long GetBitFields(const long e, const unsigned int s, const unsigned int n)
Definition: p_polys.cc:4813

◆ p_GetShortExpVector() [2/2]

unsigned long p_GetShortExpVector ( const poly  p,
const poly  pp,
const ring  r 
)

p_GetShortExpVector of p * pp

Definition at line 4899 of file p_polys.cc.

4900{
4901 assume(p != NULL);
4902 assume(pp != NULL);
4903
4904 unsigned long ev = 0; // short exponent vector
4905 unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4906 unsigned int m1; // highest bit which is filled with (n+1)
4907 int j=1;
4908 unsigned long i = 0L;
4909
4910 if (n == 0)
4911 {
4912 if (r->N <2*BIT_SIZEOF_LONG)
4913 {
4914 n=1;
4915 m1=0;
4916 }
4917 else
4918 {
4919 for (; j<=r->N; j++)
4920 {
4921 if (p_GetExp(p,j,r) > 0 || p_GetExp(pp,j,r) > 0) i++;
4922 if (i == BIT_SIZEOF_LONG) break;
4923 }
4924 if (i>0)
4925 ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4926 return ev;
4927 }
4928 }
4929 else
4930 {
4931 m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4932 }
4933
4934 n++;
4935 while (i<m1)
4936 {
4937 ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4938 i += n;
4939 j++;
4940 }
4941
4942 n--;
4943 while (i<BIT_SIZEOF_LONG)
4944 {
4945 ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4946 i += n;
4947 j++;
4948 }
4949 return ev;
4950}

◆ p_GetTotalDegree()

static unsigned long p_GetTotalDegree ( const unsigned long  l,
const ring  r,
const int  number_of_exps 
)
inlinestatic

Definition at line 810 of file p_polys.h.

811{
812 const unsigned long bitmask = r->bitmask;
813 unsigned long sum = (l & bitmask);
814 unsigned long j = number_of_exps - 1;
815
816 if (j > 0)
817 {
818 unsigned long i = r->BitsPerExp;
819 loop
820 {
821 sum += ((l >> i) & bitmask);
822 j--;
823 if (j==0) break;
824 i += r->BitsPerExp;
825 }
826 }
827 return sum;
828}

◆ p_GetVariables()

int p_GetVariables ( poly  p,
int *  e,
const ring  r 
)

set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0)

Definition at line 1267 of file p_polys.cc.

1268{
1269 int i;
1270 int n=0;
1271 while(p!=NULL)
1272 {
1273 n=0;
1274 for(i=r->N; i>0; i--)
1275 {
1276 if(e[i]==0)
1277 {
1278 if (p_GetExp(p,i,r)>0)
1279 {
1280 e[i]=1;
1281 n++;
1282 }
1283 }
1284 else
1285 n++;
1286 }
1287 if (n==r->N) break;
1288 pIter(p);
1289 }
1290 return n;
1291}

◆ p_HasNotCF()

BOOLEAN p_HasNotCF ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1329 of file p_polys.cc.

1330{
1331
1332 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1333 return FALSE;
1334 int i = rVar(r);
1335 loop
1336 {
1337 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1338 return FALSE;
1339 i--;
1340 if (i == 0)
1341 return TRUE;
1342 }
1343}

◆ p_HasNotCFRing()

BOOLEAN p_HasNotCFRing ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1345 of file p_polys.cc.

1346{
1347
1348 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1349 return FALSE;
1350 int i = rVar(r);
1351 loop
1352 {
1353 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1354 return FALSE;
1355 i--;
1356 if (i == 0) {
1357 if (n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf) ||
1358 n_DivBy(pGetCoeff(p2), pGetCoeff(p1), r->cf)) {
1359 return FALSE;
1360 } else {
1361 return TRUE;
1362 }
1363 }
1364 }
1365}

◆ p_Head()

static poly p_Head ( const poly  p,
const ring  r 
)
inlinestatic

copy the (leading) term of p

Definition at line 860 of file p_polys.h.

861{
862 if (p == NULL) return NULL;
864 poly np;
865 omTypeAllocBin(poly, np, r->PolyBin);
866 p_SetRingOfLm(np, r);
867 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
868 pNext(np) = NULL;
869 pSetCoeff0(np, n_Copy(pGetCoeff(p), r->cf));
870 return np;
871}

◆ p_Head0()

poly p_Head0 ( const poly  p,
const ring  r 
)

like p_Head, but allow NULL coeff

Definition at line 5062 of file p_polys.cc.

5063{
5064 if (p==NULL) return NULL;
5065 if (pGetCoeff(p)==NULL) return p_CopyPowerProduct0(p,NULL,r);
5066 return p_Head(p,r);
5067}

◆ p_Homogen()

poly p_Homogen ( poly  p,
int  varnum,
const ring  r 
)

Definition at line 3335 of file p_polys.cc.

3336{
3337 pFDegProc deg;
3338 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3339 deg=p_Totaldegree;
3340 else
3341 deg=r->pFDeg;
3342
3343 poly q=NULL, qn;
3344 int o,ii;
3345 sBucket_pt bp;
3346
3347 if (p!=NULL)
3348 {
3349 if ((varnum < 1) || (varnum > rVar(r)))
3350 {
3351 return NULL;
3352 }
3353 o=deg(p,r);
3354 q=pNext(p);
3355 while (q != NULL)
3356 {
3357 ii=deg(q,r);
3358 if (ii>o) o=ii;
3359 pIter(q);
3360 }
3361 q = p_Copy(p,r);
3362 bp = sBucketCreate(r);
3363 while (q != NULL)
3364 {
3365 ii = o-deg(q,r);
3366 if (ii!=0)
3367 {
3368 p_AddExp(q,varnum, (long)ii,r);
3369 p_Setm(q,r);
3370 }
3371 qn = pNext(q);
3372 pNext(q) = NULL;
3373 sBucket_Add_m(bp, q);
3374 q = qn;
3375 }
3376 sBucketDestroyAdd(bp, &q, &ii);
3377 }
3378 return q;
3379}
static long p_AddExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:606
long(* pFDegProc)(poly p, ring r)
Definition: ring.h:38
@ ringorder_lp
Definition: ring.h:77
void sBucket_Add_m(sBucket_pt bucket, poly p)
Definition: sbuckets.cc:173
sBucket_pt sBucketCreate(const ring r)
Definition: sbuckets.cc:96
void sBucketDestroyAdd(sBucket_pt bucket, poly *p, int *length)
Definition: sbuckets.h:68

◆ p_IncrExp()

static long p_IncrExp ( poly  p,
int  v,
ring  r 
)
inlinestatic

Definition at line 591 of file p_polys.h.

592{
594 int e = p_GetExp(p,v,r);
595 e++;
596 return p_SetExp(p,v,e,r);
597}

◆ p_Init() [1/2]

static poly p_Init ( const ring  r)
inlinestatic

Definition at line 1330 of file p_polys.h.

1331{
1332 return p_Init(r, r->PolyBin);
1333}

◆ p_Init() [2/2]

static poly p_Init ( const ring  r,
omBin  bin 
)
inlinestatic

Definition at line 1320 of file p_polys.h.

1321{
1322 p_CheckRing1(r);
1323 pAssume1(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
1324 poly p;
1325 omTypeAlloc0Bin(poly, p, bin);
1327 p_SetRingOfLm(p, r);
1328 return p;
1329}
#define p_CheckRing1(r)
Definition: monomials.h:178
#define omTypeAlloc0Bin(type, addr, bin)
Definition: omAllocDecl.h:204

◆ p_InitContent()

number p_InitContent ( poly  ph,
const ring  r 
)

Definition at line 2700 of file p_polys.cc.

2703{
2705 assume(ph!=NULL);
2706 assume(pNext(ph)!=NULL);
2707 assume(rField_is_Q(r));
2708 if (pNext(pNext(ph))==NULL)
2709 {
2710 return n_GetNumerator(pGetCoeff(pNext(ph)),r->cf);
2711 }
2712 poly p=ph;
2713 number n1=n_GetNumerator(pGetCoeff(p),r->cf);
2714 pIter(p);
2715 number n2=n_GetNumerator(pGetCoeff(p),r->cf);
2716 pIter(p);
2717 number d;
2718 number t;
2719 loop
2720 {
2721 nlNormalize(pGetCoeff(p),r->cf);
2722 t=n_GetNumerator(pGetCoeff(p),r->cf);
2723 if (nlGreaterZero(t,r->cf))
2724 d=nlAdd(n1,t,r->cf);
2725 else
2726 d=nlSub(n1,t,r->cf);
2727 nlDelete(&t,r->cf);
2728 nlDelete(&n1,r->cf);
2729 n1=d;
2730 pIter(p);
2731 if (p==NULL) break;
2732 nlNormalize(pGetCoeff(p),r->cf);
2733 t=n_GetNumerator(pGetCoeff(p),r->cf);
2734 if (nlGreaterZero(t,r->cf))
2735 d=nlAdd(n2,t,r->cf);
2736 else
2737 d=nlSub(n2,t,r->cf);
2738 nlDelete(&t,r->cf);
2739 nlDelete(&n2,r->cf);
2740 n2=d;
2741 pIter(p);
2742 if (p==NULL) break;
2743 }
2744 d=nlGcd(n1,n2,r->cf);
2745 nlDelete(&n1,r->cf);
2746 nlDelete(&n2,r->cf);
2747 return d;
2748}
2749#else
2750{
2751 /* ph has al least 2 terms */
2752 number d=pGetCoeff(ph);
2753 int s=n_Size(d,r->cf);
2754 pIter(ph);
2755 number d2=pGetCoeff(ph);
2756 int s2=n_Size(d2,r->cf);
2757 pIter(ph);
2758 if (ph==NULL)
2759 {
2760 if (s<s2) return n_Copy(d,r->cf);
2761 else return n_Copy(d2,r->cf);
2762 }
2763 do
2764 {
2765 number nd=pGetCoeff(ph);
2766 int ns=n_Size(nd,r->cf);
2767 if (ns<=2)
2768 {
2769 s2=s;
2770 d2=d;
2771 d=nd;
2772 s=ns;
2773 break;
2774 }
2775 else if (ns<s)
2776 {
2777 s2=s;
2778 d2=d;
2779 d=nd;
2780 s=ns;
2781 }
2782 pIter(ph);
2783 }
2784 while(ph!=NULL);
2785 return n_SubringGcd(d,d2,r->cf);
2786}
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition: coeffs.h:570
static FORCE_INLINE number n_GetNumerator(number &n, const coeffs r)
return the numerator of n (if elements of r are by nature not fractional, result is n)
Definition: coeffs.h:608
LINLINE number nlAdd(number la, number li, const coeffs r)
Definition: longrat.cc:2701
LINLINE number nlSub(number la, number li, const coeffs r)
Definition: longrat.cc:2767
LINLINE void nlDelete(number *a, const coeffs r)
Definition: longrat.cc:2666
BOOLEAN nlGreaterZero(number za, const coeffs r)
Definition: longrat.cc:1308
number nlGcd(number a, number b, const coeffs r)
Definition: longrat.cc:1345
void nlNormalize(number &x, const coeffs r)
Definition: longrat.cc:1486

◆ p_IsConstant()

static BOOLEAN p_IsConstant ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 2011 of file p_polys.h.

2012{
2013 if (p == NULL) return TRUE;
2014 return (pNext(p)==NULL) && p_LmIsConstant(p, r);
2015}
static BOOLEAN p_LmIsConstant(const poly p, const ring r)
Definition: p_polys.h:1023

◆ p_IsConstantComp()

static BOOLEAN p_IsConstantComp ( const poly  p,
const ring  r 
)
inlinestatic

like the respective p_LmIs* routines, except that p might be empty

Definition at line 2005 of file p_polys.h.

2006{
2007 if (p == NULL) return TRUE;
2008 return (pNext(p)==NULL) && p_LmIsConstantComp(p, r);
2009}
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:1006

◆ p_IsConstantPoly()

static BOOLEAN p_IsConstantPoly ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 2025 of file p_polys.h.

2026{
2027 p_Test(p, r);
2028 poly pp=p;
2029 while(pp!=NULL)
2030 {
2031 if (! p_LmIsConstantComp(pp, r))
2032 return FALSE;
2033 pIter(pp);
2034 }
2035 return TRUE;
2036}

◆ p_ISet()

poly p_ISet ( long  i,
const ring  r 
)

returns the poly representing the integer i

Definition at line 1297 of file p_polys.cc.

1298{
1299 poly rc = NULL;
1300 if (i!=0)
1301 {
1302 rc = p_Init(r);
1303 pSetCoeff0(rc,n_Init(i,r->cf));
1304 if (n_IsZero(pGetCoeff(rc),r->cf))
1305 p_LmDelete(&rc,r);
1306 }
1307 return rc;
1308}

◆ p_IsHomogeneous()

BOOLEAN p_IsHomogeneous ( poly  p,
const ring  r 
)

Definition at line 3384 of file p_polys.cc.

3385{
3386 poly qp=p;
3387 int o;
3388
3389 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3390 pFDegProc d;
3391 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3392 d=p_Totaldegree;
3393 else
3394 d=r->pFDeg;
3395 o = d(p,r);
3396 do
3397 {
3398 if (d(qp,r) != o) return FALSE;
3399 pIter(qp);
3400 }
3401 while (qp != NULL);
3402 return TRUE;
3403}

◆ p_IsOne()

static BOOLEAN p_IsOne ( const poly  p,
const ring  R 
)
inlinestatic

either poly(1) or gen(k)?!

Definition at line 2018 of file p_polys.h.

2019{
2020 if (p == NULL) return FALSE; /* TODO check if 0 == 1 */
2021 p_Test(p, R);
2022 return (p_IsConstant(p, R) && n_IsOne(p_GetCoeff(p, R), R->cf));
2023}

◆ p_IsPurePower()

int p_IsPurePower ( const poly  p,
const ring  r 
)

return i, if head depends only on var(i)

Definition at line 1226 of file p_polys.cc.

1227{
1228 int i,k=0;
1229
1230 for (i=r->N;i;i--)
1231 {
1232 if (p_GetExp(p,i, r)!=0)
1233 {
1234 if(k!=0) return 0;
1235 k=i;
1236 }
1237 }
1238 return k;
1239}

◆ p_IsUnit()

static BOOLEAN p_IsUnit ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 2038 of file p_polys.h.

2039{
2040 if (p == NULL) return FALSE;
2041 if (rField_is_Ring(r))
2042 return (p_LmIsConstant(p, r) && n_IsUnit(pGetCoeff(p),r->cf));
2043 return p_LmIsConstant(p, r);
2044}
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:515

◆ p_IsUnivariate()

int p_IsUnivariate ( poly  p,
const ring  r 
)

return i, if poly depends only on var(i)

Definition at line 1247 of file p_polys.cc.

1248{
1249 int i,k=-1;
1250
1251 while (p!=NULL)
1252 {
1253 for (i=r->N;i;i--)
1254 {
1255 if (p_GetExp(p,i, r)!=0)
1256 {
1257 if((k!=-1)&&(k!=i)) return 0;
1258 k=i;
1259 }
1260 }
1261 pIter(p);
1262 }
1263 return k;
1264}

◆ p_Jet()

poly p_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4451 of file p_polys.cc.

4452{
4453 while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R);
4454 if (p==NULL) return NULL;
4455 poly r=p;
4456 while (pNext(p)!=NULL)
4457 {
4458 if (p_Totaldegree(pNext(p),R)>m)
4459 {
4460 p_LmDelete(&pNext(p),R);
4461 }
4462 else
4463 pIter(p);
4464 }
4465 return r;
4466}

◆ p_JetW()

poly p_JetW ( poly  p,
int  m,
int *  w,
const ring  R 
)

Definition at line 4495 of file p_polys.cc.

4496{
4497 while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R);
4498 if (p==NULL) return NULL;
4499 poly r=p;
4500 while (pNext(p)!=NULL)
4501 {
4503 {
4504 p_LmDelete(&pNext(p),R);
4505 }
4506 else
4507 pIter(p);
4508 }
4509 return r;
4510}

◆ p_Last()

poly p_Last ( const poly  a,
int &  l,
const ring  r 
)

Definition at line 4686 of file p_polys.cc.

4687{
4688 if (p == NULL)
4689 {
4690 l = 0;
4691 return NULL;
4692 }
4693 l = 1;
4694 poly a = p;
4695 if (! rIsSyzIndexRing(r))
4696 {
4697 poly next = pNext(a);
4698 while (next!=NULL)
4699 {
4700 a = next;
4701 next = pNext(a);
4702 l++;
4703 }
4704 }
4705 else
4706 {
4707 long unsigned curr_limit = rGetCurrSyzLimit(r);
4708 poly pp = a;
4709 while ((a=pNext(a))!=NULL)
4710 {
4711 if (__p_GetComp(a,r)<=curr_limit/*syzComp*/)
4712 l++;
4713 else break;
4714 pp = a;
4715 }
4716 a=pp;
4717 }
4718 return a;
4719}
ListNode * next
Definition: janet.h:31
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:724
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:721

◆ p_Lcm() [1/2]

poly p_Lcm ( const poly  a,
const poly  b,
const ring  r 
)

Definition at line 1660 of file p_polys.cc.

1661{
1662 poly m=p_Init(r);
1663 p_Lcm(a, b, m, r);
1664 p_Setm(m,r);
1665 return(m);
1666}
void p_Lcm(const poly a, const poly b, poly m, const ring r)
Definition: p_polys.cc:1651

◆ p_Lcm() [2/2]

void p_Lcm ( const poly  a,
const poly  b,
poly  m,
const ring  r 
)

Definition at line 1651 of file p_polys.cc.

1652{
1653 for (int i=r->N; i; --i)
1654 p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r);
1655
1656 p_SetComp(m, si_max(p_GetComp(a,r), p_GetComp(b,r)),r);
1657 /* Don't do a pSetm here, otherwise hres/lres chockes */
1658}
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:247

◆ p_LcmRat()

poly p_LcmRat ( const poly  a,
const poly  b,
const long  lCompM,
const ring  r 
)

Definition at line 1673 of file p_polys.cc.

1674{
1675 poly m = // p_One( r);
1676 p_Init(r);
1677
1678// const int (currRing->N) = r->N;
1679
1680 // for (int i = (currRing->N); i>=r->real_var_start; i--)
1681 for (int i = r->real_var_end; i>=r->real_var_start; i--)
1682 {
1683 const int lExpA = p_GetExp (a, i, r);
1684 const int lExpB = p_GetExp (b, i, r);
1685
1686 p_SetExp (m, i, si_max(lExpA, lExpB), r);
1687 }
1688
1689 p_SetComp (m, lCompM, r);
1690 p_Setm(m,r);
1691 n_New(&(p_GetCoeff(m, r)), r);
1692
1693 return(m);
1694};
#define n_New(n, r)
Definition: coeffs.h:440

◆ p_LDeg()

static long p_LDeg ( const poly  p,
int *  l,
const ring  r 
)
inlinestatic

Definition at line 381 of file p_polys.h.

381{ return r->pLDeg(p,l,r); }

◆ p_LmCheckIsFromRing()

BOOLEAN p_LmCheckIsFromRing ( poly  p,
ring  r 
)

Definition at line 71 of file pDebug.cc.

72{
73 if (p != NULL)
74 {
75 #if (OM_TRACK > 0) && defined(OM_TRACK_CUSTOM)
76 void* custom = omGetCustomOfAddr(p);
77 if (custom != NULL)
78 {
79 pPolyAssumeReturnMsg(custom == r ||
80 // be more sloppy for qrings
81 (r->qideal != NULL &&
83 omSizeWOfAddr(p)==omSizeWOfBin(r->PolyBin)) ||
84 rSamePolyRep((ring) custom, r),
85 "monomial not from specified ring",p,r);
86 return TRUE;
87 }
88 else
89 #endif
90 #ifndef X_OMALLOC
91 {
94 return TRUE;
95 }
96 return FALSE;
97 #endif
98 }
99 return TRUE;
100}
#define pPolyAssumeReturnMsg(cond, msg)
Definition: monomials.h:137
#define _pPolyAssumeReturn(cond, p, r)
Definition: monomials.h:101
#define omIsBinPageAddr(addr)
Definition: omBinPage.h:68
#define omSizeWOfAddr(P)
Definition: xalloc.h:223

◆ p_LmCheckPolyRing()

BOOLEAN p_LmCheckPolyRing ( poly  p,
ring  r 
)

Definition at line 120 of file pDebug.cc.

121{
122 #ifndef X_OMALLOC
123 pAssumeReturn(r != NULL && r->PolyBin != NULL);
124 #endif
125 pAssumeReturn(p != NULL);
126 return p_LmCheckIsFromRing(p, r);
127}

◆ p_LmCmp()

static int p_LmCmp ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1580 of file p_polys.h.

1581{
1583 p_LmCheckPolyRing1(q, r);
1584
1585 const unsigned long* _s1 = ((unsigned long*) p->exp);
1586 const unsigned long* _s2 = ((unsigned long*) q->exp);
1587 REGISTER unsigned long _v1;
1588 REGISTER unsigned long _v2;
1589 const unsigned long _l = r->CmpL_Size;
1590
1591 REGISTER unsigned long _i=0;
1592
1593 LengthGeneral_OrdGeneral_LoopTop:
1594 _v1 = _s1[_i];
1595 _v2 = _s2[_i];
1596 if (_v1 == _v2)
1597 {
1598 _i++;
1599 if (_i == _l) return 0;
1600 goto LengthGeneral_OrdGeneral_LoopTop;
1601 }
1602 const long* _ordsgn = (long*) r->ordsgn;
1603#if 1 /* two variants*/
1604 if (_v1 > _v2)
1605 {
1606 return _ordsgn[_i];
1607 }
1608 return -(_ordsgn[_i]);
1609#else
1610 if (_v1 > _v2)
1611 {
1612 if (_ordsgn[_i] == 1) return 1;
1613 return -1;
1614 }
1615 if (_ordsgn[_i] == 1) return -1;
1616 return 1;
1617#endif
1618}
if(yy_init)
Definition: libparse.cc:1420
#define REGISTER
Definition: omalloc.h:27

◆ p_LmDelete() [1/2]

static void p_LmDelete ( poly *  p,
const ring  r 
)
inlinestatic

Definition at line 743 of file p_polys.h.

744{
746 poly h = *p;
747 *p = pNext(h);
748 n_Delete(&pGetCoeff(h), r->cf);
749 #ifdef XALLOC_BIN
750 omFreeBin(h,r->PolyBin);
751 #else
753 #endif
754}
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258

◆ p_LmDelete() [2/2]

static void p_LmDelete ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 723 of file p_polys.h.

724{
726 n_Delete(&pGetCoeff(p), r->cf);
727 #ifdef XALLOC_BIN
728 omFreeBin(p,r->PolyBin);
729 #else
731 #endif
732}

◆ p_LmDelete0()

static void p_LmDelete0 ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 733 of file p_polys.h.

734{
736 if (pGetCoeff(p)!=NULL) n_Delete(&pGetCoeff(p), r->cf);
737 #ifdef XALLOC_BIN
738 omFreeBin(p,r->PolyBin);
739 #else
741 #endif
742}

◆ p_LmDeleteAndNext()

static poly p_LmDeleteAndNext ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 755 of file p_polys.h.

756{
758 poly pnext = pNext(p);
759 n_Delete(&pGetCoeff(p), r->cf);
760 #ifdef XALLOC_BIN
761 omFreeBin(p,r->PolyBin);
762 #else
764 #endif
765 return pnext;
766}

◆ p_LmDeleteAndNextRat()

void p_LmDeleteAndNextRat ( poly *  p,
int  ishift,
ring  r 
)

Definition at line 1696 of file p_polys.cc.

1697{
1698 /* modifies p*/
1699 // Print("start: "); Print(" "); p_wrp(*p,r);
1700 p_LmCheckPolyRing2(*p, r);
1701 poly q = p_Head(*p,r);
1702 const long cmp = p_GetComp(*p, r);
1703 while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) )
1704 {
1705 p_LmDelete(p,r);
1706 // Print("while: ");p_wrp(*p,r);Print(" ");
1707 }
1708 // p_wrp(*p,r);Print(" ");
1709 // PrintS("end\n");
1710 p_LmDelete(&q,r);
1711}

◆ p_LmDivisibleBy() [1/2]

static BOOLEAN p_LmDivisibleBy ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1930 of file p_polys.h.

1931{
1932 p_LmCheckPolyRing(a, r_a);
1933 p_LmCheckPolyRing(b, r_b);
1934 return _p_LmDivisibleBy(a, r_a, b, r_b);
1935}

◆ p_LmDivisibleBy() [2/2]

static BOOLEAN p_LmDivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1903 of file p_polys.h.

1904{
1906 pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r));
1907 if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1908 return _p_LmDivisibleByNoComp(a, b, r);
1909 return FALSE;
1910}

◆ p_LmDivisibleByNoComp() [1/2]

static BOOLEAN p_LmDivisibleByNoComp ( poly  a,
const ring  ra,
poly  b,
const ring  rb 
)
inlinestatic

Definition at line 1896 of file p_polys.h.

1897{
1898 p_LmCheckPolyRing1(a, ra);
1899 p_LmCheckPolyRing1(b, rb);
1900 return _p_LmDivisibleByNoComp(a, ra, b, rb);
1901}

◆ p_LmDivisibleByNoComp() [2/2]

static BOOLEAN p_LmDivisibleByNoComp ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1889 of file p_polys.h.

1890{
1891 p_LmCheckPolyRing1(a, r);
1893 return _p_LmDivisibleByNoComp(a, b, r);
1894}

◆ p_LmDivisibleByPart()

static BOOLEAN p_LmDivisibleByPart ( poly  a,
poly  b,
const ring  r,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1868 of file p_polys.h.

1869{
1871 pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r));
1872 if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1873 return _p_LmDivisibleByNoCompPart(a, r, b, r,start, end);
1874 return FALSE;
1875}

◆ p_LmExpVectorAddIsOk()

static BOOLEAN p_LmExpVectorAddIsOk ( const poly  p1,
const poly  p2,
const ring  r 
)
inlinestatic

Definition at line 2046 of file p_polys.h.

2048{
2049 p_LmCheckPolyRing(p1, r);
2050 p_LmCheckPolyRing(p2, r);
2051 unsigned long l1, l2, divmask = r->divmask;
2052 int i;
2053
2054 for (i=0; i<r->VarL_Size; i++)
2055 {
2056 l1 = p1->exp[r->VarL_Offset[i]];
2057 l2 = p2->exp[r->VarL_Offset[i]];
2058 // do the divisiblity trick
2059 if ( (l1 > ULONG_MAX - l2) ||
2060 (((l1 & divmask) ^ (l2 & divmask)) != ((l1 + l2) & divmask)))
2061 return FALSE;
2062 }
2063 return TRUE;
2064}

◆ p_LmFree() [1/2]

static void p_LmFree ( poly *  p,
ring   
)
inlinestatic

Definition at line 696 of file p_polys.h.

698{
700 poly h = *p;
701 *p = pNext(h);
702 #ifdef XALLOC_BIN
703 omFreeBin(h,r->PolyBin);
704 #else
706 #endif
707}

◆ p_LmFree() [2/2]

static void p_LmFree ( poly  p,
ring   
)
inlinestatic

Definition at line 683 of file p_polys.h.

685{
687 #ifdef XALLOC_BIN
688 omFreeBin(p,r->PolyBin);
689 #else
691 #endif
692}

◆ p_LmFreeAndNext()

static poly p_LmFreeAndNext ( poly  p,
ring   
)
inlinestatic

Definition at line 711 of file p_polys.h.

713{
715 poly pnext = pNext(p);
716 #ifdef XALLOC_BIN
717 omFreeBin(p,r->PolyBin);
718 #else
720 #endif
721 return pnext;
722}

◆ p_LmInit() [1/3]

static poly p_LmInit ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1335 of file p_polys.h.

1336{
1338 poly np;
1339 omTypeAllocBin(poly, np, r->PolyBin);
1340 p_SetRingOfLm(np, r);
1341 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1342 pNext(np) = NULL;
1343 pSetCoeff0(np, NULL);
1344 return np;
1345}

◆ p_LmInit() [2/3]

static poly p_LmInit ( poly  s_p,
const ring  s_r,
const ring  d_r 
)
inlinestatic

Definition at line 1363 of file p_polys.h.

1364{
1365 pAssume1(d_r != NULL);
1366 return p_LmInit(s_p, s_r, d_r, d_r->PolyBin);
1367}

◆ p_LmInit() [3/3]

static poly p_LmInit ( poly  s_p,
const ring  s_r,
const ring  d_r,
omBin  d_bin 
)
inlinestatic

Definition at line 1346 of file p_polys.h.

1347{
1348 p_LmCheckPolyRing1(s_p, s_r);
1349 p_CheckRing(d_r);
1350 pAssume1(d_r->N <= s_r->N);
1351 poly d_p = p_Init(d_r, d_bin);
1352 for (unsigned i=d_r->N; i!=0; i--)
1353 {
1354 p_SetExp(d_p, i, p_GetExp(s_p, i,s_r), d_r);
1355 }
1356 if (rRing_has_Comp(d_r))
1357 {
1358 p_SetComp(d_p, p_GetComp(s_p,s_r), d_r);
1359 }
1360 p_Setm(d_p, d_r);
1361 return d_p;
1362}
BOOLEAN p_CheckRing(ring r)
Definition: pDebug.cc:128

◆ p_LmIsConstant()

static BOOLEAN p_LmIsConstant ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1023 of file p_polys.h.

1024{
1025 if (p_LmIsConstantComp(p, r))
1026 return (p_GetComp(p, r) == 0);
1027 return FALSE;
1028}

◆ p_LmIsConstantComp()

static BOOLEAN p_LmIsConstantComp ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1006 of file p_polys.h.

1007{
1008 //p_LmCheckPolyRing(p, r);
1009 int i = r->VarL_Size - 1;
1010
1011 do
1012 {
1013 if (p->exp[r->VarL_Offset[i]] != 0)
1014 return FALSE;
1015 i--;
1016 }
1017 while (i >= 0);
1018 return TRUE;
1019}

◆ p_LmShallowCopyDelete()

static poly p_LmShallowCopyDelete ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1393 of file p_polys.h.

1394{
1396 pAssume1(omSizeWOfBin(bin) == omSizeWOfBin(r->PolyBin));
1397 poly new_p = p_New(r);
1398 memcpy(new_p->exp, p->exp, r->ExpL_Size*sizeof(long));
1399 pSetCoeff0(new_p, pGetCoeff(p));
1400 pNext(new_p) = pNext(p);
1402 return new_p;
1403}
static poly p_New(const ring, omBin bin)
Definition: p_polys.h:664

◆ p_LmShortDivisibleBy() [1/2]

static BOOLEAN p_LmShortDivisibleBy ( poly  a,
unsigned long  sev_a,
const ring  r_a,
poly  b,
unsigned long  not_sev_b,
const ring  r_b 
)
inlinestatic

Definition at line 1977 of file p_polys.h.

1979{
1980 p_LmCheckPolyRing1(a, r_a);
1981 p_LmCheckPolyRing1(b, r_b);
1982#ifndef PDIV_DEBUG
1983 _pPolyAssume2(p_GetShortExpVector(a, r_a) == sev_a, a, r_a);
1984 _pPolyAssume2(p_GetShortExpVector(b, r_b) == ~ not_sev_b, b, r_b);
1985
1986 if (sev_a & not_sev_b)
1987 {
1988 pAssume1(_p_LmDivisibleByNoComp(a, r_a, b, r_b) == FALSE);
1989 return FALSE;
1990 }
1991 return _p_LmDivisibleBy(a, r_a, b, r_b);
1992#else
1993 return pDebugLmShortDivisibleBy(a, sev_a, r_a, b, not_sev_b, r_b);
1994#endif
1995}
#define _pPolyAssume2(cond, p, r)
Definition: monomials.h:195
BOOLEAN pDebugLmShortDivisibleBy(poly p1, unsigned long sev_1, ring r_1, poly p2, unsigned long not_sev_2, ring r_2)
Definition: pDebug.cc:366
unsigned long p_GetShortExpVector(const poly a, const ring r)
Definition: p_polys.cc:4846

◆ p_LmShortDivisibleBy() [2/2]

static BOOLEAN p_LmShortDivisibleBy ( poly  a,
unsigned long  sev_a,
poly  b,
unsigned long  not_sev_b,
const ring  r 
)
inlinestatic

Definition at line 1937 of file p_polys.h.

1939{
1940 p_LmCheckPolyRing1(a, r);
1942#ifndef PDIV_DEBUG
1943 _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1944 _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1945
1946 if (sev_a & not_sev_b)
1947 {
1949 return FALSE;
1950 }
1951 return p_LmDivisibleBy(a, b, r);
1952#else
1953 return pDebugLmShortDivisibleBy(a, sev_a, r, b, not_sev_b, r);
1954#endif
1955}
static BOOLEAN p_LmDivisibleByNoComp(poly a, poly b, const ring r)
Definition: p_polys.h:1889
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1903

◆ p_LmShortDivisibleByNoComp()

static BOOLEAN p_LmShortDivisibleByNoComp ( poly  a,
unsigned long  sev_a,
poly  b,
unsigned long  not_sev_b,
const ring  r 
)
inlinestatic

Definition at line 1957 of file p_polys.h.

1959{
1960 p_LmCheckPolyRing1(a, r);
1962#ifndef PDIV_DEBUG
1963 _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1964 _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1965
1966 if (sev_a & not_sev_b)
1967 {
1969 return FALSE;
1970 }
1971 return p_LmDivisibleByNoComp(a, b, r);
1972#else
1973 return pDebugLmShortDivisibleByNoComp(a, sev_a, r, b, not_sev_b, r);
1974#endif
1975}
BOOLEAN pDebugLmShortDivisibleByNoComp(poly p1, unsigned long sev_1, ring r_1, poly p2, unsigned long not_sev_2, ring r_2)
Definition: pDebug.cc:389

◆ p_LowVar()

int p_LowVar ( poly  p,
const ring  r 
)

the minimal index of used variables - 1

Definition at line 4745 of file p_polys.cc.

4746{
4747 int k,l,lex;
4748
4749 if (p == NULL) return -1;
4750
4751 k = 32000;/*a very large dummy value*/
4752 while (p != NULL)
4753 {
4754 l = 1;
4755 lex = p_GetExp(p,l,r);
4756 while ((l < (rVar(r))) && (lex == 0))
4757 {
4758 l++;
4759 lex = p_GetExp(p,l,r);
4760 }
4761 l--;
4762 if (l < k) k = l;
4763 pIter(p);
4764 }
4765 return k;
4766}

◆ p_LtCmp()

static int p_LtCmp ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1621 of file p_polys.h.

1622{
1623 int res = p_LmCmp(p,q,r);
1624 if(res == 0)
1625 {
1626 if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1627 return res;
1628 number pc = n_Copy(p_GetCoeff(p,r),r->cf);
1629 number qc = n_Copy(p_GetCoeff(q,r),r->cf);
1630 if(!n_GreaterZero(pc,r->cf))
1631 pc = n_InpNeg(pc,r->cf);
1632 if(!n_GreaterZero(qc,r->cf))
1633 qc = n_InpNeg(qc,r->cf);
1634 if(n_Greater(pc,qc,r->cf))
1635 res = 1;
1636 else if(n_Greater(qc,pc,r->cf))
1637 res = -1;
1638 else if(n_Equal(pc,qc,r->cf))
1639 res = 0;
1640 n_Delete(&pc,r->cf);
1641 n_Delete(&qc,r->cf);
1642 }
1643 return res;
1644}
static FORCE_INLINE BOOLEAN n_Greater(number a, number b, const coeffs r)
ordered fields: TRUE iff 'a' is larger than 'b'; in Z/pZ: TRUE iff la > lb, where la and lb are the l...
Definition: coeffs.h:511

◆ p_LtCmpNoAbs()

static int p_LtCmpNoAbs ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1647 of file p_polys.h.

1648{
1649 int res = p_LmCmp(p,q,r);
1650 if(res == 0)
1651 {
1652 if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1653 return res;
1654 number pc = p_GetCoeff(p,r);
1655 number qc = p_GetCoeff(q,r);
1656 if(n_Greater(pc,qc,r->cf))
1657 res = 1;
1658 if(n_Greater(qc,pc,r->cf))
1659 res = -1;
1660 if(n_Equal(pc,qc,r->cf))
1661 res = 0;
1662 }
1663 return res;
1664}

◆ p_LtCmpOrdSgnDiffM()

static int p_LtCmpOrdSgnDiffM ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1669 of file p_polys.h.

1670{
1671 if(r->OrdSgn == 1)
1672 {
1673 return(p_LtCmp(p,q,r) == 1);
1674 }
1675 else
1676 {
1677 return(p_LmCmp(p,q,r) == -1);
1678 }
1679}
static int p_LtCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1621

◆ p_LtCmpOrdSgnDiffP()

static int p_LtCmpOrdSgnDiffP ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1685 of file p_polys.h.

1686{
1687 if(r->OrdSgn == 1)
1688 {
1689 return(p_LmCmp(p,q,r) == -1);
1690 }
1691 else
1692 {
1693 return(p_LtCmp(p,q,r) != -1);
1694 }
1695
1696}

◆ p_LtCmpOrdSgnEqM()

static int p_LtCmpOrdSgnEqM ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1702 of file p_polys.h.

1703{
1704 return(p_LtCmp(p,q,r) == -r->OrdSgn);
1705}

◆ p_LtCmpOrdSgnEqP()

static int p_LtCmpOrdSgnEqP ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1711 of file p_polys.h.

1712{
1713 return(p_LtCmp(p,q,r) == r->OrdSgn);
1714}

◆ p_MaxComp() [1/2]

static long p_MaxComp ( poly  p,
ring  lmRing 
)
inlinestatic

Definition at line 311 of file p_polys.h.

311{return p_MaxComp(p,lmRing,lmRing);}
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:292

◆ p_MaxComp() [2/2]

static long p_MaxComp ( poly  p,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 292 of file p_polys.h.

293{
294 long result,i;
295
296 if(p==NULL) return 0;
297 result = p_GetComp(p, lmRing);
298 if (result != 0)
299 {
300 loop
301 {
302 pIter(p);
303 if(p==NULL) break;
304 i = p_GetComp(p, tailRing);
305 if (i>result) result = i;
306 }
307 }
308 return result;
309}

◆ p_MaxExpPerVar()

int p_MaxExpPerVar ( poly  p,
int  i,
const ring  r 
)

max exponent of variable x_i in p

Definition at line 5068 of file p_polys.cc.

5069{
5070 int m=0;
5071 while(p!=NULL)
5072 {
5073 int mm=p_GetExp(p,i,r);
5074 if (mm>m) m=mm;
5075 pIter(p);
5076 }
5077 return m;
5078}

◆ p_MDivide()

poly p_MDivide ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1488 of file p_polys.cc.

1489{
1490 assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0));
1491 int i;
1492 poly result = p_Init(r);
1493
1494 for(i=(int)r->N; i; i--)
1495 p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r);
1496 p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r);
1497 p_Setm(result,r);
1498 return result;
1499}

◆ p_MemAdd_NegWeightAdjust()

static void p_MemAdd_NegWeightAdjust ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1292 of file p_polys.h.

1293{
1294 if (r->NegWeightL_Offset != NULL)
1295 {
1296 for (int i=r->NegWeightL_Size-1; i>=0; i--)
1297 {
1298 p->exp[r->NegWeightL_Offset[i]] -= POLY_NEGWEIGHT_OFFSET;
1299 }
1300 }
1301}

◆ p_MemSub_NegWeightAdjust()

static void p_MemSub_NegWeightAdjust ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1302 of file p_polys.h.

1303{
1304 if (r->NegWeightL_Offset != NULL)
1305 {
1306 for (int i=r->NegWeightL_Size-1; i>=0; i--)
1307 {
1308 p->exp[r->NegWeightL_Offset[i]] += POLY_NEGWEIGHT_OFFSET;
1309 }
1310 }
1311}

◆ p_Merge_q()

static poly p_Merge_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1212 of file p_polys.h.

1213{
1214 assume( (p != q) || (p == NULL && q == NULL) );
1215 return r->p_Procs->p_Merge_q(p, q, r);
1216}

◆ p_MinComp() [1/2]

static long p_MinComp ( poly  p,
ring  lmRing 
)
inlinestatic

Definition at line 332 of file p_polys.h.

332{return p_MinComp(p,lmRing,lmRing);}
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:313

◆ p_MinComp() [2/2]

static long p_MinComp ( poly  p,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 313 of file p_polys.h.

314{
315 long result,i;
316
317 if(p==NULL) return 0;
318 result = p_GetComp(p,lmRing);
319 if (result != 0)
320 {
321 loop
322 {
323 pIter(p);
324 if(p==NULL) break;
325 i = p_GetComp(p,tailRing);
326 if (i<result) result = i;
327 }
328 }
329 return result;
330}

◆ p_MinDeg()

int p_MinDeg ( poly  p,
intvec w,
const ring  R 
)

Definition at line 4513 of file p_polys.cc.

4514{
4515 if(p==NULL)
4516 return -1;
4517 int d=-1;
4518 while(p!=NULL)
4519 {
4520 int d0=0;
4521 for(int j=0;j<rVar(R);j++)
4522 if(w==NULL||j>=w->length())
4523 d0+=p_GetExp(p,j+1,R);
4524 else
4525 d0+=(*w)[j]*p_GetExp(p,j+1,R);
4526 if(d0<d||d==-1)
4527 d=d0;
4528 pIter(p);
4529 }
4530 return d;
4531}

◆ p_mInit()

poly p_mInit ( const char *  s,
BOOLEAN ok,
const ring  r 
)

Definition at line 1442 of file p_polys.cc.

1443{
1444 poly p;
1445 const char *s=p_Read(st,p,r);
1446 if (*s!='\0')
1447 {
1448 if ((s!=st)&&isdigit(st[0]))
1449 {
1451 }
1452 ok=FALSE;
1453 if (p!=NULL)
1454 {
1455 if (pGetCoeff(p)==NULL) p_LmFree(p,r);
1456 else p_LmDelete(p,r);
1457 }
1458 return NULL;
1459 }
1460 p_Test(p,r);
1461 ok=!errorreported;
1462 return p;
1463}
VAR short errorreported
Definition: feFopen.cc:23
const char * p_Read(const char *st, poly &rc, const ring r)
Definition: p_polys.cc:1370

◆ p_Minus_mm_Mult_qq() [1/2]

static poly p_Minus_mm_Mult_qq ( poly  p,
const poly  m,
const poly  q,
const ring  r 
)
inlinestatic

Definition at line 1081 of file p_polys.h.

1082{
1083 int shorter;
1084
1085 return r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
1086}

◆ p_Minus_mm_Mult_qq() [2/2]

static poly p_Minus_mm_Mult_qq ( poly  p,
const poly  m,
const poly  q,
int &  lp,
int  lq,
const poly  spNoether,
const ring  r 
)
inlinestatic

Definition at line 1070 of file p_polys.h.

1072{
1073 int shorter;
1074 const poly res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, spNoether, r);
1075 lp += lq - shorter;
1076// assume( lp == pLength(res) );
1077 return res;
1078}

◆ p_mm_Mult()

static poly p_mm_Mult ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1061 of file p_polys.h.

1062{
1063 if (p==NULL) return NULL;
1064 if (p_LmIsConstant(m, r))
1065 return __p_Mult_nn(p, pGetCoeff(m), r);
1066 else
1067 return r->p_Procs->p_mm_Mult(p, m, r);
1068}

◆ p_Mult_mm()

static poly p_Mult_mm ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1051 of file p_polys.h.

1052{
1053 if (p==NULL) return NULL;
1054 if (p_LmIsConstant(m, r))
1055 return __p_Mult_nn(p, pGetCoeff(m), r);
1056 else
1057 return r->p_Procs->p_Mult_mm(p, m, r);
1058}

◆ p_Mult_nn() [1/2]

static poly p_Mult_nn ( poly  p,
number  n,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

Definition at line 973 of file p_polys.h.

975{
976 assume(p!=NULL);
977#ifndef PDEBUG
978 if (lmRing == tailRing)
979 return p_Mult_nn(p, n, tailRing);
980#endif
981 poly pnext = pNext(p);
982 pNext(p) = NULL;
983 p = lmRing->p_Procs->p_Mult_nn(p, n, lmRing);
984 if (pnext!=NULL)
985 {
986 pNext(p) = tailRing->p_Procs->p_Mult_nn(pnext, n, tailRing);
987 }
988 return p;
989}
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:958

◆ p_Mult_nn() [2/2]

static poly p_Mult_nn ( poly  p,
number  n,
const ring  r 
)
inlinestatic

Definition at line 958 of file p_polys.h.

959{
960 if (p==NULL) return NULL;
961 if (n_IsOne(n, r->cf))
962 return p;
963 else if (n_IsZero(n, r->cf))
964 {
965 p_Delete(&p, r); // NOTE: without p_Delete - memory leak!
966 return NULL;
967 }
968 else
969 return r->p_Procs->p_Mult_nn(p, n, r);
970}

◆ p_Mult_q()

static poly p_Mult_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1114 of file p_polys.h.

1115{
1116 assume( (p != q) || (p == NULL && q == NULL) );
1117
1118 if (p == NULL)
1119 {
1120 p_Delete(&q, r);
1121 return NULL;
1122 }
1123 if (q == NULL)
1124 {
1125 p_Delete(&p, r);
1126 return NULL;
1127 }
1128
1129 if (pNext(p) == NULL)
1130 {
1131 q = r->p_Procs->p_mm_Mult(q, p, r);
1132 p_LmDelete(&p, r);
1133 return q;
1134 }
1135
1136 if (pNext(q) == NULL)
1137 {
1138 p = r->p_Procs->p_Mult_mm(p, q, r);
1139 p_LmDelete(&q, r);
1140 return p;
1141 }
1142#if defined(HAVE_PLURAL) || defined(HAVE_SHIFTBBA)
1143 if (rIsNCRing(r))
1144 return _nc_p_Mult_q(p, q, r);
1145 else
1146#endif
1147 return _p_Mult_q(p, q, 0, r);
1148}
poly _nc_p_Mult_q(poly p, poly q, const ring r)
general NC-multiplication with destruction
Definition: old.gring.cc:215
poly _p_Mult_q(poly p, poly q, const int copy, const ring r)
Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2,...
Definition: p_Mult_q.cc:313

◆ p_MultExp()

static long p_MultExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 621 of file p_polys.h.

622{
624 long e = p_GetExp(p,v,r);
625 e *= ee;
626 return p_SetExp(p,v,e,r);
627}

◆ p_Neg()

static poly p_Neg ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1107 of file p_polys.h.

1108{
1109 return r->p_Procs->p_Neg(p, r);
1110}

◆ p_New() [1/2]

static poly p_New ( const  ring,
omBin  bin 
)
inlinestatic

Definition at line 664 of file p_polys.h.

666{
667 p_CheckRing2(r);
668 pAssume2(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
669 poly p;
670 omTypeAllocBin(poly, p, bin);
671 p_SetRingOfLm(p, r);
672 return p;
673}
#define p_CheckRing2(r)
Definition: monomials.h:200

◆ p_New() [2/2]

static poly p_New ( ring  r)
inlinestatic

Definition at line 675 of file p_polys.h.

676{
677 return p_New(r, r->PolyBin);
678}

◆ p_Norm()

void p_Norm ( poly  p1,
const ring  r 
)

Definition at line 3797 of file p_polys.cc.

3798{
3799 if (rField_is_Ring(r))
3800 {
3801 if(!n_GreaterZero(pGetCoeff(p1),r->cf)) p1 = p_Neg(p1,r);
3802 if (!n_IsUnit(pGetCoeff(p1), r->cf)) return;
3803 // Werror("p_Norm not possible in the case of coefficient rings.");
3804 }
3805 else if (p1!=NULL)
3806 {
3807 if (pNext(p1)==NULL)
3808 {
3809 p_SetCoeff(p1,n_Init(1,r->cf),r);
3810 return;
3811 }
3812 if (!n_IsOne(pGetCoeff(p1),r->cf))
3813 {
3814 number k, c;
3815 n_Normalize(pGetCoeff(p1),r->cf);
3816 k = pGetCoeff(p1);
3817 c = n_Init(1,r->cf);
3818 pSetCoeff0(p1,c);
3819 poly h = pNext(p1);
3820 if (rField_is_Zp(r))
3821 {
3822 if (r->cf->ch>32003)
3823 {
3824 number inv=n_Invers(k,r->cf);
3825 while (h!=NULL)
3826 {
3827 c=n_Mult(pGetCoeff(h),inv,r->cf);
3828 // no need to normalize
3829 p_SetCoeff(h,c,r);
3830 pIter(h);
3831 }
3832 n_Delete(&inv,r->cf);
3833 }
3834 else
3835 {
3836 while (h!=NULL)
3837 {
3838 c=n_Div(pGetCoeff(h),k,r->cf);
3839 // no need to normalize
3840 p_SetCoeff(h,c,r);
3841 pIter(h);
3842 }
3843 }
3844 }
3845 else
3846 {
3847 while (h!=NULL)
3848 {
3849 c=n_Div(pGetCoeff(h),k,r->cf);
3850 // no need to normalize: Z/p, R
3851 // normalize already in nDiv: Q_a, Z/p_a
3852 // remains: Q
3853 if (rField_is_Q(r) && (!n_IsOne(c,r->cf))) n_Normalize(c,r->cf);
3854 p_SetCoeff(h,c,r);
3855 pIter(h);
3856 }
3857 }
3858 n_Delete(&k,r->cf);
3859 }
3860 else
3861 {
3862 //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE
3863 if (rField_is_Q(r))
3864 {
3865 poly h = pNext(p1);
3866 while (h!=NULL)
3867 {
3868 n_Normalize(pGetCoeff(h),r->cf);
3869 pIter(h);
3870 }
3871 }
3872 }
3873 }
3874}

◆ p_Normalize()

void p_Normalize ( poly  p,
const ring  r 
)

Definition at line 3879 of file p_polys.cc.

3880{
3881 if ((rField_has_simple_inverse(r)) /* Z/p, GF(p,n), R, long R/C */
3882 || (r->cf->cfNormalize==ndNormalize)) /* Nemo rings, ...*/
3883 return;
3884 while (p!=NULL)
3885 {
3886 // no test befor n_Normalize: n_Normalize should fix problems
3887 n_Normalize(pGetCoeff(p),r->cf);
3888 pIter(p);
3889 }
3890}
void ndNormalize(number &, const coeffs)
Definition: numbers.cc:163
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition: ring.h:549

◆ p_NSet()

poly p_NSet ( number  n,
const ring  r 
)

returns the poly representing the number n, destroys n

Definition at line 1469 of file p_polys.cc.

1470{
1471 if (n_IsZero(n,r->cf))
1472 {
1473 n_Delete(&n, r->cf);
1474 return NULL;
1475 }
1476 else
1477 {
1478 poly rc = p_Init(r);
1479 pSetCoeff0(rc,n);
1480 return rc;
1481 }
1482}

◆ p_One()

poly p_One ( const ring  r)

Definition at line 1313 of file p_polys.cc.

1314{
1315 poly rc = p_Init(r);
1316 pSetCoeff0(rc,n_Init(1,r->cf));
1317 return rc;
1318}

◆ p_OneComp()

BOOLEAN p_OneComp ( poly  p,
const ring  r 
)

return TRUE if all monoms have the same component

Definition at line 1208 of file p_polys.cc.

1209{
1210 if(p!=NULL)
1211 {
1212 long i = p_GetComp(p, r);
1213 while (pNext(p)!=NULL)
1214 {
1215 pIter(p);
1216 if(i != p_GetComp(p, r)) return FALSE;
1217 }
1218 }
1219 return TRUE;
1220}

◆ p_PermPoly()

poly p_PermPoly ( poly  p,
const int *  perm,
const ring  OldRing,
const ring  dst,
nMapFunc  nMap,
const int *  par_perm = NULL,
int  OldPar = 0,
BOOLEAN  use_mult = FALSE 
)

Definition at line 4195 of file p_polys.cc.

4197{
4198#if 0
4199 p_Test(p, oldRing);
4200 PrintS("p_PermPoly::p: "); p_Write(p, oldRing, oldRing);
4201#endif
4202 const int OldpVariables = rVar(oldRing);
4203 poly result = NULL;
4204 poly result_last = NULL;
4205 poly aq = NULL; /* the map coefficient */
4206 poly qq; /* the mapped monomial */
4207 assume(dst != NULL);
4208 assume(dst->cf != NULL);
4209 #ifdef HAVE_PLURAL
4210 poly tmp_mm=p_One(dst);
4211 #endif
4212 while (p != NULL)
4213 {
4214 // map the coefficient
4215 if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing) || (nMap==ndCopyMap))
4216 && (nMap != NULL) )
4217 {
4218 qq = p_Init(dst);
4219 assume( nMap != NULL );
4220 number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf);
4221 n_Test (n,dst->cf);
4222 if ( nCoeff_is_algExt(dst->cf) )
4223 n_Normalize(n, dst->cf);
4224 p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!!
4225 }
4226 else
4227 {
4228 qq = p_One(dst);
4229// aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst???
4230// poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst)
4231 aq = n_PermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing, dst);
4232 p_Test(aq, dst);
4233 if ( nCoeff_is_algExt(dst->cf) )
4234 p_Normalize(aq,dst);
4235 if (aq == NULL)
4236 p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!!
4237 p_Test(aq, dst);
4238 }
4239 if (rRing_has_Comp(dst))
4240 p_SetComp(qq, p_GetComp(p, oldRing), dst);
4241 if ( n_IsZero(pGetCoeff(qq), dst->cf) )
4242 {
4243 p_LmDelete(&qq,dst);
4244 qq = NULL;
4245 }
4246 else
4247 {
4248 // map pars:
4249 int mapped_to_par = 0;
4250 for(int i = 1; i <= OldpVariables; i++)
4251 {
4252 int e = p_GetExp(p, i, oldRing);
4253 if (e != 0)
4254 {
4255 if (perm==NULL)
4256 p_SetExp(qq, i, e, dst);
4257 else if (perm[i]>0)
4258 {
4259 #ifdef HAVE_PLURAL
4260 if(use_mult)
4261 {
4262 p_SetExp(tmp_mm,perm[i],e,dst);
4263 p_Setm(tmp_mm,dst);
4264 qq=p_Mult_mm(qq,tmp_mm,dst);
4265 p_SetExp(tmp_mm,perm[i],0,dst);
4266
4267 }
4268 else
4269 #endif
4270 p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst);
4271 }
4272 else if (perm[i]<0)
4273 {
4274 number c = p_GetCoeff(qq, dst);
4275 if (rField_is_GF(dst))
4276 {
4277 assume( dst->cf->extRing == NULL );
4278 number ee = n_Param(1, dst);
4279 number eee;
4280 n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst);
4281 ee = n_Mult(c, eee, dst->cf);
4282 //nfDelete(c,dst);nfDelete(eee,dst);
4283 pSetCoeff0(qq,ee);
4284 }
4285 else if (nCoeff_is_Extension(dst->cf))
4286 {
4287 const int par = -perm[i];
4288 assume( par > 0 );
4289// WarnS("longalg missing 3");
4290#if 1
4291 const coeffs C = dst->cf;
4292 assume( C != NULL );
4293 const ring R = C->extRing;
4294 assume( R != NULL );
4295 assume( par <= rVar(R) );
4296 poly pcn; // = (number)c
4297 assume( !n_IsZero(c, C) );
4298 if( nCoeff_is_algExt(C) )
4299 pcn = (poly) c;
4300 else // nCoeff_is_transExt(C)
4301 pcn = NUM((fraction)c);
4302 if (pNext(pcn) == NULL) // c->z
4303 p_AddExp(pcn, -perm[i], e, R);
4304 else /* more difficult: we have really to multiply: */
4305 {
4306 poly mmc = p_ISet(1, R);
4307 p_SetExp(mmc, -perm[i], e, R);
4308 p_Setm(mmc, R);
4309 number nnc;
4310 // convert back to a number: number nnc = mmc;
4311 if( nCoeff_is_algExt(C) )
4312 nnc = (number) mmc;
4313 else // nCoeff_is_transExt(C)
4314 nnc = ntInit(mmc, C);
4315 p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C);
4316 n_Delete((number *)&c, C);
4317 n_Delete((number *)&nnc, C);
4318 }
4319 mapped_to_par=1;
4320#endif
4321 }
4322 }
4323 else
4324 {
4325 /* this variable maps to 0 !*/
4326 p_LmDelete(&qq, dst);
4327 break;
4328 }
4329 }
4330 }
4331 if ( mapped_to_par && (qq!= NULL) && nCoeff_is_algExt(dst->cf) )
4332 {
4333 number n = p_GetCoeff(qq, dst);
4334 n_Normalize(n, dst->cf);
4335 p_GetCoeff(qq, dst) = n;
4336 }
4337 }
4338 pIter(p);
4339
4340#if 0
4341 p_Test(aq,dst);
4342 PrintS("aq: "); p_Write(aq, dst, dst);
4343#endif
4344
4345
4346#if 1
4347 if (qq!=NULL)
4348 {
4349 p_Setm(qq,dst);
4350
4351 p_Test(aq,dst);
4352 p_Test(qq,dst);
4353
4354#if 0
4355 PrintS("qq: "); p_Write(qq, dst, dst);
4356#endif
4357
4358 if (aq!=NULL)
4359 qq=p_Mult_q(aq,qq,dst);
4360 aq = qq;
4361 while (pNext(aq) != NULL) pIter(aq);
4362 if (result_last==NULL)
4363 {
4364 result=qq;
4365 }
4366 else
4367 {
4368 pNext(result_last)=qq;
4369 }
4370 result_last=aq;
4371 aq = NULL;
4372 }
4373 else if (aq!=NULL)
4374 {
4375 p_Delete(&aq,dst);
4376 }
4377 }
4378 result=p_SortAdd(result,dst);
4379#else
4380 // if (qq!=NULL)
4381 // {
4382 // pSetm(qq);
4383 // pTest(qq);
4384 // pTest(aq);
4385 // if (aq!=NULL) qq=pMult(aq,qq);
4386 // aq = qq;
4387 // while (pNext(aq) != NULL) pIter(aq);
4388 // pNext(aq) = result;
4389 // aq = NULL;
4390 // result = qq;
4391 // }
4392 // else if (aq!=NULL)
4393 // {
4394 // pDelete(&aq);
4395 // }
4396 //}
4397 //p = result;
4398 //result = NULL;
4399 //while (p != NULL)
4400 //{
4401 // qq = p;
4402 // pIter(p);
4403 // qq->next = NULL;
4404 // result = pAdd(result, qq);
4405 //}
4406#endif
4407 p_Test(result,dst);
4408#if 0
4409 p_Test(result,dst);
4410 PrintS("result: "); p_Write(result,dst,dst);
4411#endif
4412 #ifdef HAVE_PLURAL
4413 p_LmDelete(&tmp_mm,dst);
4414 #endif
4415 return result;
4416}
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1....
Definition: coeffs.h:783
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
Definition: coeffs.h:846
number ndCopyMap(number a, const coeffs src, const coeffs dst)
Definition: numbers.cc:255
static FORCE_INLINE void n_Power(number a, int b, number *res, const coeffs r)
fill res with the power a^b
Definition: coeffs.h:632
poly n_PermNumber(const number z, const int *par_perm, const int, const ring src, const ring dst)
Definition: p_polys.cc:4092
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition: p_polys.cc:1297
poly p_One(const ring r)
Definition: p_polys.cc:1313
void p_Write(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:342
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition: p_polys.h:1051
static poly p_SortAdd(poly p, const ring r, BOOLEAN revert=FALSE)
Definition: p_polys.h:1219
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:522
number ntInit(long i, const coeffs cf)
Definition: transext.cc:704

◆ p_Plus_mm_Mult_qq() [1/2]

static poly p_Plus_mm_Mult_qq ( poly  p,
poly  m,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1205 of file p_polys.h.

1206{
1207 int lp = 0, lq = 0;
1208 return p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1209}
static poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, int &lp, int lq, const ring r)
Definition: p_polys.h:1183

◆ p_Plus_mm_Mult_qq() [2/2]

static poly p_Plus_mm_Mult_qq ( poly  p,
poly  m,
poly  q,
int &  lp,
int  lq,
const ring  r 
)
inlinestatic

Definition at line 1183 of file p_polys.h.

1185{
1186#ifdef HAVE_PLURAL
1187 if (rIsPluralRing(r))
1188 return nc_p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1189#endif
1190
1191// this should be implemented more efficiently
1192 poly res;
1193 int shorter;
1194 number n_old = pGetCoeff(m);
1195 number n_neg = n_Copy(n_old, r->cf);
1196 n_neg = n_InpNeg(n_neg, r->cf);
1197 pSetCoeff0(m, n_neg);
1198 res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
1199 lp = (lp + lq) - shorter;
1200 pSetCoeff0(m, n_old);
1201 n_Delete(&n_neg, r->cf);
1202 return res;
1203}
poly nc_p_Plus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, const int, const ring r)
Definition: old.gring.cc:168
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400

◆ p_PolyDiv()

poly p_PolyDiv ( poly &  p,
const poly  divisor,
const BOOLEAN  needResult,
const ring  r 
)

assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor:

  • afterwards p contains the remainder of the division, i.e., p_before = result * divisor + p_afterwards;
  • if needResult == TRUE, then the method computes and returns 'result', otherwise NULL is returned (This parametrization can be used when one is only interested in the remainder of the division. In this case, the method will be slightly faster.) leaves divisor unmodified

Definition at line 1866 of file p_polys.cc.

1867{
1868 assume(divisor != NULL);
1869 if (p == NULL) return NULL;
1870
1871 poly result = NULL;
1872 number divisorLC = p_GetCoeff(divisor, r);
1873 int divisorLE = p_GetExp(divisor, 1, r);
1874 while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r)))
1875 {
1876 /* determine t = LT(p) / LT(divisor) */
1877 poly t = p_ISet(1, r);
1878 number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf);
1879 n_Normalize(c,r->cf);
1880 p_SetCoeff(t, c, r);
1881 int e = p_GetExp(p, 1, r) - divisorLE;
1882 p_SetExp(t, 1, e, r);
1883 p_Setm(t, r);
1884 if (needResult) result = p_Add_q(result, p_Copy(t, r), r);
1885 p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r);
1886 }
1887 return result;
1888}
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:587

◆ p_Power()

poly p_Power ( poly  p,
int  i,
const ring  r 
)

Definition at line 2193 of file p_polys.cc.

2194{
2195 poly rc=NULL;
2196
2197 if (i==0)
2198 {
2199 p_Delete(&p,r);
2200 return p_One(r);
2201 }
2202
2203 if(p!=NULL)
2204 {
2205 if ( (i > 0) && ((unsigned long ) i > (r->bitmask))
2206 #ifdef HAVE_SHIFTBBA
2207 && (!rIsLPRing(r))
2208 #endif
2209 )
2210 {
2211 Werror("exponent %d is too large, max. is %ld",i,r->bitmask);
2212 return NULL;
2213 }
2214 switch (i)
2215 {
2216// cannot happen, see above
2217// case 0:
2218// {
2219// rc=pOne();
2220// pDelete(&p);
2221// break;
2222// }
2223 case 1:
2224 rc=p;
2225 break;
2226 case 2:
2227 rc=p_Mult_q(p_Copy(p,r),p,r);
2228 break;
2229 default:
2230 if (i < 0)
2231 {
2232 p_Delete(&p,r);
2233 return NULL;
2234 }
2235 else
2236 {
2237#ifdef HAVE_PLURAL
2238 if (rIsNCRing(r)) /* in the NC case nothing helps :-( */
2239 {
2240 int j=i;
2241 rc = p_Copy(p,r);
2242 while (j>1)
2243 {
2244 rc = p_Mult_q(p_Copy(p,r),rc,r);
2245 j--;
2246 }
2247 p_Delete(&p,r);
2248 return rc;
2249 }
2250#endif
2251 rc = pNext(p);
2252 if (rc == NULL)
2253 return p_MonPower(p,i,r);
2254 /* else: binom ?*/
2255 int char_p=rInternalChar(r);
2256 if ((char_p>0) && (i>char_p)
2257 && ((rField_is_Zp(r,char_p)
2258 || (rField_is_Zp_a(r,char_p)))))
2259 {
2260 poly h=p_Pow_charp(p_Copy(p,r),char_p,r);
2261 int rest=i-char_p;
2262 while (rest>=char_p)
2263 {
2264 rest-=char_p;
2265 h=p_Mult_q(h,p_Pow_charp(p_Copy(p,r),char_p,r),r);
2266 }
2267 poly res=h;
2268 if (rest>0)
2269 res=p_Mult_q(p_Power(p_Copy(p,r),rest,r),h,r);
2270 p_Delete(&p,r);
2271 return res;
2272 }
2273 if ((pNext(rc) != NULL)
2274 || rField_is_Ring(r)
2275 )
2276 return p_Pow(p,i,r);
2277 if ((char_p==0) || (i<=char_p))
2278 return p_TwoMonPower(p,i,r);
2279 return p_Pow(p,i,r);
2280 }
2281 /*end default:*/
2282 }
2283 }
2284 return rc;
2285}
poly p_Power(poly p, int i, const ring r)
Definition: p_polys.cc:2193
static poly p_TwoMonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:2102
static poly p_Pow_charp(poly p, int i, const ring r)
Definition: p_polys.cc:2181
static poly p_MonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:1996
static poly p_Pow(poly p, int i, const ring r)
Definition: p_polys.cc:2167
void Werror(const char *fmt,...)
Definition: reporter.cc:189
static int rInternalChar(const ring r)
Definition: ring.h:690
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411

◆ p_ProjectiveUnique()

void p_ProjectiveUnique ( poly  p,
const ring  r 
)

Definition at line 3208 of file p_polys.cc.

3209{
3210 if( ph == NULL )
3211 return;
3212
3213 const coeffs C = r->cf;
3214
3215 number h;
3216 poly p;
3217
3218 if (nCoeff_is_Ring(C))
3219 {
3220 p_ContentForGB(ph,r);
3221 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3222 assume( n_GreaterZero(pGetCoeff(ph),C) );
3223 return;
3224 }
3225
3227 {
3228 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3229 return;
3230 }
3231 p = ph;
3232
3233 assume(p != NULL);
3234
3235 if(pNext(p)==NULL) // a monomial
3236 {
3237 p_SetCoeff(p, n_Init(1, C), r);
3238 return;
3239 }
3240
3241 assume(pNext(p)!=NULL);
3242
3243 if(!nCoeff_is_Q(C) && !nCoeff_is_transExt(C))
3244 {
3245 h = p_GetCoeff(p, C);
3246 number hInv = n_Invers(h, C);
3247 pIter(p);
3248 while (p!=NULL)
3249 {
3250 p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r);
3251 pIter(p);
3252 }
3253 n_Delete(&hInv, C);
3254 p = ph;
3255 p_SetCoeff(p, n_Init(1, C), r);
3256 }
3257
3258 p_Cleardenom(ph, r); //removes also Content
3259
3260
3261 /* normalize ph over a transcendental extension s.t.
3262 lead (ph) is > 0 if extRing->cf == Q
3263 or lead (ph) is monic if extRing->cf == Zp*/
3264 if (nCoeff_is_transExt(C))
3265 {
3266 p= ph;
3267 h= p_GetCoeff (p, C);
3268 fraction f = (fraction) h;
3269 number n=p_GetCoeff (NUM (f),C->extRing->cf);
3270 if (rField_is_Q (C->extRing))
3271 {
3272 if (!n_GreaterZero(n,C->extRing->cf))
3273 {
3274 p=p_Neg (p,r);
3275 }
3276 }
3277 else if (rField_is_Zp(C->extRing))
3278 {
3279 if (!n_IsOne (n, C->extRing->cf))
3280 {
3281 n=n_Invers (n,C->extRing->cf);
3282 nMapFunc nMap;
3283 nMap= n_SetMap (C->extRing->cf, C);
3284 number ninv= nMap (n,C->extRing->cf, C);
3285 p=__p_Mult_nn (p, ninv, r);
3286 n_Delete (&ninv, C);
3287 n_Delete (&n, C->extRing->cf);
3288 }
3289 }
3290 p= ph;
3291 }
3292
3293 return;
3294}
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:730
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
Definition: coeffs.h:800
poly p_Cleardenom(poly p, const ring r)
Definition: p_polys.cc:2910

◆ p_Read()

const char * p_Read ( const char *  s,
poly &  p,
const ring  r 
)

Definition at line 1370 of file p_polys.cc.

1371{
1372 if (r==NULL) { rc=NULL;return st;}
1373 int i,j;
1374 rc = p_Init(r);
1375 const char *s = n_Read(st,&(p_GetCoeff(rc, r)),r->cf);
1376 if (s==st)
1377 /* i.e. it does not start with a coeff: test if it is a ringvar*/
1378 {
1379 j = r_IsRingVar(s,r->names,r->N);
1380 if (j >= 0)
1381 {
1382 p_IncrExp(rc,1+j,r);
1383 while (*s!='\0') s++;
1384 goto done;
1385 }
1386 }
1387 while (*s!='\0')
1388 {
1389 char ss[2];
1390 ss[0] = *s++;
1391 ss[1] = '\0';
1392 j = r_IsRingVar(ss,r->names,r->N);
1393 if (j >= 0)
1394 {
1395 const char *s_save=s;
1396 s = eati(s,&i);
1397 if (((unsigned long)i) > r->bitmask/2)
1398 {
1399 // exponent to large: it is not a monomial
1400 p_LmDelete(&rc,r);
1401 return s_save;
1402 }
1403 p_AddExp(rc,1+j, (long)i, r);
1404 }
1405 else
1406 {
1407 // 1st char of is not a varname
1408 // We return the parsed polynomial nevertheless. This is needed when
1409 // we are parsing coefficients in a rational function field.
1410 s--;
1411 break;
1412 }
1413 }
1414done:
1415 if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r);
1416 else
1417 {
1418#ifdef HAVE_PLURAL
1419 // in super-commutative ring
1420 // squares of anti-commutative variables are zeroes!
1421 if(rIsSCA(r))
1422 {
1423 const unsigned int iFirstAltVar = scaFirstAltVar(r);
1424 const unsigned int iLastAltVar = scaLastAltVar(r);
1425
1426 assume(rc != NULL);
1427
1428 for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++)
1429 if( p_GetExp(rc, k, r) > 1 )
1430 {
1431 p_LmDelete(&rc, r);
1432 goto finish;
1433 }
1434 }
1435#endif
1436
1437 p_Setm(rc,r);
1438 }
1439finish:
1440 return s;
1441}
static FORCE_INLINE const char * n_Read(const char *s, number *a, const coeffs r)
!!! Recommendation: This method is too cryptic to be part of the user- !!! interface....
Definition: coeffs.h:598
const char * eati(const char *s, int *i)
Definition: reporter.cc:373
static bool rIsSCA(const ring r)
Definition: nc.h:190
static long p_IncrExp(poly p, int v, ring r)
Definition: p_polys.h:591
int r_IsRingVar(const char *n, char **names, int N)
Definition: ring.cc:212
static short scaLastAltVar(ring r)
Definition: sca.h:25
static short scaFirstAltVar(ring r)
Definition: sca.h:18

◆ p_Series()

poly p_Series ( int  n,
poly  p,
poly  u,
intvec w,
const ring  R 
)

Definition at line 4563 of file p_polys.cc.

4564{
4565 int *ww=iv2array(w,R);
4566 if(p!=NULL)
4567 {
4568 if(u==NULL)
4569 p=p_JetW(p,n,ww,R);
4570 else
4571 p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R);
4572 }
4573 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4574 return p;
4575}
static poly p_Invers(int n, poly u, intvec *w, const ring R)
Definition: p_polys.cc:4534
int p_MinDeg(poly p, intvec *w, const ring R)
Definition: p_polys.cc:4513
poly p_JetW(poly p, int m, int *w, const ring R)
Definition: p_polys.cc:4495
int * iv2array(intvec *iv, const ring R)
Definition: weight.cc:200

◆ p_SetCoeff()

static number p_SetCoeff ( poly  p,
number  n,
ring  r 
)
inlinestatic

Definition at line 412 of file p_polys.h.

413{
415 n_Delete(&(p->coef), r->cf);
416 (p)->coef=n;
417 return n;
418}

◆ p_SetComp()

static unsigned long p_SetComp ( poly  p,
unsigned long  c,
ring  r 
)
inlinestatic

Definition at line 247 of file p_polys.h.

248{
250 if (r->pCompIndex>=0) __p_GetComp(p,r) = c;
251 return c;
252}

◆ p_SetCompP() [1/2]

static void p_SetCompP ( poly  p,
int  i,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 281 of file p_polys.h.

282{
283 if (p != NULL)
284 {
285 p_SetComp(p, i, lmRing);
286 p_SetmComp(p, lmRing);
287 p_SetCompP(pNext(p), i, tailRing);
288 }
289}

◆ p_SetCompP() [2/2]

static void p_SetCompP ( poly  p,
int  i,
ring  r 
)
inlinestatic

Definition at line 254 of file p_polys.h.

255{
256 if (p != NULL)
257 {
258 p_Test(p, r);
260 {
261 do
262 {
263 p_SetComp(p, i, r);
264 p_SetmComp(p, r);
265 pIter(p);
266 }
267 while (p != NULL);
268 }
269 else
270 {
271 do
272 {
273 p_SetComp(p, i, r);
274 pIter(p);
275 }
276 while(p != NULL);
277 }
278 }
279}
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
Definition: ring.cc:1993

◆ p_SetExp() [1/3]

static long p_SetExp ( poly  p,
const int  v,
const long  e,
const ring  r 
)
inlinestatic

set v^th exponent for a monomial

Definition at line 582 of file p_polys.h.

583{
585 pAssume2(v>0 && v <= r->N);
586 pAssume2(r->VarOffset[v] != -1);
587 return p_SetExp(p, e, r->bitmask, r->VarOffset[v]);
588}

◆ p_SetExp() [2/3]

static long p_SetExp ( poly  p,
const long  e,
const ring  r,
const int  VarOffset 
)
inlinestatic

Definition at line 562 of file p_polys.h.

563{
565 pAssume2(VarOffset != -1);
566 return p_SetExp(p, e, r->bitmask, VarOffset);
567}

◆ p_SetExp() [3/3]

static unsigned long p_SetExp ( poly  p,
const unsigned long  e,
const unsigned long  iBitmask,
const int  VarOffset 
)
inlinestatic

set a single variable exponent @Note: VarOffset encodes the position in p->exp

See also
p_GetExp

Definition at line 488 of file p_polys.h.

489{
490 pAssume2(e>=0);
491 pAssume2(e<=iBitmask);
492 pAssume2((VarOffset >> (24 + 6)) == 0);
493
494 // shift e to the left:
495 REGISTER int shift = VarOffset >> 24;
496 unsigned long ee = e << shift /*(VarOffset >> 24)*/;
497 // find the bits in the exponent vector
498 REGISTER int offset = (VarOffset & 0xffffff);
499 // clear the bits in the exponent vector:
500 p->exp[offset] &= ~( iBitmask << shift );
501 // insert e with |
502 p->exp[ offset ] |= ee;
503 return e;
504}

◆ p_SetExpV()

static void p_SetExpV ( poly  p,
int *  ev,
const ring  r 
)
inlinestatic

Definition at line 1544 of file p_polys.h.

1545{
1547 for (unsigned j = r->N; j!=0; j--)
1548 p_SetExp(p, j, ev[j], r);
1549
1550 if(ev[0]!=0) p_SetComp(p, ev[0],r);
1551 p_Setm(p, r);
1552}

◆ p_SetExpVL()

static void p_SetExpVL ( poly  p,
int64 ev,
const ring  r 
)
inlinestatic

Definition at line 1553 of file p_polys.h.

1554{
1556 for (unsigned j = r->N; j!=0; j--)
1557 p_SetExp(p, j, ev[j-1], r);
1558 p_SetComp(p, 0,r);
1559
1560 p_Setm(p, r);
1561}

◆ p_SetExpVLV()

static void p_SetExpVLV ( poly  p,
int64 ev,
int64  comp,
const ring  r 
)
inlinestatic

Definition at line 1564 of file p_polys.h.

1565{
1567 for (unsigned j = r->N; j!=0; j--)
1568 p_SetExp(p, j, ev[j-1], r);
1569 p_SetComp(p, comp,r);
1570
1571 p_Setm(p, r);
1572}
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials

◆ p_Setm()

static void p_Setm ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 233 of file p_polys.h.

234{
235 p_CheckRing2(r);
236 r->p_Setm(p, r);
237}

◆ p_SetModDeg()

void p_SetModDeg ( intvec w,
ring  r 
)

Definition at line 3751 of file p_polys.cc.

3752{
3753 if (w!=NULL)
3754 {
3755 r->pModW = w;
3756 pOldFDeg = r->pFDeg;
3757 pOldLDeg = r->pLDeg;
3758 pOldLexOrder = r->pLexOrder;
3760 r->pLexOrder = TRUE;
3761 }
3762 else
3763 {
3764 r->pModW = NULL;
3766 r->pLexOrder = pOldLexOrder;
3767 }
3768}
STATIC_VAR pLDegProc pOldLDeg
Definition: p_polys.cc:3739
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition: p_polys.cc:3727
STATIC_VAR BOOLEAN pOldLexOrder
Definition: p_polys.cc:3740
STATIC_VAR pFDegProc pOldFDeg
Definition: p_polys.cc:3738
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition: p_polys.cc:3715
static long pModDeg(poly p, ring r)
Definition: p_polys.cc:3742

◆ p_ShallowCopyDelete()

static poly p_ShallowCopyDelete ( poly  p,
const ring  r,
omBin  bin 
)
inlinestatic

Definition at line 928 of file p_polys.h.

929{
931 pAssume2(omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
932 return r->p_Procs->p_ShallowCopyDelete(p, r, bin);
933}

◆ p_ShallowDelete()

void p_ShallowDelete ( poly *  p,
const ring  r 
)

◆ p_Shift()

void p_Shift ( poly *  p,
int  i,
const ring  r 
)

shifts components of the vector p by i

Definition at line 4771 of file p_polys.cc.

4772{
4773 poly qp1 = *p,qp2 = *p;/*working pointers*/
4774 int j = p_MaxComp(*p,r),k = p_MinComp(*p,r);
4775
4776 if (j+i < 0) return ;
4777 BOOLEAN toPoly= ((j == -i) && (j == k));
4778 while (qp1 != NULL)
4779 {
4780 if (toPoly || (__p_GetComp(qp1,r)+i > 0))
4781 {
4782 p_AddComp(qp1,i,r);
4783 p_SetmComp(qp1,r);
4784 qp2 = qp1;
4785 pIter(qp1);
4786 }
4787 else
4788 {
4789 if (qp2 == *p)
4790 {
4791 pIter(*p);
4792 p_LmDelete(&qp2,r);
4793 qp2 = *p;
4794 qp1 = *p;
4795 }
4796 else
4797 {
4798 qp2->next = qp1->next;
4799 if (qp1!=NULL) p_LmDelete(&qp1,r);
4800 qp1 = qp2->next;
4801 }
4802 }
4803 }
4804}
return
Definition: cfGcdAlgExt.cc:218
static unsigned long p_AddComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:447

◆ p_SimpleContent()

void p_SimpleContent ( poly  p,
int  s,
const ring  r 
)

Definition at line 2629 of file p_polys.cc.

2630{
2631 if(TEST_OPT_CONTENTSB) return;
2632 if (ph==NULL) return;
2633 if (pNext(ph)==NULL)
2634 {
2635 p_SetCoeff(ph,n_Init(1,r->cf),r);
2636 return;
2637 }
2638 if (pNext(pNext(ph))==NULL)
2639 {
2640 return;
2641 }
2642 if (!(rField_is_Q(r))
2643 && (!rField_is_Q_a(r))
2644 && (!rField_is_Zp_a(r))
2645 && (!rField_is_Z(r))
2646 )
2647 {
2648 return;
2649 }
2650 number d=p_InitContent(ph,r);
2651 number h=d;
2652 if (n_Size(d,r->cf)<=smax)
2653 {
2654 n_Delete(&h,r->cf);
2655 //if (TEST_OPT_PROT) PrintS("G");
2656 return;
2657 }
2658
2659 poly p=ph;
2660 if (smax==1) smax=2;
2661 while (p!=NULL)
2662 {
2663#if 1
2664 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2665 n_Delete(&h,r->cf);
2666 h = d;
2667#else
2668 n_InpGcd(h,pGetCoeff(p),r->cf);
2669#endif
2670 if(n_Size(h,r->cf)<smax)
2671 {
2672 //if (TEST_OPT_PROT) PrintS("g");
2673 n_Delete(&h,r->cf);
2674 return;
2675 }
2676 pIter(p);
2677 }
2678 p = ph;
2679 if (!n_GreaterZero(pGetCoeff(p),r->cf)) h=n_InpNeg(h,r->cf);
2680 if(n_IsOne(h,r->cf))
2681 {
2682 n_Delete(&h,r->cf);
2683 return;
2684 }
2685 if (TEST_OPT_PROT) PrintS("c");
2686 while (p!=NULL)
2687 {
2688#if 1
2689 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2690 p_SetCoeff(p,d,r);
2691#else
2692 STATISTIC(n_ExactDiv); nlInpExactDiv(pGetCoeff(p),h,r->cf); // no such function... ?
2693#endif
2694 pIter(p);
2695 }
2696 n_Delete(&h,r->cf);
2697}
#define TEST_OPT_PROT
Definition: options.h:103

◆ p_Size()

int p_Size ( poly  p,
const ring  r 
)

Definition at line 3318 of file p_polys.cc.

3319{
3320 int count = 0;
3321 if (r->cf->has_simple_Alloc)
3322 return pLength(p);
3323 while ( p != NULL )
3324 {
3325 count+= n_Size( pGetCoeff( p ), r->cf );
3326 pIter( p );
3327 }
3328 return count;
3329}
int status int void size_t count
Definition: si_signals.h:59

◆ p_SortAdd()

static poly p_SortAdd ( poly  p,
const ring  r,
BOOLEAN  revert = FALSE 
)
inlinestatic

Definition at line 1219 of file p_polys.h.

1220{
1221 if (revert) p = pReverse(p);
1222 return sBucketSortAdd(p, r);
1223}
poly sBucketSortAdd(poly p, const ring r)
Sorts p with bucketSort: p may have equal monomials.
Definition: sbuckets.cc:368

◆ p_SortMerge()

static poly p_SortMerge ( poly  p,
const ring  r,
BOOLEAN  revert = FALSE 
)
inlinestatic

Definition at line 1229 of file p_polys.h.

1230{
1231 if (revert) p = pReverse(p);
1232 return sBucketSortMerge(p, r);
1233}
poly sBucketSortMerge(poly p, const ring r)
Sorts p with bucketSort: assumes all monomials of p are different.
Definition: sbuckets.cc:332

◆ p_Split()

void p_Split ( poly  p,
poly *  r 
)

Definition at line 1320 of file p_polys.cc.

1321{
1322 *h=pNext(p);
1323 pNext(p)=NULL;
1324}

◆ p_String() [1/2]

char * p_String ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 322 of file polys0.cc.

323{
324 StringSetS("");
325 p_String0(p, lmRing, tailRing);
326 return StringEndS();
327}
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:223
void StringSetS(const char *st)
Definition: reporter.cc:128
char * StringEndS()
Definition: reporter.cc:151

◆ p_String() [2/2]

static char * p_String ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1240 of file p_polys.h.

1241{
1242 return p_String(p, p_ring, p_ring);
1243}
char * p_String(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:322

◆ p_String0() [1/2]

void p_String0 ( poly  p,
ring  lmRing,
ring  tailRing 
)

print p according to ShortOut in lmRing & tailRing

Definition at line 223 of file polys0.cc.

224{
225 if (p == NULL)
226 {
227 StringAppendS("0");
228 return;
229 }
230 p_Normalize(p,lmRing);
231 if ((n_GetChar(lmRing->cf) == 0)
232 && (nCoeff_is_transExt(lmRing->cf)))
233 p_Normalize(p,lmRing); /* Manual/absfact.tst */
234#ifdef HAVE_SHIFTBBA
235 if(lmRing->isLPring)
236 {
237 if ((p_GetComp(p, lmRing) == 0) || (!lmRing->VectorOut))
238 {
239 writemonLP(p,0, lmRing);
240 p = pNext(p);
241 while (p!=NULL)
242 {
243 assume((p->coef==NULL)||(!n_IsZero(p->coef,tailRing->cf)));
244 if ((p->coef==NULL)||n_GreaterZero(p->coef,tailRing->cf))
245 StringAppendS("+");
246 writemonLP(p,0, tailRing);
247 p = pNext(p);
248 }
249 return;
250 }
251 }
252 else
253#endif
254 {
255 if ((p_GetComp(p, lmRing) == 0) || (!lmRing->VectorOut))
256 {
257 writemon(p,0, lmRing);
258 p = pNext(p);
259 while (p!=NULL)
260 {
261 assume((p->coef==NULL)||(!n_IsZero(p->coef,tailRing->cf)));
262 if ((p->coef==NULL)||n_GreaterZero(p->coef,tailRing->cf))
263 StringAppendS("+");
264 writemon(p,0, tailRing);
265 p = pNext(p);
266 }
267 return;
268 }
269 }
270
271 long k = 1;
272 StringAppendS("[");
273#ifdef HAVE_SHIFTBBA
274 if(lmRing->isLPring)
275 {
276 loop
277 {
278 while (k < p_GetComp(p,lmRing))
279 {
280 StringAppendS("0,");
281 k++;
282 }
283 writemonLP(p,k,lmRing);
284 pIter(p);
285 while ((p!=NULL) && (k == p_GetComp(p, tailRing)))
286 {
287 if (n_GreaterZero(p->coef,tailRing->cf)) StringAppendS("+");
288 writemonLP(p,k,tailRing);
289 pIter(p);
290 }
291 if (p == NULL) break;
292 StringAppendS(",");
293 k++;
294 }
295 }
296 else
297#endif
298 {
299 loop
300 {
301 while (k < p_GetComp(p,lmRing))
302 {
303 StringAppendS("0,");
304 k++;
305 }
306 writemon(p,k,lmRing);
307 pIter(p);
308 while ((p!=NULL) && (k == p_GetComp(p, tailRing)))
309 {
310 if (n_GreaterZero(p->coef,tailRing->cf)) StringAppendS("+");
311 writemon(p,k,tailRing);
312 pIter(p);
313 }
314 if (p == NULL) break;
315 StringAppendS(",");
316 k++;
317 }
318 }
319 StringAppendS("]");
320}
static void writemon(poly p, int ko, const ring r)
Definition: polys0.cc:24
static void writemonLP(poly p, int ko, const ring r)
Definition: polys0.cc:104
void StringAppendS(const char *st)
Definition: reporter.cc:107

◆ p_String0() [2/2]

static void p_String0 ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1244 of file p_polys.h.

1245{
1246 p_String0(p, p_ring, p_ring);
1247}
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:223

◆ p_String0Long()

void p_String0Long ( const poly  p,
ring  lmRing,
ring  tailRing 
)

print p in a long way

print p in a long way

Definition at line 203 of file polys0.cc.

204{
205 // NOTE: the following (non-thread-safe!) UGLYNESS
206 // (changing naRing->ShortOut for a while) is due to Hans!
207 // Just think of other ring using the VERY SAME naRing and possible
208 // side-effects...
209 // but this is not a problem: i/o is not thread-safe anyway.
210 const BOOLEAN bLMShortOut = rShortOut(lmRing);
211 const BOOLEAN bTAILShortOut = rShortOut(tailRing);
212
213 lmRing->ShortOut = FALSE;
214 tailRing->ShortOut = FALSE;
215
216 p_String0(p, lmRing, tailRing);
217
218 lmRing->ShortOut = bLMShortOut;
219 tailRing->ShortOut = bTAILShortOut;
220}
static BOOLEAN rShortOut(const ring r)
Definition: ring.h:582

◆ p_String0Short()

void p_String0Short ( const poly  p,
ring  lmRing,
ring  tailRing 
)

print p in a short way, if possible

print p in a short way, if possible

Definition at line 184 of file polys0.cc.

185{
186 // NOTE: the following (non-thread-safe!) UGLYNESS
187 // (changing naRing->ShortOut for a while) is due to Hans!
188 // Just think of other ring using the VERY SAME naRing and possible
189 // side-effects...
190 const BOOLEAN bLMShortOut = rShortOut(lmRing);
191 const BOOLEAN bTAILShortOut = rShortOut(tailRing);
192
193 lmRing->ShortOut = rCanShortOut(lmRing);
194 tailRing->ShortOut = rCanShortOut(tailRing);
195
196 p_String0(p, lmRing, tailRing);
197
198 lmRing->ShortOut = bLMShortOut;
199 tailRing->ShortOut = bTAILShortOut;
200}
static BOOLEAN rCanShortOut(const ring r)
Definition: ring.h:587

◆ p_Sub()

poly p_Sub ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1986 of file p_polys.cc.

1987{
1988 return p_Add_q(p1, p_Neg(p2,r),r);
1989}

◆ p_SubComp()

static unsigned long p_SubComp ( poly  p,
unsigned long  v,
ring  r 
)
inlinestatic

Definition at line 453 of file p_polys.h.

454{
457 _pPolyAssume2(__p_GetComp(p,r) >= v,p,r);
458 return __p_GetComp(p,r) -= v;
459}

◆ p_SubExp()

static long p_SubExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 613 of file p_polys.h.

614{
616 long e = p_GetExp(p,v,r);
617 pAssume2(e >= ee);
618 e -= ee;
619 return p_SetExp(p,v,e,r);
620}

◆ p_Subst()

poly p_Subst ( poly  p,
int  n,
poly  e,
const ring  r 
)

Definition at line 4023 of file p_polys.cc.

4024{
4025#ifdef HAVE_SHIFTBBA
4026 // also don't even use p_Subst0 for Letterplace
4027 if (rIsLPRing(r))
4028 {
4029 poly subst = p_LPSubst(p, n, e, r);
4030 p_Delete(&p, r);
4031 return subst;
4032 }
4033#endif
4034
4035 if (e == NULL) return p_Subst0(p, n,r);
4036
4037 if (p_IsConstant(e,r))
4038 {
4039 if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r);
4040 else return p_Subst2(p, n, pGetCoeff(e),r);
4041 }
4042
4043#ifdef HAVE_PLURAL
4044 if (rIsPluralRing(r))
4045 {
4046 return nc_pSubst(p,n,e,r);
4047 }
4048#endif
4049
4050 int exponent,i;
4051 poly h, res, m;
4052 int *me,*ee;
4053 number nu,nu1;
4054
4055 me=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4056 ee=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4057 if (e!=NULL) p_GetExpV(e,ee,r);
4058 res=NULL;
4059 h=p;
4060 while (h!=NULL)
4061 {
4062 if ((e!=NULL) || (p_GetExp(h,n,r)==0))
4063 {
4064 m=p_Head(h,r);
4065 p_GetExpV(m,me,r);
4066 exponent=me[n];
4067 me[n]=0;
4068 for(i=rVar(r);i>0;i--)
4069 me[i]+=exponent*ee[i];
4070 p_SetExpV(m,me,r);
4071 if (e!=NULL)
4072 {
4073 n_Power(pGetCoeff(e),exponent,&nu,r->cf);
4074 nu1=n_Mult(pGetCoeff(m),nu,r->cf);
4075 n_Delete(&nu,r->cf);
4076 p_SetCoeff(m,nu1,r);
4077 }
4078 res=p_Add_q(res,m,r);
4079 }
4080 p_LmDelete(&h,r);
4081 }
4082 omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int));
4083 omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int));
4084 return res;
4085}
CanonicalForm subst(const CanonicalForm &f, const CFList &a, const CFList &b, const CanonicalForm &Rstar, bool isFunctionField)
poly nc_pSubst(poly p, int n, poly e, const ring r)
substitute the n-th variable by e in p destroy p e is not a constant
Definition: old.gring.cc:3203
static poly p_Subst0(poly p, int n, const ring r)
Definition: p_polys.cc:3998
static poly p_Subst1(poly p, int n, const ring r)
Definition: p_polys.cc:3930
static poly p_Subst2(poly p, int n, number e, const ring r)
Definition: p_polys.cc:3957
poly p_LPSubst(poly p, int n, poly e, const ring r)
Definition: shiftop.cc:912

◆ p_TakeOutComp() [1/2]

poly p_TakeOutComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3513 of file p_polys.cc.

3514{
3515 poly q = *p,qq=NULL,result = NULL;
3516
3517 if (q==NULL) return NULL;
3518 BOOLEAN use_setmcomp=rOrd_SetCompRequiresSetm(r);
3519 if (__p_GetComp(q,r)==k)
3520 {
3521 result = q;
3522 do
3523 {
3524 p_SetComp(q,0,r);
3525 if (use_setmcomp) p_SetmComp(q,r);
3526 qq = q;
3527 pIter(q);
3528 }
3529 while ((q!=NULL) && (__p_GetComp(q,r)==k));
3530 *p = q;
3531 pNext(qq) = NULL;
3532 }
3533 if (q==NULL) return result;
3534 if (__p_GetComp(q,r) > k)
3535 {
3536 p_SubComp(q,1,r);
3537 if (use_setmcomp) p_SetmComp(q,r);
3538 }
3539 poly pNext_q;
3540 while ((pNext_q=pNext(q))!=NULL)
3541 {
3542 if (__p_GetComp(pNext_q,r)==k)
3543 {
3544 if (result==NULL)
3545 {
3546 result = pNext_q;
3547 qq = result;
3548 }
3549 else
3550 {
3551 pNext(qq) = pNext_q;
3552 pIter(qq);
3553 }
3554 pNext(q) = pNext(pNext_q);
3555 pNext(qq) =NULL;
3556 p_SetComp(qq,0,r);
3557 if (use_setmcomp) p_SetmComp(qq,r);
3558 }
3559 else
3560 {
3561 /*pIter(q);*/ q=pNext_q;
3562 if (__p_GetComp(q,r) > k)
3563 {
3564 p_SubComp(q,1,r);
3565 if (use_setmcomp) p_SetmComp(q,r);
3566 }
3567 }
3568 }
3569 return result;
3570}

◆ p_TakeOutComp() [2/2]

void p_TakeOutComp ( poly *  p,
long  comp,
poly *  q,
int *  lq,
const ring  r 
)

Definition at line 3574 of file p_polys.cc.

3575{
3576 spolyrec pp, qq;
3577 poly p, q, p_prev;
3578 int l = 0;
3579
3580#ifndef SING_NDEBUG
3581 int lp = pLength(*r_p);
3582#endif
3583
3584 pNext(&pp) = *r_p;
3585 p = *r_p;
3586 p_prev = &pp;
3587 q = &qq;
3588
3589 while(p != NULL)
3590 {
3591 while (__p_GetComp(p,r) == comp)
3592 {
3593 pNext(q) = p;
3594 pIter(q);
3595 p_SetComp(p, 0,r);
3596 p_SetmComp(p,r);
3597 pIter(p);
3598 l++;
3599 if (p == NULL)
3600 {
3601 pNext(p_prev) = NULL;
3602 goto Finish;
3603 }
3604 }
3605 pNext(p_prev) = p;
3606 p_prev = p;
3607 pIter(p);
3608 }
3609
3610 Finish:
3611 pNext(q) = NULL;
3612 *r_p = pNext(&pp);
3613 *r_q = pNext(&qq);
3614 *lq = l;
3615#ifndef SING_NDEBUG
3616 assume(pLength(*r_p) + pLength(*r_q) == (unsigned)lp);
3617#endif
3618 p_Test(*r_p,r);
3619 p_Test(*r_q,r);
3620}

◆ p_TakeOutComp1()

poly p_TakeOutComp1 ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3462 of file p_polys.cc.

3463{
3464 poly q = *p;
3465
3466 if (q==NULL) return NULL;
3467
3468 poly qq=NULL,result = NULL;
3469 long unsigned kk=k;
3470 if (__p_GetComp(q,r)==kk)
3471 {
3472 result = q; /* *p */
3473 while ((q!=NULL) && (__p_GetComp(q,r)==kk))
3474 {
3475 p_SetComp(q,0,r);
3476 p_SetmComp(q,r);
3477 qq = q;
3478 pIter(q);
3479 }
3480 *p = q;
3481 pNext(qq) = NULL;
3482 }
3483 if (q==NULL) return result;
3484// if (pGetComp(q) > k) pGetComp(q)--;
3485 while (pNext(q)!=NULL)
3486 {
3487 if (__p_GetComp(pNext(q),r)==kk)
3488 {
3489 if (result==NULL)
3490 {
3491 result = pNext(q);
3492 qq = result;
3493 }
3494 else
3495 {
3496 pNext(qq) = pNext(q);
3497 pIter(qq);
3498 }
3499 pNext(q) = pNext(pNext(q));
3500 pNext(qq) =NULL;
3501 p_SetComp(qq,0,r);
3502 p_SetmComp(qq,r);
3503 }
3504 else
3505 {
3506 pIter(q);
3507// if (pGetComp(q) > k) pGetComp(q)--;
3508 }
3509 }
3510 return result;
3511}

◆ p_Totaldegree()

static long p_Totaldegree ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1507 of file p_polys.h.

1508{
1510 unsigned long s = p_GetTotalDegree(p->exp[r->VarL_Offset[0]],
1511 r,
1512 r->ExpPerLong);
1513 for (unsigned i=r->VarL_Size-1; i!=0; i--)
1514 {
1515 s += p_GetTotalDegree(p->exp[r->VarL_Offset[i]], r,r->ExpPerLong);
1516 }
1517 return (long)s;
1518}
static unsigned long p_GetTotalDegree(const unsigned long l, const ring r, const int number_of_exps)
Definition: p_polys.h:810

◆ p_Var()

int p_Var ( poly  mi,
const ring  r 
)

Definition at line 4721 of file p_polys.cc.

4722{
4723 if (m==NULL) return 0;
4724 if (pNext(m)!=NULL) return 0;
4725 int i,e=0;
4726 for (i=rVar(r); i>0; i--)
4727 {
4728 int exp=p_GetExp(m,i,r);
4729 if (exp==1)
4730 {
4731 if (e==0) e=i;
4732 else return 0;
4733 }
4734 else if (exp!=0)
4735 {
4736 return 0;
4737 }
4738 }
4739 return e;
4740}

◆ p_Vec2Array()

void p_Vec2Array ( poly  v,
poly *  p,
int  len,
const ring  r 
)

julia: vector to already allocated array (len=p_MaxComp(v,r))

julia: vector to already allocated array (len=p_MaxComp(v,r))

Definition at line 3673 of file p_polys.cc.

3674{
3675 poly h;
3676 int k;
3677
3678 for(int i=len-1;i>=0;i--) p[i]=NULL;
3679 while (v!=NULL)
3680 {
3681 h=p_Head(v,r);
3682 k=__p_GetComp(h,r);
3683 if (k>len) { Werror("wrong rank:%d, should be %d",len,k); }
3684 else
3685 {
3686 p_SetComp(h,0,r);
3687 p_Setm(h,r);
3688 pNext(h)=p[k-1];p[k-1]=h;
3689 }
3690 pIter(v);
3691 }
3692 for(int i=len-1;i>=0;i--)
3693 {
3694 if (p[i]!=NULL) p[i]=pReverse(p[i]);
3695 }
3696}

◆ p_Vec2Poly()

poly p_Vec2Poly ( poly  v,
int  k,
const ring  r 
)

Definition at line 3651 of file p_polys.cc.

3652{
3653 poly h;
3654 poly res=NULL;
3655 long unsigned kk=k;
3656
3657 while (v!=NULL)
3658 {
3659 if (__p_GetComp(v,r)==kk)
3660 {
3661 h=p_Head(v,r);
3662 p_SetComp(h,0,r);
3663 pNext(h)=res;res=h;
3664 }
3665 pIter(v);
3666 }
3667 if (res!=NULL) res=pReverse(res);
3668 return res;
3669}

◆ p_Vec2Polys()

void p_Vec2Polys ( poly  v,
poly **  p,
int *  len,
const ring  r 
)

Definition at line 3703 of file p_polys.cc.

3704{
3705 *len=p_MaxComp(v,r);
3706 if (*len==0) *len=1;
3707 *p=(poly*)omAlloc((*len)*sizeof(poly));
3708 p_Vec2Array(v,*p,*len,r);
3709}
void p_Vec2Array(poly v, poly *p, int len, const ring r)
vector to already allocated array (len>=p_MaxComp(v,r))
Definition: p_polys.cc:3673

◆ p_VectorHasUnit()

void p_VectorHasUnit ( poly  p,
int *  k,
int *  len,
const ring  r 
)

Definition at line 3429 of file p_polys.cc.

3430{
3431 poly q=p,qq;
3432 int j=0;
3433 long unsigned i;
3434
3435 *len = 0;
3436 while (q!=NULL)
3437 {
3438 if (p_LmIsConstantComp(q,r))
3439 {
3440 i = __p_GetComp(q,r);
3441 qq = p;
3442 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3443 if (qq == q)
3444 {
3445 j = 0;
3446 while (qq!=NULL)
3447 {
3448 if (__p_GetComp(qq,r)==i) j++;
3449 pIter(qq);
3450 }
3451 if ((*len == 0) || (j<*len))
3452 {
3453 *len = j;
3454 *k = i;
3455 }
3456 }
3457 }
3458 pIter(q);
3459 }
3460}

◆ p_VectorHasUnitB()

BOOLEAN p_VectorHasUnitB ( poly  p,
int *  k,
const ring  r 
)

Definition at line 3406 of file p_polys.cc.

3407{
3408 poly q=p,qq;
3409 long unsigned i;
3410
3411 while (q!=NULL)
3412 {
3413 if (p_LmIsConstantComp(q,r))
3414 {
3415 i = __p_GetComp(q,r);
3416 qq = p;
3417 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3418 if (qq == q)
3419 {
3420 *k = i;
3421 return TRUE;
3422 }
3423 }
3424 pIter(q);
3425 }
3426 return FALSE;
3427}

◆ p_WDegree()

long p_WDegree ( poly  p,
const ring  r 
)

Definition at line 714 of file p_polys.cc.

715{
716 if (r->firstwv==NULL) return p_Totaldegree(p, r);
718 int i;
719 long j =0;
720
721 for(i=1;i<=r->firstBlockEnds;i++)
722 j+=p_GetExp(p, i, r)*r->firstwv[i-1];
723
724 for (;i<=rVar(r);i++)
725 j+=p_GetExp(p,i, r)*p_Weight(i, r);
726
727 return j;
728}
int p_Weight(int i, const ring r)
Definition: p_polys.cc:705

◆ p_Weight()

int p_Weight ( int  c,
const ring  r 
)

Definition at line 705 of file p_polys.cc.

706{
707 if ((r->firstwv==NULL) || (i>r->firstBlockEnds))
708 {
709 return 1;
710 }
711 return r->firstwv[i-1];
712}

◆ p_WFirstTotalDegree()

long p_WFirstTotalDegree ( poly  p,
ring  r 
)

Definition at line 596 of file p_polys.cc.

597{
598 int i;
599 long sum = 0;
600
601 for (i=1; i<= r->firstBlockEnds; i++)
602 {
603 sum += p_GetExp(p, i, r)*r->firstwv[i-1];
604 }
605 return sum;
606}

◆ p_Write() [1/2]

void p_Write ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 342 of file polys0.cc.

343{
344 p_Write0(p, lmRing, tailRing);
345 PrintLn();
346}
void p_Write0(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:332
void PrintLn()
Definition: reporter.cc:310

◆ p_Write() [2/2]

static void p_Write ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1248 of file p_polys.h.

1249{
1250 p_Write(p, p_ring, p_ring);
1251}

◆ p_Write0() [1/2]

void p_Write0 ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 332 of file polys0.cc.

333{
334 char *s=p_String(p, lmRing, tailRing);
335 PrintS(s);
336 omFree(s);
337}
char * p_String(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:322

◆ p_Write0() [2/2]

static void p_Write0 ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1252 of file p_polys.h.

1253{
1254 p_Write0(p, p_ring, p_ring);
1255}
void p_Write0(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:332

◆ p_wrp() [1/2]

void p_wrp ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 373 of file polys0.cc.

374{
375 poly r;
376
377 if (p==NULL) PrintS("NULL");
378 else if (pNext(p)==NULL) p_Write0(p, lmRing);
379 else
380 {
381 r = pNext(pNext(p));
382 pNext(pNext(p)) = NULL;
383 p_Write0(p, tailRing);
384 if (r!=NULL)
385 {
386 PrintS("+...");
387 pNext(pNext(p)) = r;
388 }
389 }
390}

◆ p_wrp() [2/2]

static void p_wrp ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1256 of file p_polys.h.

1257{
1258 p_wrp(p, p_ring, p_ring);
1259}
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:373

◆ p_WTotaldegree()

long p_WTotaldegree ( poly  p,
const ring  r 
)

Definition at line 613 of file p_polys.cc.

614{
616 int i, k;
617 long j =0;
618
619 // iterate through each block:
620 for (i=0;r->order[i]!=0;i++)
621 {
622 int b0=r->block0[i];
623 int b1=r->block1[i];
624 switch(r->order[i])
625 {
626 case ringorder_M:
627 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
628 { // in jedem block:
629 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn;
630 }
631 break;
632 case ringorder_am:
633 b1=si_min(b1,r->N);
634 /* no break, continue as ringorder_a*/
635 case ringorder_a:
636 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
637 { // only one line
638 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
639 }
640 return j*r->OrdSgn;
641 case ringorder_wp:
642 case ringorder_ws:
643 case ringorder_Wp:
644 case ringorder_Ws:
645 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
646 { // in jedem block:
647 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
648 }
649 break;
650 case ringorder_lp:
651 case ringorder_ls:
652 case ringorder_rs:
653 case ringorder_dp:
654 case ringorder_ds:
655 case ringorder_Dp:
656 case ringorder_Ds:
657 case ringorder_rp:
658 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
659 {
660 j+= p_GetExp(p,k,r);
661 }
662 break;
663 case ringorder_a64:
664 {
665 int64* w=(int64*)r->wvhdl[i];
666 for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++)
667 {
668 //there should be added a line which checks if w[k]>2^31
669 j+= p_GetExp(p,k+1, r)*(long)w[k];
670 }
671 //break;
672 return j;
673 }
674 case ringorder_c: /* nothing to do*/
675 case ringorder_C: /* nothing to do*/
676 case ringorder_S: /* nothing to do*/
677 case ringorder_s: /* nothing to do*/
678 case ringorder_IS: /* nothing to do */
679 case ringorder_unspec: /* to make clang happy, does not occur*/
680 case ringorder_no: /* to make clang happy, does not occur*/
681 case ringorder_L: /* to make clang happy, does not occur*/
682 case ringorder_aa: /* ignored by p_WTotaldegree*/
683 break;
684 /* no default: all orderings covered */
685 }
686 }
687 return j;
688}
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:72
@ ringorder_a
Definition: ring.h:70
@ ringorder_am
Definition: ring.h:88
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_rs
opposite of ls
Definition: ring.h:92
@ ringorder_C
Definition: ring.h:73
@ ringorder_S
S?
Definition: ring.h:75
@ ringorder_ds
Definition: ring.h:84
@ ringorder_Dp
Definition: ring.h:80
@ ringorder_unspec
Definition: ring.h:94
@ ringorder_L
Definition: ring.h:89
@ ringorder_Ds
Definition: ring.h:85
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_rp
Definition: ring.h:79
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_no
Definition: ring.h:69
@ ringorder_Wp
Definition: ring.h:82
@ ringorder_ws
Definition: ring.h:86
@ ringorder_Ws
Definition: ring.h:87
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:93
@ ringorder_ls
Definition: ring.h:83
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
@ ringorder_M
Definition: ring.h:74

◆ pEnlargeSet()

void pEnlargeSet ( poly **  p,
int  length,
int  increment 
)

Definition at line 3774 of file p_polys.cc.

3775{
3776 poly* h;
3777
3778 if (*p==NULL)
3779 {
3780 if (increment==0) return;
3781 h=(poly*)omAlloc0(increment*sizeof(poly));
3782 }
3783 else
3784 {
3785 h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly));
3786 if (increment>0)
3787 {
3788 memset(&(h[l]),0,increment*sizeof(poly));
3789 }
3790 }
3791 *p=h;
3792}
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220

◆ pHaveCommonMonoms()

BOOLEAN pHaveCommonMonoms ( poly  p,
poly  q 
)

Definition at line 175 of file pDebug.cc.

176{
177 while (p != NULL)
178 {
179 if (pIsMonomOf(q, p))
180 {
181 return TRUE;
182 }
183 pIter(p);
184 }
185 return FALSE;
186}
BOOLEAN pIsMonomOf(poly p, poly m)
Definition: pDebug.cc:165

◆ pIsMonomOf()

BOOLEAN pIsMonomOf ( poly  p,
poly  m 
)

Definition at line 165 of file pDebug.cc.

166{
167 if (m == NULL) return TRUE;
168 while (p != NULL)
169 {
170 if (p == m) return TRUE;
171 pIter(p);
172 }
173 return FALSE;
174}

◆ pLDeg0()

long pLDeg0 ( poly  p,
int *  l,
ring  r 
)

Definition at line 739 of file p_polys.cc.

740{
741 p_CheckPolyRing(p, r);
742 long unsigned k= p_GetComp(p, r);
743 int ll=1;
744
745 if (k > 0)
746 {
747 while ((pNext(p)!=NULL) && (__p_GetComp(pNext(p), r)==k))
748 {
749 pIter(p);
750 ll++;
751 }
752 }
753 else
754 {
755 while (pNext(p)!=NULL)
756 {
757 pIter(p);
758 ll++;
759 }
760 }
761 *l=ll;
762 return r->pFDeg(p, r);
763}

◆ pLDeg0c()

long pLDeg0c ( poly  p,
int *  l,
ring  r 
)

Definition at line 770 of file p_polys.cc.

771{
772 assume(p!=NULL);
773 p_Test(p,r);
774 p_CheckPolyRing(p, r);
775 long o;
776 int ll=1;
777
778 if (! rIsSyzIndexRing(r))
779 {
780 while (pNext(p) != NULL)
781 {
782 pIter(p);
783 ll++;
784 }
785 o = r->pFDeg(p, r);
786 }
787 else
788 {
789 long unsigned curr_limit = rGetCurrSyzLimit(r);
790 poly pp = p;
791 while ((p=pNext(p))!=NULL)
792 {
793 if (__p_GetComp(p, r)<=curr_limit/*syzComp*/)
794 ll++;
795 else break;
796 pp = p;
797 }
798 p_Test(pp,r);
799 o = r->pFDeg(pp, r);
800 }
801 *l=ll;
802 return o;
803}

◆ pLDeg1()

long pLDeg1 ( poly  p,
int *  l,
ring  r 
)

Definition at line 841 of file p_polys.cc.

842{
843 p_CheckPolyRing(p, r);
844 long unsigned k= p_GetComp(p, r);
845 int ll=1;
846 long t,max;
847
848 max=r->pFDeg(p, r);
849 if (k > 0)
850 {
851 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
852 {
853 t=r->pFDeg(p, r);
854 if (t>max) max=t;
855 ll++;
856 }
857 }
858 else
859 {
860 while ((p=pNext(p))!=NULL)
861 {
862 t=r->pFDeg(p, r);
863 if (t>max) max=t;
864 ll++;
865 }
866 }
867 *l=ll;
868 return max;
869}

◆ pLDeg1_Deg()

long pLDeg1_Deg ( poly  p,
int *  l,
ring  r 
)

Definition at line 910 of file p_polys.cc.

911{
912 assume(r->pFDeg == p_Deg);
913 p_CheckPolyRing(p, r);
914 long unsigned k= p_GetComp(p, r);
915 int ll=1;
916 long t,max;
917
918 max=p_GetOrder(p, r);
919 if (k > 0)
920 {
921 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
922 {
923 t=p_GetOrder(p, r);
924 if (t>max) max=t;
925 ll++;
926 }
927 }
928 else
929 {
930 while ((p=pNext(p))!=NULL)
931 {
932 t=p_GetOrder(p, r);
933 if (t>max) max=t;
934 ll++;
935 }
936 }
937 *l=ll;
938 return max;
939}

◆ pLDeg1_Totaldegree()

long pLDeg1_Totaldegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 975 of file p_polys.cc.

976{
977 p_CheckPolyRing(p, r);
978 long unsigned k= p_GetComp(p, r);
979 int ll=1;
980 long t,max;
981
982 max=p_Totaldegree(p, r);
983 if (k > 0)
984 {
985 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
986 {
987 t=p_Totaldegree(p, r);
988 if (t>max) max=t;
989 ll++;
990 }
991 }
992 else
993 {
994 while ((p=pNext(p))!=NULL)
995 {
996 t=p_Totaldegree(p, r);
997 if (t>max) max=t;
998 ll++;
999 }
1000 }
1001 *l=ll;
1002 return max;
1003}

◆ pLDeg1_WFirstTotalDegree()

long pLDeg1_WFirstTotalDegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1038 of file p_polys.cc.

1039{
1040 p_CheckPolyRing(p, r);
1041 long unsigned k= p_GetComp(p, r);
1042 int ll=1;
1043 long t,max;
1044
1046 if (k > 0)
1047 {
1048 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
1049 {
1050 t=p_WFirstTotalDegree(p, r);
1051 if (t>max) max=t;
1052 ll++;
1053 }
1054 }
1055 else
1056 {
1057 while ((p=pNext(p))!=NULL)
1058 {
1059 t=p_WFirstTotalDegree(p, r);
1060 if (t>max) max=t;
1061 ll++;
1062 }
1063 }
1064 *l=ll;
1065 return max;
1066}
long p_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:596

◆ pLDeg1c()

long pLDeg1c ( poly  p,
int *  l,
ring  r 
)

Definition at line 877 of file p_polys.cc.

878{
879 p_CheckPolyRing(p, r);
880 int ll=1;
881 long t,max;
882
883 max=r->pFDeg(p, r);
884 if (rIsSyzIndexRing(r))
885 {
886 long unsigned limit = rGetCurrSyzLimit(r);
887 while ((p=pNext(p))!=NULL)
888 {
889 if (__p_GetComp(p, r)<=limit)
890 {
891 if ((t=r->pFDeg(p, r))>max) max=t;
892 ll++;
893 }
894 else break;
895 }
896 }
897 else
898 {
899 while ((p=pNext(p))!=NULL)
900 {
901 if ((t=r->pFDeg(p, r))>max) max=t;
902 ll++;
903 }
904 }
905 *l=ll;
906 return max;
907}

◆ pLDeg1c_Deg()

long pLDeg1c_Deg ( poly  p,
int *  l,
ring  r 
)

Definition at line 941 of file p_polys.cc.

942{
943 assume(r->pFDeg == p_Deg);
944 p_CheckPolyRing(p, r);
945 int ll=1;
946 long t,max;
947
948 max=p_GetOrder(p, r);
949 if (rIsSyzIndexRing(r))
950 {
951 long unsigned limit = rGetCurrSyzLimit(r);
952 while ((p=pNext(p))!=NULL)
953 {
954 if (__p_GetComp(p, r)<=limit)
955 {
956 if ((t=p_GetOrder(p, r))>max) max=t;
957 ll++;
958 }
959 else break;
960 }
961 }
962 else
963 {
964 while ((p=pNext(p))!=NULL)
965 {
966 if ((t=p_GetOrder(p, r))>max) max=t;
967 ll++;
968 }
969 }
970 *l=ll;
971 return max;
972}

◆ pLDeg1c_Totaldegree()

long pLDeg1c_Totaldegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1005 of file p_polys.cc.

1006{
1007 p_CheckPolyRing(p, r);
1008 int ll=1;
1009 long t,max;
1010
1011 max=p_Totaldegree(p, r);
1012 if (rIsSyzIndexRing(r))
1013 {
1014 long unsigned limit = rGetCurrSyzLimit(r);
1015 while ((p=pNext(p))!=NULL)
1016 {
1017 if (__p_GetComp(p, r)<=limit)
1018 {
1019 if ((t=p_Totaldegree(p, r))>max) max=t;
1020 ll++;
1021 }
1022 else break;
1023 }
1024 }
1025 else
1026 {
1027 while ((p=pNext(p))!=NULL)
1028 {
1029 if ((t=p_Totaldegree(p, r))>max) max=t;
1030 ll++;
1031 }
1032 }
1033 *l=ll;
1034 return max;
1035}

◆ pLDeg1c_WFirstTotalDegree()

long pLDeg1c_WFirstTotalDegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1068 of file p_polys.cc.

1069{
1070 p_CheckPolyRing(p, r);
1071 int ll=1;
1072 long t,max;
1073
1075 if (rIsSyzIndexRing(r))
1076 {
1077 long unsigned limit = rGetCurrSyzLimit(r);
1078 while ((p=pNext(p))!=NULL)
1079 {
1080 if (__p_GetComp(p, r)<=limit)
1081 {
1082 if ((t=p_Totaldegree(p, r))>max) max=t;
1083 ll++;
1084 }
1085 else break;
1086 }
1087 }
1088 else
1089 {
1090 while ((p=pNext(p))!=NULL)
1091 {
1092 if ((t=p_Totaldegree(p, r))>max) max=t;
1093 ll++;
1094 }
1095 }
1096 *l=ll;
1097 return max;
1098}

◆ pLDegb()

long pLDegb ( poly  p,
int *  l,
ring  r 
)

Definition at line 811 of file p_polys.cc.

812{
813 p_CheckPolyRing(p, r);
814 long unsigned k= p_GetComp(p, r);
815 long o = r->pFDeg(p, r);
816 int ll=1;
817
818 if (k != 0)
819 {
820 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
821 {
822 ll++;
823 }
824 }
825 else
826 {
827 while ((p=pNext(p)) !=NULL)
828 {
829 ll++;
830 }
831 }
832 *l=ll;
833 return o;
834}

◆ pLength()

static unsigned pLength ( poly  a)
inlinestatic

Definition at line 191 of file p_polys.h.

192{
193 unsigned l = 0;
194 while (a!=NULL)
195 {
196 pIter(a);
197 l++;
198 }
199 return l;
200}

◆ pp_DivideM()

poly pp_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1629 of file p_polys.cc.

1630{
1631 if (a==NULL) { return NULL; }
1632 // TODO: better implementation without copying a,b
1633 return p_DivideM(p_Copy(a,r),p_Head(b,r),r);
1634}
poly p_DivideM(poly a, poly b, const ring r)
Definition: p_polys.cc:1574

◆ pp_Jet()

poly pp_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4423 of file p_polys.cc.

4424{
4425 poly r=NULL;
4426 poly t=NULL;
4427
4428 while (p!=NULL)
4429 {
4430 if (p_Totaldegree(p,R)<=m)
4431 {
4432 if (r==NULL)
4433 r=p_Head(p,R);
4434 else
4435 if (t==NULL)
4436 {
4437 pNext(r)=p_Head(p,R);
4438 t=pNext(r);
4439 }
4440 else
4441 {
4442 pNext(t)=p_Head(p,R);
4443 pIter(t);
4444 }
4445 }
4446 pIter(p);
4447 }
4448 return r;
4449}

◆ pp_JetW()

poly pp_JetW ( poly  p,
int  m,
int *  w,
const ring  R 
)

Definition at line 4468 of file p_polys.cc.

4469{
4470 poly r=NULL;
4471 poly t=NULL;
4472 while (p!=NULL)
4473 {
4474 if (totaldegreeWecart_IV(p,R,w)<=m)
4475 {
4476 if (r==NULL)
4477 r=p_Head(p,R);
4478 else
4479 if (t==NULL)
4480 {
4481 pNext(r)=p_Head(p,R);
4482 t=pNext(r);
4483 }
4484 else
4485 {
4486 pNext(t)=p_Head(p,R);
4487 pIter(t);
4488 }
4489 }
4490 pIter(p);
4491 }
4492 return r;
4493}

◆ pp_mm_Mult()

static poly pp_mm_Mult ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1041 of file p_polys.h.

1042{
1043 if (p==NULL) return NULL;
1044 if (p_LmIsConstant(m, r))
1045 return __pp_Mult_nn(p, pGetCoeff(m), r);
1046 else
1047 return r->p_Procs->pp_mm_Mult(p, m, r);
1048}
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:1002

◆ pp_Mult_Coeff_mm_DivSelect() [1/2]

static poly pp_Mult_Coeff_mm_DivSelect ( poly  p,
const poly  m,
const ring  r 
)
inlinestatic

Definition at line 1090 of file p_polys.h.

1091{
1092 int shorter;
1093 return r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1094}

◆ pp_Mult_Coeff_mm_DivSelect() [2/2]

static poly pp_Mult_Coeff_mm_DivSelect ( poly  p,
int &  lp,
const poly  m,
const ring  r 
)
inlinestatic

Definition at line 1098 of file p_polys.h.

1099{
1100 int shorter;
1101 poly pp = r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1102 lp -= shorter;
1103 return pp;
1104}

◆ pp_Mult_mm()

static poly pp_Mult_mm ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1031 of file p_polys.h.

1032{
1033 if (p==NULL) return NULL;
1034 if (p_LmIsConstant(m, r))
1035 return __pp_Mult_nn(p, pGetCoeff(m), r);
1036 else
1037 return r->p_Procs->pp_Mult_mm(p, m, r);
1038}

◆ pp_Mult_nn()

static poly pp_Mult_nn ( poly  p,
number  n,
const ring  r 
)
inlinestatic

Definition at line 992 of file p_polys.h.

993{
994 if (p==NULL) return NULL;
995 if (n_IsOne(n, r->cf))
996 return p_Copy(p, r);
997 else if (n_IsZero(n, r->cf))
998 return NULL;
999 else
1000 return r->p_Procs->pp_Mult_nn(p, n, r);
1001}

◆ pp_Mult_qq()

static poly pp_Mult_qq ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1151 of file p_polys.h.

1152{
1153 if (p == NULL || q == NULL) return NULL;
1154
1155 if (pNext(p) == NULL)
1156 {
1157 return r->p_Procs->pp_mm_Mult(q, p, r);
1158 }
1159
1160 if (pNext(q) == NULL)
1161 {
1162 return r->p_Procs->pp_Mult_mm(p, q, r);
1163 }
1164
1165 poly qq = q;
1166 if (p == q)
1167 qq = p_Copy(q, r);
1168
1169 poly res;
1170#if defined(HAVE_PLURAL) || defined(HAVE_SHIFTBBA)
1171 if (rIsNCRing(r))
1172 res = _nc_pp_Mult_qq(p, qq, r);
1173 else
1174#endif
1175 res = _p_Mult_q(p, qq, 1, r);
1176
1177 if (qq != q)
1178 p_Delete(&qq, r);
1179 return res;
1180}
poly _nc_pp_Mult_qq(const poly p, const poly q, const ring r)
general NC-multiplication without destruction
Definition: old.gring.cc:254

◆ pRestoreDegProcs()

void pRestoreDegProcs ( ring  r,
pFDegProc  old_FDeg,
pLDegProc  old_lDeg 
)

Definition at line 3727 of file p_polys.cc.

3728{
3729 assume(old_FDeg != NULL && old_lDeg != NULL);
3730 r->pFDeg = old_FDeg;
3731 r->pLDeg = old_lDeg;
3732}

◆ pReverse()

static poly pReverse ( poly  p)
inlinestatic

Definition at line 335 of file p_polys.h.

336{
337 if (p == NULL || pNext(p) == NULL) return p;
338
339 poly q = pNext(p), // == pNext(p)
340 qn;
341 pNext(p) = NULL;
342 do
343 {
344 qn = pNext(q);
345 pNext(q) = p;
346 p = q;
347 q = qn;
348 }
349 while (qn != NULL);
350 return p;
351}

◆ pSetDegProcs()

void pSetDegProcs ( ring  r,
pFDegProc  new_FDeg,
pLDegProc  new_lDeg = NULL 
)

Definition at line 3715 of file p_polys.cc.

3716{
3717 assume(new_FDeg != NULL);
3718 r->pFDeg = new_FDeg;
3719
3720 if (new_lDeg == NULL)
3721 new_lDeg = r->pLDegOrig;
3722
3723 r->pLDeg = new_lDeg;
3724}