My Project
Functions
MinorInterface.h File Reference
#include "polys/monomials/ring.h"
#include "kernel/polys.h"

Go to the source code of this file.

Functions

ideal getMinorIdeal (const matrix m, const int minorSize, const int k, const char *algorithm, const ideal i, const bool allDifferent)
 Returns the specified set of minors (= subdeterminantes) of the given matrix. More...
 
ideal getMinorIdealCache (const matrix m, const int minorSize, const int k, const ideal i, const int cacheStrategy, const int cacheN, const int cacheW, const bool allDifferent)
 Returns the specified set of minors (= subdeterminantes) of the given matrix. More...
 
ideal getMinorIdealHeuristic (const matrix m, const int minorSize, const int k, const ideal i, const bool allDifferent)
 Returns the specified set of minors (= subdeterminantes) of the given matrix. More...
 

Function Documentation

◆ getMinorIdeal()

ideal getMinorIdeal ( const matrix  m,
const int  minorSize,
const int  k,
const char *  algorithm,
const ideal  i,
const bool  allDifferent 
)

Returns the specified set of minors (= subdeterminantes) of the given matrix.

These minors form the set of generators of the ideal which is actually returned.
If k == 0, all non-zero minors will be computed. For k > 0, only the first k non-zero minors (to some fixed ordering among all minors) will be computed. Use k < 0 to compute the first |k| minors (including zero minors).
algorithm must be one of "Bareiss" and "Laplace".
i must be either NULL or an ideal capturing a standard basis. In the later case all minors will be reduced w.r.t. i. If allDifferent is true, each minor will be included as generator in the resulting ideal only once; otherwise as often as it occurs as minor value during the computation.

Parameters
mthe matrix from which to compute minors
minorSizethe size of the minors to be computed
kthe number of minors to be computed
algorithmthe algorithm to be used for the computation
iNULL or an ideal which encodes a standard basis
allDifferentif true each minor is considered only once
Returns
the ideal which has as generators the specified set of minors

Definition at line 240 of file MinorInterface.cc.

243{
244 /* Note that this method should be replaced by getMinorIdeal_toBeDone,
245 to enable faster computations in the case of matrices which contain
246 only numbers. But so far, this method is not yet usable as it replaces
247 the numbers by ints which may result in overflows during computations
248 of minors. */
249 int rowCount = mat->nrows;
250 int columnCount = mat->ncols;
251 poly* myPolyMatrix = (poly*)(mat->m);
252 int length = rowCount * columnCount;
253 ideal iii; /* the ideal to be filled and returned */
254
255 if ((k == 0) && (strcmp(algorithm, "Bareiss") == 0)
256 && (!rField_is_Ring(currRing)) && (!allDifferent))
257 {
258 /* In this case, we call an optimized procedure, dating back to
259 Wilfried Pohl. It may be used whenever
260 - all minors are requested,
261 - requested minors need not be mutually distinct, and
262 - coefficients come from a field (i.e., the ring Z is not
263 allowed for this implementation). */
264 iii = (iSB == NULL ? idMinors(mat, minorSize) : idMinors(mat, minorSize,
265 iSB));
266 }
267 else
268 {
269 /* copy all polynomials and reduce them w.r.t. iSB
270 (if iSB is present, i.e., not the NULL pointer) */
271
272 poly* nfPolyMatrix = (poly*)omAlloc(length*sizeof(poly));
273 if (iSB != NULL)
274 {
275 for (int i = 0; i < length; i++)
276 {
277 nfPolyMatrix[i] = kNF(iSB, currRing->qideal,myPolyMatrix[i]);
278 }
279 }
280 else
281 {
282 for (int i = 0; i < length; i++)
283 {
284 nfPolyMatrix[i] = pCopy(myPolyMatrix[i]);
285 }
286 }
287 iii = getMinorIdeal_Poly(nfPolyMatrix, rowCount, columnCount, minorSize,
288 k, algorithm, iSB, allDifferent);
289
290 /* clean up */
291 for (int j = length-1; j>=0; j--) pDelete(&nfPolyMatrix[j]);
292 omFree(nfPolyMatrix);
293 }
294
295 return iii;
296}
ideal getMinorIdeal_Poly(const poly *polyMatrix, const int rowCount, const int columnCount, const int minorSize, const int k, const char *algorithm, const ideal i, const bool allDifferent)
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
int j
Definition: facHensel.cc:110
ideal idMinors(matrix a, int ar, ideal R)
compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R ...
Definition: ideals.cc:1984
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition: kstd1.cc:3167
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omFree(addr)
Definition: omAllocDecl.h:261
#define NULL
Definition: omList.c:12
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
#define pDelete(p_ptr)
Definition: polys.h:186
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
#define rField_is_Ring(R)
Definition: ring.h:486

◆ getMinorIdealCache()

ideal getMinorIdealCache ( const matrix  m,
const int  minorSize,
const int  k,
const ideal  i,
const int  cacheStrategy,
const int  cacheN,
const int  cacheW,
const bool  allDifferent 
)

Returns the specified set of minors (= subdeterminantes) of the given matrix.

These minors form the set of generators of the ideal which is actually returned.
If k == 0, all non-zero minors will be computed. For k > 0, only the first k non-zero minors (to some fixed ordering among all minors) will be computed. Use k < 0 to compute the first |k| minors (including zero minors).
The underlying algorithm is Laplace's algorithm with caching of certain subdeterminantes. The caching strategy can be set; see int MinorValue::getUtility () const in Minor.cc. cacheN is the maximum number of cached polynomials (=subdeterminantes); cacheW the maximum weight of the cache during all computations.
i must be either NULL or an ideal capturing a standard basis. In the later case all minors will be reduced w.r.t. i. If allDifferent is true, each minor will be included as generator in the resulting ideal only once; otherwise as often as it occurs as minor value during the computation.

Parameters
mthe matrix from which to compute minors
minorSizethe size of the minors to be computed
kthe number of minors to be computed
iNULL or an ideal which encodes a standard basis
cacheStrategyone of {1, .., 5}; see Minor.cc
cacheNmaximum number of cached polynomials (=subdeterminantes)
cacheWmaximum weight of the cache
allDifferentif true each minor is considered only once
Returns
the ideal which has as generators the specified set of minors

Definition at line 459 of file MinorInterface.cc.

463{
464 /* Note that this method should be replaced by getMinorIdealCache_toBeDone,
465 to enable faster computations in the case of matrices which contain
466 only numbers. But so far, this method is not yet usable as it replaces
467 the numbers by ints which may result in overflows during computations
468 of minors. */
469 int rowCount = mat->nrows;
470 int columnCount = mat->ncols;
471 poly* myPolyMatrix = (poly*)(mat->m);
472 int length = rowCount * columnCount;
473 poly* nfPolyMatrix = (poly*)omAlloc(length*sizeof(poly));
474 ideal iii; /* the ideal to be filled and returned */
475
476 /* copy all polynomials and reduce them w.r.t. iSB
477 (if iSB is present, i.e., not the NULL pointer) */
478 for (int i = 0; i < length; i++)
479 {
480 if (iSB==NULL)
481 nfPolyMatrix[i] = pCopy(myPolyMatrix[i]);
482 else
483 nfPolyMatrix[i] = kNF(iSB, currRing->qideal, myPolyMatrix[i]);
484 }
485
486 iii = getMinorIdealCache_Poly(nfPolyMatrix, rowCount, columnCount,
487 minorSize, k, iSB, cacheStrategy,
488 cacheN, cacheW, allDifferent);
489
490 /* clean up */
491 for (int j = 0; j < length; j++) pDelete(&nfPolyMatrix[j]);
492 omFree(nfPolyMatrix);
493
494 return iii;
495}
ideal getMinorIdealCache_Poly(const poly *polyMatrix, const int rowCount, const int columnCount, const int minorSize, const int k, const ideal i, const int cacheStrategy, const int cacheN, const int cacheW, const bool allDifferent)

◆ getMinorIdealHeuristic()

ideal getMinorIdealHeuristic ( const matrix  m,
const int  minorSize,
const int  k,
const ideal  i,
const bool  allDifferent 
)

Returns the specified set of minors (= subdeterminantes) of the given matrix.

These minors form the set of generators of the ideal which is actually returned.
If k == 0, all non-zero minors will be computed. For k > 0, only the first k non-zero minors (to some fixed ordering among all minors) will be computed. Use k < 0 to compute the first |k| minors (including zero minors).
The algorithm is heuristically chosen among "Bareiss", "Laplace", and Laplace with caching (of subdeterminants).
i must be either NULL or an ideal capturing a standard basis. In the later case all minors will be reduced w.r.t. i. If allDifferent is true, each minor will be included as generator in the resulting ideal only once; otherwise as often as it occurs as minor value during the computation.

Parameters
mthe matrix from which to compute minors
minorSizethe size of the minors to be computed
kthe number of minors to be computed
iNULL or an ideal which encodes a standard basis
allDifferentif true each minor is considered only once
Returns
the ideal which has as generators the specified set of minors

Definition at line 497 of file MinorInterface.cc.

500{
501 int vars = currRing->N;
502
503 /* here comes the heuristic, as of 29 January 2010:
504
505 integral domain and minorSize <= 2 -> Bareiss
506 integral domain and minorSize >= 3 and vars <= 2 -> Bareiss
507 field case and minorSize >= 3 and vars = 3
508 and c in {2, 3, ..., 32749} -> Bareiss
509
510 otherwise:
511 if not all minors are requested -> Laplace, no Caching
512 otherwise:
513 minorSize >= 3 and vars <= 4 and
514 (rowCount over minorSize)*(columnCount over minorSize) >= 100
515 -> Laplace with Caching
516 minorSize >= 3 and vars >= 5 and
517 (rowCount over minorSize)*(columnCount over minorSize) >= 40
518 -> Laplace with Caching
519
520 otherwise: -> Laplace, no Caching
521 */
522
523 bool b = false; /* Bareiss */
524 bool l = false; /* Laplace without caching */
525 // bool c = false; /* Laplace with caching */
527 { /* the field case or ring Z */
528 if (minorSize <= 2) b = true;
529 else if (vars <= 2) b = true;
530 else if ((!rField_is_Ring(currRing)) && (vars == 3)
531 && (currRing->cf->ch >= 2) && (currRing->cf->ch <= NV_MAX_PRIME))
532 b = true;
533 }
534 if (!b)
535 { /* the non-Bareiss cases */
536 if (k != 0) /* this means, not all minors are requested */ l = true;
537 else
538 { /* k == 0, i.e., all minors are requested */
539 l = true;
540 }
541 }
542
543 if (b) return getMinorIdeal(mat, minorSize, k, "Bareiss", iSB,
544 allDifferent);
545 else if (l) return getMinorIdeal(mat, minorSize, k, "Laplace", iSB,
546 allDifferent);
547 else /* (c) */ return getMinorIdealCache(mat, minorSize, k, iSB,
548 3, 200, 100000, allDifferent);
549}
ideal getMinorIdealCache(const matrix mat, const int minorSize, const int k, const ideal iSB, const int cacheStrategy, const int cacheN, const int cacheW, const bool allDifferent)
Returns the specified set of minors (= subdeterminantes) of the given matrix.
ideal getMinorIdeal(const matrix mat, const int minorSize, const int k, const char *algorithm, const ideal iSB, const bool allDifferent)
Returns the specified set of minors (= subdeterminantes) of the given matrix.
int l
Definition: cfEzgcd.cc:100
CanonicalForm b
Definition: cfModGcd.cc:4103
#define NV_MAX_PRIME
Definition: modulop.h:37
static BOOLEAN rField_is_Domain(const ring r)
Definition: ring.h:488