My Project
ideals.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT - all basic methods to manipulate ideals
6*/
7
8/* includes */
9
10#include "kernel/mod2.h"
11
12#include "misc/options.h"
13#include "misc/intvec.h"
14
15#include "coeffs/coeffs.h"
16#include "coeffs/numbers.h"
17// #include "coeffs/longrat.h"
18
19
21#include "polys/matpol.h"
22#include "polys/weight.h"
23#include "polys/sparsmat.h"
24#include "polys/prCopy.h"
25#include "polys/nc/nc.h"
26
27
28#include "kernel/ideals.h"
29
30#include "kernel/polys.h"
31
34#include "kernel/GBEngine/tgb.h"
35#include "kernel/GBEngine/syz.h"
36#include "Singular/ipshell.h" // iiCallLibProc1
37#include "Singular/ipid.h" // ggetid
38
39
40#if 0
41#include "Singular/ipprint.h" // ipPrint_MA0
42#endif
43
44/* #define WITH_OLD_MINOR */
45
46/*0 implementation*/
47
48/*2
49*returns a minimized set of generators of h1
50*/
51ideal idMinBase (ideal h1)
52{
53 ideal h2, h3,h4,e;
54 int j,k;
55 int i,l,ll;
56 intvec * wth;
57 BOOLEAN homog;
59 {
60 WarnS("minbase applies only to the local or homogeneous case over coefficient fields");
61 e=idCopy(h1);
62 return e;
63 }
64 homog = idHomModule(h1,currRing->qideal,&wth);
66 {
67 if(!homog)
68 {
69 WarnS("minbase applies only to the local or homogeneous case over coefficient fields");
70 e=idCopy(h1);
71 return e;
72 }
73 else
74 {
75 ideal re=kMin_std(h1,currRing->qideal,(tHomog)homog,&wth,h2,NULL,0,3);
76 idDelete(&re);
77 return h2;
78 }
79 }
80 e=idInit(1,h1->rank);
81 if (idIs0(h1))
82 {
83 return e;
84 }
85 pEnlargeSet(&(e->m),IDELEMS(e),15);
86 IDELEMS(e) = 16;
87 h2 = kStd(h1,currRing->qideal,isNotHomog,NULL);
88 h3 = idMaxIdeal(1);
89 h4=idMult(h2,h3);
90 idDelete(&h3);
91 h3=kStd(h4,currRing->qideal,isNotHomog,NULL);
92 k = IDELEMS(h3);
93 while ((k > 0) && (h3->m[k-1] == NULL)) k--;
94 j = -1;
95 l = IDELEMS(h2);
96 while ((l > 0) && (h2->m[l-1] == NULL)) l--;
97 for (i=l-1; i>=0; i--)
98 {
99 if (h2->m[i] != NULL)
100 {
101 ll = 0;
102 while ((ll < k) && ((h3->m[ll] == NULL)
103 || !pDivisibleBy(h3->m[ll],h2->m[i])))
104 ll++;
105 if (ll >= k)
106 {
107 j++;
108 if (j > IDELEMS(e)-1)
109 {
110 pEnlargeSet(&(e->m),IDELEMS(e),16);
111 IDELEMS(e) += 16;
112 }
113 e->m[j] = pCopy(h2->m[i]);
114 }
115 }
116 }
117 idDelete(&h2);
118 idDelete(&h3);
119 idDelete(&h4);
120 if (currRing->qideal!=NULL)
121 {
122 h3=idInit(1,e->rank);
123 h2=kNF(h3,currRing->qideal,e);
124 idDelete(&h3);
125 idDelete(&e);
126 e=h2;
127 }
128 idSkipZeroes(e);
129 return e;
130}
131
132
133static ideal idSectWithElim (ideal h1,ideal h2, GbVariant alg)
134// does not destroy h1,h2
135{
136 if (TEST_OPT_PROT) PrintS("intersect by elimination method\n");
137 assume(!idIs0(h1));
138 assume(!idIs0(h2));
139 assume(IDELEMS(h1)<=IDELEMS(h2));
142 // add a new variable:
143 int j;
144 ring origRing=currRing;
145 ring r=rCopy0(origRing);
146 r->N++;
147 r->block0[0]=1;
148 r->block1[0]= r->N;
149 omFree(r->order);
150 r->order=(rRingOrder_t*)omAlloc0(3*sizeof(rRingOrder_t));
151 r->order[0]=ringorder_dp;
152 r->order[1]=ringorder_C;
153 char **names=(char**)omAlloc0(rVar(r) * sizeof(char_ptr));
154 for (j=0;j<r->N-1;j++) names[j]=r->names[j];
155 names[r->N-1]=omStrDup("@");
156 omFree(r->names);
157 r->names=names;
158 rComplete(r,TRUE);
159 // fetch h1, h2
160 ideal h;
161 h1=idrCopyR(h1,origRing,r);
162 h2=idrCopyR(h2,origRing,r);
163 // switch to temp. ring r
165 // create 1-t, t
166 poly omt=p_One(currRing);
167 p_SetExp(omt,r->N,1,currRing);
168 p_Setm(omt,currRing);
169 poly t=p_Copy(omt,currRing);
170 omt=p_Neg(omt,currRing);
171 omt=p_Add_q(omt,pOne(),currRing);
172 // compute (1-t)*h1
173 h1=(ideal)mp_MultP((matrix)h1,omt,currRing);
174 // compute t*h2
175 h2=(ideal)mp_MultP((matrix)h2,pCopy(t),currRing);
176 // (1-t)h1 + t*h2
177 h=idInit(IDELEMS(h1)+IDELEMS(h2),1);
178 int l;
179 for (l=IDELEMS(h1)-1; l>=0; l--)
180 {
181 h->m[l] = h1->m[l]; h1->m[l]=NULL;
182 }
183 j=IDELEMS(h1);
184 for (l=IDELEMS(h2)-1; l>=0; l--)
185 {
186 h->m[l+j] = h2->m[l]; h2->m[l]=NULL;
187 }
188 idDelete(&h1);
189 idDelete(&h2);
190 // eliminate t:
191 ideal res=idElimination(h,t,NULL,alg);
192 // cleanup
193 idDelete(&h);
194 pDelete(&t);
195 if (res!=NULL) res=idrMoveR(res,r,origRing);
196 rChangeCurrRing(origRing);
197 rDelete(r);
198 return res;
199}
200
201static ideal idGroebner(ideal temp,int syzComp,GbVariant alg, intvec* hilb=NULL, intvec* w=NULL, tHomog hom=testHomog)
202{
203 //Print("syz=%d\n",syzComp);
204 //PrintS(showOption());
205 //PrintLn();
206 ideal temp1;
207 if (w==NULL)
208 {
209 if (hom==testHomog)
210 hom=(tHomog)idHomModule(temp,currRing->qideal,&w); //sets w to weight vector or NULL
211 }
212 else
213 {
214 w=ivCopy(w);
215 hom=isHomog;
216 }
217#ifdef HAVE_SHIFTBBA
218 if (rIsLPRing(currRing)) alg = GbStd;
219#endif
220 if ((alg==GbStd)||(alg==GbDefault))
221 {
222 if (TEST_OPT_PROT &&(alg==GbStd)) { PrintS("std:"); mflush(); }
223 temp1 = kStd(temp,currRing->qideal,hom,&w,hilb,syzComp);
224 idDelete(&temp);
225 }
226 else if (alg==GbSlimgb)
227 {
228 if (TEST_OPT_PROT) { PrintS("slimgb:"); mflush(); }
229 temp1 = t_rep_gb(currRing, temp, syzComp);
230 idDelete(&temp);
231 }
232 else if (alg==GbGroebner)
233 {
234 if (TEST_OPT_PROT) { PrintS("groebner:"); mflush(); }
235 BOOLEAN err;
236 temp1=(ideal)iiCallLibProc1("groebner",temp,MODUL_CMD,err);
237 if (err)
238 {
239 Werror("error %d in >>groebner<<",err);
240 temp1=idInit(1,1);
241 }
242 }
243 else if (alg==GbModstd)
244 {
245 if (TEST_OPT_PROT) { PrintS("modStd:"); mflush(); }
246 BOOLEAN err;
247 void *args[]={temp,(void*)1,NULL};
248 int arg_t[]={MODUL_CMD,INT_CMD,0};
249 leftv temp0=ii_CallLibProcM("modStd",args,arg_t,currRing,err);
250 temp1=(ideal)temp0->data;
252 if (err)
253 {
254 Werror("error %d in >>modStd<<",err);
255 temp1=idInit(1,1);
256 }
257 }
258 else if (alg==GbSba)
259 {
260 if (TEST_OPT_PROT) { PrintS("sba:"); mflush(); }
261 temp1 = kSba(temp,currRing->qideal,hom,&w,1,0,NULL);
262 if (w!=NULL) delete w;
263 }
264 else if (alg==GbStdSat)
265 {
266 if (TEST_OPT_PROT) { PrintS("std:sat:"); mflush(); }
267 BOOLEAN err;
268 // search for 2nd block of vars
269 int i=0;
270 int block=-1;
271 loop
272 {
273 if ((currRing->order[i]!=ringorder_c)
274 && (currRing->order[i]!=ringorder_C)
275 && (currRing->order[i]!=ringorder_s))
276 {
277 if (currRing->order[i]==0) { err=TRUE;break;}
278 block++;
279 if (block==1) { block=i; break;}
280 }
281 i++;
282 }
283 if (block>0)
284 {
285 if (TEST_OPT_PROT)
286 {
287 Print("sat(%d..%d)\n",currRing->block0[block],currRing->block1[block]);
288 mflush();
289 }
290 ideal v=idInit(currRing->block1[block]-currRing->block0[block]+1,1);
291 for(i=currRing->block0[block];i<=currRing->block1[block];i++)
292 {
293 v->m[i-currRing->block0[block]]=pOne();
294 pSetExp(v->m[i-currRing->block0[block]],i,1);
295 pSetm(v->m[i-currRing->block0[block]]);
296 }
297 void *args[]={temp,v,NULL};
298 int arg_t[]={MODUL_CMD,IDEAL_CMD,0};
299 leftv temp0=ii_CallLibProcM("satstd",args,arg_t,currRing,err);
300 temp1=(ideal)temp0->data;
302 }
303 if (err)
304 {
305 Werror("error %d in >>satstd<<",err);
306 temp1=idInit(1,1);
307 }
308 }
309 if (w!=NULL) delete w;
310 return temp1;
311}
312
313/*2
314* h3 := h1 intersect h2
315*/
316ideal idSect (ideal h1,ideal h2, GbVariant alg)
317{
318 int i,j,k;
319 unsigned length;
320 int flength = id_RankFreeModule(h1,currRing);
321 int slength = id_RankFreeModule(h2,currRing);
322 int rank=si_max(h1->rank,h2->rank);
323 if ((idIs0(h1)) || (idIs0(h2))) return idInit(1,rank);
324
325 BITSET save_opt;
326 SI_SAVE_OPT1(save_opt);
328
329 ideal first,second,temp,temp1,result;
330 poly p,q;
331
332 if (IDELEMS(h1)<IDELEMS(h2))
333 {
334 first = h1;
335 second = h2;
336 }
337 else
338 {
339 first = h2;
340 second = h1;
341 int t=flength; flength=slength; slength=t;
342 }
343 length = si_max(flength,slength);
344 if (length==0)
345 {
346 if ((currRing->qideal==NULL)
347 && (currRing->OrdSgn==1)
350 return idSectWithElim(first,second,alg);
351 else length = 1;
352 }
353 if (TEST_OPT_PROT) PrintS("intersect by syzygy methods\n");
354 j = IDELEMS(first);
355
356 ring orig_ring=currRing;
357 ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
358 rSetSyzComp(length,syz_ring);
359 rChangeCurrRing(syz_ring);
360
361 while ((j>0) && (first->m[j-1]==NULL)) j--;
362 temp = idInit(j /*IDELEMS(first)*/+IDELEMS(second),length+j);
363 k = 0;
364 for (i=0;i<j;i++)
365 {
366 if (first->m[i]!=NULL)
367 {
368 if (syz_ring==orig_ring)
369 temp->m[k] = pCopy(first->m[i]);
370 else
371 temp->m[k] = prCopyR(first->m[i], orig_ring, syz_ring);
372 q = pOne();
373 pSetComp(q,i+1+length);
374 pSetmComp(q);
375 if (flength==0) p_Shift(&(temp->m[k]),1,currRing);
376 p = temp->m[k];
377 while (pNext(p)!=NULL) pIter(p);
378 pNext(p) = q;
379 k++;
380 }
381 }
382 for (i=0;i<IDELEMS(second);i++)
383 {
384 if (second->m[i]!=NULL)
385 {
386 if (syz_ring==orig_ring)
387 temp->m[k] = pCopy(second->m[i]);
388 else
389 temp->m[k] = prCopyR(second->m[i], orig_ring,currRing);
390 if (slength==0) p_Shift(&(temp->m[k]),1,currRing);
391 k++;
392 }
393 }
394 intvec *w=NULL;
395
396 if ((alg!=GbDefault)
397 && (alg!=GbGroebner)
398 && (alg!=GbModstd)
399 && (alg!=GbSlimgb)
400 && (alg!=GbStd))
401 {
402 WarnS("wrong algorithm for GB");
403 alg=GbDefault;
404 }
405 temp1=idGroebner(temp,length,alg);
406
407 if(syz_ring!=orig_ring)
408 rChangeCurrRing(orig_ring);
409
410 result = idInit(IDELEMS(temp1),rank);
411 j = 0;
412 for (i=0;i<IDELEMS(temp1);i++)
413 {
414 if ((temp1->m[i]!=NULL)
415 && (__p_GetComp(temp1->m[i],syz_ring)>length))
416 {
417 if(syz_ring==orig_ring)
418 {
419 p = temp1->m[i];
420 }
421 else
422 {
423 p = prMoveR(temp1->m[i], syz_ring,orig_ring);
424 }
425 temp1->m[i]=NULL;
426 while (p!=NULL)
427 {
428 q = pNext(p);
429 pNext(p) = NULL;
430 k = pGetComp(p)-1-length;
431 pSetComp(p,0);
432 pSetmComp(p);
433 /* Warning! multiply only from the left! it's very important for Plural */
434 result->m[j] = pAdd(result->m[j],pMult(p,pCopy(first->m[k])));
435 p = q;
436 }
437 j++;
438 }
439 }
440 if(syz_ring!=orig_ring)
441 {
442 rChangeCurrRing(syz_ring);
443 idDelete(&temp1);
444 rChangeCurrRing(orig_ring);
445 rDelete(syz_ring);
446 }
447 else
448 {
449 idDelete(&temp1);
450 }
451
453 SI_RESTORE_OPT1(save_opt);
455 {
456 w=NULL;
457 temp1=kStd(result,currRing->qideal,testHomog,&w);
458 if (w!=NULL) delete w;
460 idSkipZeroes(temp1);
461 return temp1;
462 }
463 //else
464 // temp1=kInterRed(result,currRing->qideal);
465 return result;
466}
467
468/*2
469* ideal/module intersection for a list of objects
470* given as 'resolvente'
471*/
473{
474 int i,j=0,k=0,l,maxrk=-1,realrki;
475 unsigned syzComp;
476 ideal bigmat,tempstd,result;
477 poly p;
478 int isIdeal=0;
479
480 /* find 0-ideals and max rank -----------------------------------*/
481 for (i=0;i<length;i++)
482 {
483 if (!idIs0(arg[i]))
484 {
485 realrki=id_RankFreeModule(arg[i],currRing);
486 k++;
487 j += IDELEMS(arg[i]);
488 if (realrki>maxrk) maxrk = realrki;
489 }
490 else
491 {
492 if (arg[i]!=NULL)
493 {
494 return idInit(1,arg[i]->rank);
495 }
496 }
497 }
498 if (maxrk == 0)
499 {
500 isIdeal = 1;
501 maxrk = 1;
502 }
503 /* init -----------------------------------------------------------*/
504 j += maxrk;
505 syzComp = k*maxrk;
506
507 ring orig_ring=currRing;
508 ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
509 rSetSyzComp(syzComp,syz_ring);
510 rChangeCurrRing(syz_ring);
511
512 bigmat = idInit(j,(k+1)*maxrk);
513 /* create unit matrices ------------------------------------------*/
514 for (i=0;i<maxrk;i++)
515 {
516 for (j=0;j<=k;j++)
517 {
518 p = pOne();
519 pSetComp(p,i+1+j*maxrk);
520 pSetmComp(p);
521 bigmat->m[i] = pAdd(bigmat->m[i],p);
522 }
523 }
524 /* enter given ideals ------------------------------------------*/
525 i = maxrk;
526 k = 0;
527 for (j=0;j<length;j++)
528 {
529 if (arg[j]!=NULL)
530 {
531 for (l=0;l<IDELEMS(arg[j]);l++)
532 {
533 if (arg[j]->m[l]!=NULL)
534 {
535 if (syz_ring==orig_ring)
536 bigmat->m[i] = pCopy(arg[j]->m[l]);
537 else
538 bigmat->m[i] = prCopyR(arg[j]->m[l], orig_ring,currRing);
539 p_Shift(&(bigmat->m[i]),k*maxrk+isIdeal,currRing);
540 i++;
541 }
542 }
543 k++;
544 }
545 }
546 /* std computation --------------------------------------------*/
547 if ((alg!=GbDefault)
548 && (alg!=GbGroebner)
549 && (alg!=GbModstd)
550 && (alg!=GbSlimgb)
551 && (alg!=GbStd))
552 {
553 WarnS("wrong algorithm for GB");
554 alg=GbDefault;
555 }
556 tempstd=idGroebner(bigmat,syzComp,alg);
557
558 if(syz_ring!=orig_ring)
559 rChangeCurrRing(orig_ring);
560
561 /* interprete result ----------------------------------------*/
562 result = idInit(IDELEMS(tempstd),maxrk);
563 k = 0;
564 for (j=0;j<IDELEMS(tempstd);j++)
565 {
566 if ((tempstd->m[j]!=NULL) && (__p_GetComp(tempstd->m[j],syz_ring)>syzComp))
567 {
568 if (syz_ring==orig_ring)
569 p = pCopy(tempstd->m[j]);
570 else
571 p = prCopyR(tempstd->m[j], syz_ring,currRing);
572 p_Shift(&p,-syzComp-isIdeal,currRing);
573 result->m[k] = p;
574 k++;
575 }
576 }
577 /* clean up ----------------------------------------------------*/
578 if(syz_ring!=orig_ring)
579 rChangeCurrRing(syz_ring);
580 idDelete(&tempstd);
581 if(syz_ring!=orig_ring)
582 {
583 rChangeCurrRing(orig_ring);
584 rDelete(syz_ring);
585 }
587 return result;
588}
589
590/*2
591*computes syzygies of h1,
592*if quot != NULL it computes in the quotient ring modulo "quot"
593*works always in a ring with ringorder_s
594*/
595/* construct a "matrix" (h11 may be NULL)
596 * h1 h11
597 * E_n 0
598 * and compute a (column) GB of it, with a syzComp=rows(h1)=rows(h11)
599 * currRing must be a syz-ring with syzComp set
600 * result is a "matrix":
601 * G 0
602 * T S
603 * where G: GB of (h1+h11)
604 * T: G/h11=h1*T
605 * S: relative syzygies(h1) modulo h11
606 */
607static ideal idPrepare (ideal h1, ideal h11, tHomog hom, int syzcomp, intvec **w, GbVariant alg)
608{
609 ideal h2,h22;
610 int j,k;
611 poly p,q;
612
613 if (idIs0(h1)) return NULL;
615 if (h11!=NULL)
616 {
617 k = si_max(k,(int)id_RankFreeModule(h11,currRing));
618 h22=idCopy(h11);
619 }
620 h2=idCopy(h1);
621 int i = IDELEMS(h2);
622 if (h11!=NULL) i+=IDELEMS(h22);
623 if (k == 0)
624 {
625 id_Shift(h2,1,currRing);
626 if (h11!=NULL) id_Shift(h22,1,currRing);
627 k = 1;
628 }
629 if (syzcomp<k)
630 {
631 Warn("syzcomp too low, should be %d instead of %d",k,syzcomp);
632 syzcomp = k;
634 }
635 h2->rank = syzcomp+i;
636
637 //if (hom==testHomog)
638 //{
639 // if(idHomIdeal(h1,currRing->qideal))
640 // {
641 // hom=TRUE;
642 // }
643 //}
644
645 for (j=0; j<IDELEMS(h2); j++)
646 {
647 p = h2->m[j];
648 q = pOne();
649#ifdef HAVE_SHIFTBBA
650 // non multiplicative variable
651 if (rIsLPRing(currRing))
652 {
653 pSetExp(q, currRing->isLPring - currRing->LPncGenCount + j + 1, 1);
654 p_Setm(q, currRing);
655 }
656#endif
657 pSetComp(q,syzcomp+1+j);
658 pSetmComp(q);
659 if (p!=NULL)
660 {
661#ifdef HAVE_SHIFTBBA
662 if (rIsLPRing(currRing))
663 {
664 h2->m[j] = pAdd(p, q);
665 }
666 else
667#endif
668 {
669 while (pNext(p)) pIter(p);
670 p->next = q;
671 }
672 }
673 else
674 h2->m[j]=q;
675 }
676 if (h11!=NULL)
677 {
678 ideal h=id_SimpleAdd(h2,h22,currRing);
679 id_Delete(&h2,currRing);
680 id_Delete(&h22,currRing);
681 h2=h;
682 }
683
684 idTest(h2);
685 #if 0
687 PrintS(" --------------before std------------------------\n");
688 ipPrint_MA0(TT,"T");
689 PrintLn();
690 idDelete((ideal*)&TT);
691 #endif
692
693 if ((alg!=GbDefault)
694 && (alg!=GbGroebner)
695 && (alg!=GbModstd)
696 && (alg!=GbSlimgb)
697 && (alg!=GbStd))
698 {
699 WarnS("wrong algorithm for GB");
700 alg=GbDefault;
701 }
702
703 ideal h3;
704 if (w!=NULL) h3=idGroebner(h2,syzcomp,alg,NULL,*w,hom);
705 else h3=idGroebner(h2,syzcomp,alg,NULL,NULL,hom);
706 return h3;
707}
708
709ideal idExtractG_T_S(ideal s_h3,matrix *T,ideal *S,long syzComp,
710 int h1_size,BOOLEAN inputIsIdeal,const ring oring, const ring sring)
711{
712 // now sort the result, SB : leave in s_h3
713 // T: put in s_h2 (*T as a matrix)
714 // syz: put in *S
715 idSkipZeroes(s_h3);
716 ideal s_h2 = idInit(IDELEMS(s_h3), s_h3->rank); // will become T
717
718 #if 0
720 Print("after std: --------------syzComp=%d------------------------\n",syzComp);
721 ipPrint_MA0(TT,"T");
722 PrintLn();
723 idDelete((ideal*)&TT);
724 #endif
725
726 int j, i=0;
727 for (j=0; j<IDELEMS(s_h3); j++)
728 {
729 if (s_h3->m[j] != NULL)
730 {
731 if (pGetComp(s_h3->m[j]) <= syzComp) // syz_ring == currRing
732 {
733 i++;
734 poly q = s_h3->m[j];
735 while (pNext(q) != NULL)
736 {
737 if (pGetComp(pNext(q)) > syzComp)
738 {
739 s_h2->m[i-1] = pNext(q);
740 pNext(q) = NULL;
741 }
742 else
743 {
744 pIter(q);
745 }
746 }
747 if (!inputIsIdeal) p_Shift(&(s_h3->m[j]), -1,currRing);
748 }
749 else
750 {
751 // we a syzygy here:
752 if (S!=NULL)
753 {
754 p_Shift(&s_h3->m[j], -syzComp,currRing);
755 (*S)->m[j]=s_h3->m[j];
756 s_h3->m[j]=NULL;
757 }
758 else
759 p_Delete(&(s_h3->m[j]),currRing);
760 }
761 }
762 }
763 idSkipZeroes(s_h3);
764
765 #if 0
767 PrintS("T: ----------------------------------------\n");
768 ipPrint_MA0(TT,"T");
769 PrintLn();
770 idDelete((ideal*)&TT);
771 #endif
772
773 if (S!=NULL) idSkipZeroes(*S);
774
775 if (sring!=oring)
776 {
777 rChangeCurrRing(oring);
778 }
779
780 if (T!=NULL)
781 {
782 *T = mpNew(h1_size,i);
783
784 for (j=0; j<i; j++)
785 {
786 if (s_h2->m[j] != NULL)
787 {
788 poly q = prMoveR( s_h2->m[j], sring,oring);
789 s_h2->m[j] = NULL;
790
791 if (q!=NULL)
792 {
793 q=pReverse(q);
794 while (q != NULL)
795 {
796 poly p = q;
797 pIter(q);
798 pNext(p) = NULL;
799 int t=pGetComp(p);
800 pSetComp(p,0);
801 pSetmComp(p);
802 MATELEM(*T,t-syzComp,j+1) = pAdd(MATELEM(*T,t-syzComp,j+1),p);
803 }
804 }
805 }
806 }
807 }
808 id_Delete(&s_h2,sring);
809
810 for (i=0; i<IDELEMS(s_h3); i++)
811 {
812 s_h3->m[i] = prMoveR_NoSort(s_h3->m[i], sring,oring);
813 }
814 if (S!=NULL)
815 {
816 for (i=0; i<IDELEMS(*S); i++)
817 {
818 (*S)->m[i] = prMoveR_NoSort((*S)->m[i], sring,oring);
819 }
820 }
821 return s_h3;
822}
823
824/*2
825* compute the syzygies of h1 in R/quot,
826* weights of components are in w
827* if setRegularity, return the regularity in deg
828* do not change h1, w
829*/
830ideal idSyzygies (ideal h1, tHomog h,intvec **w, BOOLEAN setSyzComp,
831 BOOLEAN setRegularity, int *deg, GbVariant alg)
832{
833 ideal s_h1;
834 int j, k, length=0,reg;
835 BOOLEAN isMonomial=TRUE;
836 int ii, idElemens_h1;
837
838 assume(h1 != NULL);
839
840 idElemens_h1=IDELEMS(h1);
841#ifdef PDEBUG
842 for(ii=0;ii<idElemens_h1 /*IDELEMS(h1)*/;ii++) pTest(h1->m[ii]);
843#endif
844 if (idIs0(h1))
845 {
846 ideal result=idFreeModule(idElemens_h1/*IDELEMS(h1)*/);
847 return result;
848 }
849 int slength=(int)id_RankFreeModule(h1,currRing);
850 k=si_max(1,slength /*id_RankFreeModule(h1)*/);
851
852 assume(currRing != NULL);
853 ring orig_ring=currRing;
854 ring syz_ring=rAssure_SyzComp(orig_ring,TRUE);
855 if (setSyzComp) rSetSyzComp(k,syz_ring);
856
857 if (orig_ring != syz_ring)
858 {
859 rChangeCurrRing(syz_ring);
860 s_h1=idrCopyR_NoSort(h1,orig_ring,syz_ring);
861 }
862 else
863 {
864 s_h1 = h1;
865 }
866
867 idTest(s_h1);
868
869 BITSET save_opt;
870 SI_SAVE_OPT1(save_opt);
872
873 ideal s_h3=idPrepare(s_h1,NULL,h,k,w,alg); // main (syz) GB computation
874
875 SI_RESTORE_OPT1(save_opt);
876
877 if (orig_ring != syz_ring)
878 {
879 idDelete(&s_h1);
880 for (j=0; j<IDELEMS(s_h3); j++)
881 {
882 if (s_h3->m[j] != NULL)
883 {
884 if (p_MinComp(s_h3->m[j],syz_ring) > k)
885 p_Shift(&s_h3->m[j], -k,syz_ring);
886 else
887 p_Delete(&s_h3->m[j],syz_ring);
888 }
889 }
890 idSkipZeroes(s_h3);
891 s_h3->rank -= k;
892 rChangeCurrRing(orig_ring);
893 s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring);
894 rDelete(syz_ring);
895 #ifdef HAVE_PLURAL
896 if (rIsPluralRing(orig_ring))
897 {
898 id_DelMultiples(s_h3,orig_ring);
899 idSkipZeroes(s_h3);
900 }
901 #endif
902 idTest(s_h3);
903 return s_h3;
904 }
905
906 ideal e = idInit(IDELEMS(s_h3), s_h3->rank);
907
908 for (j=IDELEMS(s_h3)-1; j>=0; j--)
909 {
910 if (s_h3->m[j] != NULL)
911 {
912 if (p_MinComp(s_h3->m[j],syz_ring) <= k)
913 {
914 e->m[j] = s_h3->m[j];
915 isMonomial=isMonomial && (pNext(s_h3->m[j])==NULL);
916 p_Delete(&pNext(s_h3->m[j]),syz_ring);
917 s_h3->m[j] = NULL;
918 }
919 }
920 }
921
922 idSkipZeroes(s_h3);
923 idSkipZeroes(e);
924
925 if ((deg != NULL)
926 && (!isMonomial)
928 && (setRegularity)
929 && (h==isHomog)
932 )
933 {
934 assume(orig_ring==syz_ring);
935 ring dp_C_ring = rAssure_dp_C(syz_ring); // will do rChangeCurrRing later
936 if (dp_C_ring != syz_ring)
937 {
938 rChangeCurrRing(dp_C_ring);
939 e = idrMoveR_NoSort(e, syz_ring, dp_C_ring);
940 }
942 intvec * dummy = syBetti(res,length,&reg, *w);
943 *deg = reg+2;
944 delete dummy;
945 for (j=0;j<length;j++)
946 {
947 if (res[j]!=NULL) idDelete(&(res[j]));
948 }
949 omFreeSize((ADDRESS)res,length*sizeof(ideal));
950 idDelete(&e);
951 if (dp_C_ring != orig_ring)
952 {
953 rChangeCurrRing(orig_ring);
954 rDelete(dp_C_ring);
955 }
956 }
957 else
958 {
959 idDelete(&e);
960 }
961 assume(orig_ring==currRing);
962 idTest(s_h3);
963 if (currRing->qideal != NULL)
964 {
965 ideal ts_h3=kStd(s_h3,currRing->qideal,h,w);
966 idDelete(&s_h3);
967 s_h3 = ts_h3;
968 }
969 return s_h3;
970}
971
972/*
973*computes a standard basis for h1 and stores the transformation matrix
974* in ma
975*/
976ideal idLiftStd (ideal h1, matrix* T, tHomog hi, ideal * S, GbVariant alg,
977 ideal h11)
978{
979 int inputIsIdeal=id_RankFreeModule(h1,currRing);
980 long k;
981 intvec *w=NULL;
982
983 idDelete((ideal*)T);
984 BOOLEAN lift3=FALSE;
985 if (S!=NULL) { lift3=TRUE; idDelete(S); }
986 if (idIs0(h1))
987 {
988 *T=mpNew(1,IDELEMS(h1));
989 if (lift3)
990 {
991 *S=idFreeModule(IDELEMS(h1));
992 }
993 return idInit(1,h1->rank);
994 }
995
996 BITSET save2;
997 SI_SAVE_OPT2(save2);
998
999 k=si_max(1,inputIsIdeal);
1000
1001 if ((!lift3)&&(!TEST_OPT_RETURN_SB)) si_opt_2 |=Sy_bit(V_IDLIFT);
1002
1003 ring orig_ring = currRing;
1004 ring syz_ring = rAssure_SyzOrder(orig_ring,TRUE);
1005 rSetSyzComp(k,syz_ring);
1006 rChangeCurrRing(syz_ring);
1007
1008 ideal s_h1;
1009
1010 if (orig_ring != syz_ring)
1011 s_h1 = idrCopyR_NoSort(h1,orig_ring,syz_ring);
1012 else
1013 s_h1 = h1;
1014 ideal s_h11=NULL;
1015 if (h11!=NULL)
1016 {
1017 s_h11=idrCopyR_NoSort(h11,orig_ring,syz_ring);
1018 }
1019
1020
1021 ideal s_h3=idPrepare(s_h1,s_h11,hi,k,&w,alg); // main (syz) GB computation
1022
1023
1024 if (w!=NULL) delete w;
1025 if (syz_ring!=orig_ring)
1026 {
1027 idDelete(&s_h1);
1028 if (s_h11!=NULL) idDelete(&s_h11);
1029 }
1030
1031 if (S!=NULL) (*S)=idInit(IDELEMS(s_h3),IDELEMS(h1));
1032
1033 s_h3=idExtractG_T_S(s_h3,T,S,k,IDELEMS(h1),inputIsIdeal,orig_ring,syz_ring);
1034
1035 if (syz_ring!=orig_ring) rDelete(syz_ring);
1036 s_h3->rank=h1->rank;
1037 SI_RESTORE_OPT2(save2);
1038 return s_h3;
1039}
1040
1041static void idPrepareStd(ideal s_temp, int k)
1042{
1043 int j,rk=id_RankFreeModule(s_temp,currRing);
1044 poly p,q;
1045
1046 if (rk == 0)
1047 {
1048 for (j=0; j<IDELEMS(s_temp); j++)
1049 {
1050 if (s_temp->m[j]!=NULL) pSetCompP(s_temp->m[j],1);
1051 }
1052 k = si_max(k,1);
1053 }
1054 for (j=0; j<IDELEMS(s_temp); j++)
1055 {
1056 if (s_temp->m[j]!=NULL)
1057 {
1058 p = s_temp->m[j];
1059 q = pOne();
1060 //pGetCoeff(q)=nInpNeg(pGetCoeff(q)); //set q to -1
1061 pSetComp(q,k+1+j);
1062 pSetmComp(q);
1063#ifdef HAVE_SHIFTBBA
1064 // non multiplicative variable
1065 if (rIsLPRing(currRing))
1066 {
1067 pSetExp(q, currRing->isLPring - currRing->LPncGenCount + j + 1, 1);
1068 p_Setm(q, currRing);
1069 s_temp->m[j] = pAdd(p, q);
1070 }
1071 else
1072#endif
1073 {
1074 while (pNext(p)) pIter(p);
1075 pNext(p) = q;
1076 }
1077 }
1078 }
1079 s_temp->rank = k+IDELEMS(s_temp);
1080}
1081
1082static void idLift_setUnit(int e_mod, matrix *unit)
1083{
1084 if (unit!=NULL)
1085 {
1086 *unit=mpNew(e_mod,e_mod);
1087 // make sure that U is a diagonal matrix of units
1088 for(int i=e_mod;i>0;i--)
1089 {
1090 MATELEM(*unit,i,i)=pOne();
1091 }
1092 }
1093}
1094/*2
1095*computes a representation of the generators of submod with respect to those
1096* of mod
1097*/
1098/// represents the generators of submod in terms of the generators of mod
1099/// (Matrix(SM)*U-Matrix(rest)) = Matrix(M)*Matrix(result)
1100/// goodShape: maximal non-zero index in generators of SM <= that of M
1101/// isSB: generators of M form a Groebner basis
1102/// divide: allow SM not to be a submodule of M
1103/// U is an diagonal matrix of units (non-constant only in local rings)
1104/// rest is: 0 if SM in M, SM if not divide, NF(SM,std(M)) if divide
1105ideal idLift(ideal mod, ideal submod,ideal *rest, BOOLEAN goodShape,
1106 BOOLEAN isSB, BOOLEAN divide, matrix *unit, GbVariant alg)
1107{
1108 int lsmod =id_RankFreeModule(submod,currRing), j, k;
1109 int comps_to_add=0;
1110 int idelems_mod=IDELEMS(mod);
1111 int idelems_submod=IDELEMS(submod);
1112 poly p;
1113
1114 if (idIs0(submod))
1115 {
1116 if (rest!=NULL)
1117 {
1118 *rest=idInit(1,mod->rank);
1119 }
1120 idLift_setUnit(idelems_submod,unit);
1121 return idInit(1,idelems_mod);
1122 }
1123 if (idIs0(mod)) /* and not idIs0(submod) */
1124 {
1125 if (rest!=NULL)
1126 {
1127 *rest=idCopy(submod);
1128 idLift_setUnit(idelems_submod,unit);
1129 return idInit(1,idelems_mod);
1130 }
1131 else
1132 {
1133 WerrorS("2nd module does not lie in the first");
1134 return NULL;
1135 }
1136 }
1137 if (unit!=NULL)
1138 {
1139 comps_to_add = idelems_submod;
1140 while ((comps_to_add>0) && (submod->m[comps_to_add-1]==NULL))
1141 comps_to_add--;
1142 }
1144 if ((k!=0) && (lsmod==0)) lsmod=1;
1145 k=si_max(k,(int)mod->rank);
1146 if (k<submod->rank) { WarnS("rk(submod) > rk(mod) ?");k=submod->rank; }
1147
1148 ring orig_ring=currRing;
1149 ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
1150 rSetSyzComp(k,syz_ring);
1151 rChangeCurrRing(syz_ring);
1152
1153 ideal s_mod, s_temp;
1154 if (orig_ring != syz_ring)
1155 {
1156 s_mod = idrCopyR_NoSort(mod,orig_ring,syz_ring);
1157 s_temp = idrCopyR_NoSort(submod,orig_ring,syz_ring);
1158 }
1159 else
1160 {
1161 s_mod = mod;
1162 s_temp = idCopy(submod);
1163 }
1164 ideal s_h3;
1165 if (isSB)
1166 {
1167 s_h3 = idCopy(s_mod);
1168 idPrepareStd(s_h3, k+comps_to_add);
1169 }
1170 else
1171 {
1172 s_h3 = idPrepare(s_mod,NULL,(tHomog)FALSE,k+comps_to_add,NULL,alg);
1173 }
1174 if (!goodShape)
1175 {
1176 for (j=0;j<IDELEMS(s_h3);j++)
1177 {
1178 if ((s_h3->m[j] != NULL) && (pMinComp(s_h3->m[j]) > k))
1179 p_Delete(&(s_h3->m[j]),currRing);
1180 }
1181 }
1182 idSkipZeroes(s_h3);
1183 if (lsmod==0)
1184 {
1185 id_Shift(s_temp,1,currRing);
1186 }
1187 if (unit!=NULL)
1188 {
1189 for(j = 0;j<comps_to_add;j++)
1190 {
1191 p = s_temp->m[j];
1192 if (p!=NULL)
1193 {
1194 while (pNext(p)!=NULL) pIter(p);
1195 pNext(p) = pOne();
1196 pIter(p);
1197 pSetComp(p,1+j+k);
1198 pSetmComp(p);
1199 p = pNeg(p);
1200 }
1201 }
1202 s_temp->rank += (k+comps_to_add);
1203 }
1204 ideal s_result = kNF(s_h3,currRing->qideal,s_temp,k);
1205 s_result->rank = s_h3->rank;
1206 ideal s_rest = idInit(IDELEMS(s_result),k);
1207 idDelete(&s_h3);
1208 idDelete(&s_temp);
1209
1210 for (j=0;j<IDELEMS(s_result);j++)
1211 {
1212 if (s_result->m[j]!=NULL)
1213 {
1214 if (pGetComp(s_result->m[j])<=k)
1215 {
1216 if (!divide)
1217 {
1218 if (rest==NULL)
1219 {
1220 if (isSB)
1221 {
1222 WarnS("first module not a standardbasis\n"
1223 "// ** or second not a proper submodule");
1224 }
1225 else
1226 WerrorS("2nd module does not lie in the first");
1227 }
1228 idDelete(&s_result);
1229 idDelete(&s_rest);
1230 if(syz_ring!=orig_ring)
1231 {
1232 idDelete(&s_mod);
1233 rChangeCurrRing(orig_ring);
1234 rDelete(syz_ring);
1235 }
1236 if (unit!=NULL)
1237 {
1238 idLift_setUnit(idelems_submod,unit);
1239 }
1240 if (rest!=NULL) *rest=idCopy(submod);
1241 s_result=idInit(idelems_submod,idelems_mod);
1242 return s_result;
1243 }
1244 else
1245 {
1246 p = s_rest->m[j] = s_result->m[j];
1247 while ((pNext(p)!=NULL) && (pGetComp(pNext(p))<=k)) pIter(p);
1248 s_result->m[j] = pNext(p);
1249 pNext(p) = NULL;
1250 }
1251 }
1252 p_Shift(&(s_result->m[j]),-k,currRing);
1253 pNeg(s_result->m[j]);
1254 }
1255 }
1256 if ((lsmod==0) && (s_rest!=NULL))
1257 {
1258 for (j=IDELEMS(s_rest);j>0;j--)
1259 {
1260 if (s_rest->m[j-1]!=NULL)
1261 {
1262 p_Shift(&(s_rest->m[j-1]),-1,currRing);
1263 }
1264 }
1265 }
1266 if(syz_ring!=orig_ring)
1267 {
1268 idDelete(&s_mod);
1269 rChangeCurrRing(orig_ring);
1270 s_result = idrMoveR_NoSort(s_result, syz_ring, orig_ring);
1271 s_rest = idrMoveR_NoSort(s_rest, syz_ring, orig_ring);
1272 rDelete(syz_ring);
1273 }
1274 if (rest!=NULL)
1275 {
1276 s_rest->rank=mod->rank;
1277 *rest = s_rest;
1278 }
1279 else
1280 idDelete(&s_rest);
1281 if (unit!=NULL)
1282 {
1283 *unit=mpNew(idelems_submod,idelems_submod);
1284 int i;
1285 for(i=0;i<IDELEMS(s_result);i++)
1286 {
1287 poly p=s_result->m[i];
1288 poly q=NULL;
1289 while(p!=NULL)
1290 {
1291 if(pGetComp(p)<=comps_to_add)
1292 {
1293 pSetComp(p,0);
1294 if (q!=NULL)
1295 {
1296 pNext(q)=pNext(p);
1297 }
1298 else
1299 {
1300 pIter(s_result->m[i]);
1301 }
1302 pNext(p)=NULL;
1303 MATELEM(*unit,i+1,i+1)=pAdd(MATELEM(*unit,i+1,i+1),p);
1304 if(q!=NULL) p=pNext(q);
1305 else p=s_result->m[i];
1306 }
1307 else
1308 {
1309 q=p;
1310 pIter(p);
1311 }
1312 }
1313 p_Shift(&s_result->m[i],-comps_to_add,currRing);
1314 }
1315 }
1316 s_result->rank=idelems_mod;
1317 return s_result;
1318}
1319
1320/*2
1321*computes division of P by Q with remainder up to (w-weighted) degree n
1322*P, Q, and w are not changed
1323*/
1324void idLiftW(ideal P,ideal Q,int n,matrix &T, ideal &R,int *w)
1325{
1326 long N=0;
1327 int i;
1328 for(i=IDELEMS(Q)-1;i>=0;i--)
1329 if(w==NULL)
1330 N=si_max(N,p_Deg(Q->m[i],currRing));
1331 else
1332 N=si_max(N,p_DegW(Q->m[i],w,currRing));
1333 N+=n;
1334
1335 T=mpNew(IDELEMS(Q),IDELEMS(P));
1336 R=idInit(IDELEMS(P),P->rank);
1337
1338 for(i=IDELEMS(P)-1;i>=0;i--)
1339 {
1340 poly p;
1341 if(w==NULL)
1342 p=ppJet(P->m[i],N);
1343 else
1344 p=ppJetW(P->m[i],N,w);
1345
1346 int j=IDELEMS(Q)-1;
1347 while(p!=NULL)
1348 {
1349 if(pDivisibleBy(Q->m[j],p))
1350 {
1351 poly p0=p_DivideM(pHead(p),pHead(Q->m[j]),currRing);
1352 if(w==NULL)
1353 p=pJet(pSub(p,ppMult_mm(Q->m[j],p0)),N);
1354 else
1355 p=pJetW(pSub(p,ppMult_mm(Q->m[j],p0)),N,w);
1356 pNormalize(p);
1357 if(((w==NULL)&&(p_Deg(p0,currRing)>n))||((w!=NULL)&&(p_DegW(p0,w,currRing)>n)))
1358 p_Delete(&p0,currRing);
1359 else
1360 MATELEM(T,j+1,i+1)=pAdd(MATELEM(T,j+1,i+1),p0);
1361 j=IDELEMS(Q)-1;
1362 }
1363 else
1364 {
1365 if(j==0)
1366 {
1367 poly p0=p;
1368 pIter(p);
1369 pNext(p0)=NULL;
1370 if(((w==NULL)&&(p_Deg(p0,currRing)>n))
1371 ||((w!=NULL)&&(p_DegW(p0,w,currRing)>n)))
1372 p_Delete(&p0,currRing);
1373 else
1374 R->m[i]=pAdd(R->m[i],p0);
1375 j=IDELEMS(Q)-1;
1376 }
1377 else
1378 j--;
1379 }
1380 }
1381 }
1382}
1383
1384/*2
1385*computes the quotient of h1,h2 : internal routine for idQuot
1386*BEWARE: the returned ideals may contain incorrectly ordered polys !
1387*
1388*/
1389static ideal idInitializeQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN *addOnlyOne, int *kkmax)
1390{
1391 idTest(h1);
1392 idTest(h2);
1393
1394 ideal temph1;
1395 poly p,q = NULL;
1396 int i,l,ll,k,kkk,kmax;
1397 int j = 0;
1398 int k1 = id_RankFreeModule(h1,currRing);
1399 int k2 = id_RankFreeModule(h2,currRing);
1400 tHomog hom=isNotHomog;
1401 k=si_max(k1,k2);
1402 if (k==0)
1403 k = 1;
1404 if ((k2==0) && (k>1)) *addOnlyOne = FALSE;
1405 intvec * weights;
1406 hom = (tHomog)idHomModule(h1,currRing->qideal,&weights);
1407 if /**addOnlyOne &&*/ (/*(*/ !h1IsStb /*)*/)
1408 temph1 = kStd(h1,currRing->qideal,hom,&weights,NULL);
1409 else
1410 temph1 = idCopy(h1);
1411 if (weights!=NULL) delete weights;
1412 idTest(temph1);
1413/*--- making a single vector from h2 ---------------------*/
1414 for (i=0; i<IDELEMS(h2); i++)
1415 {
1416 if (h2->m[i] != NULL)
1417 {
1418 p = pCopy(h2->m[i]);
1419 if (k2 == 0)
1420 p_Shift(&p,j*k+1,currRing);
1421 else
1422 p_Shift(&p,j*k,currRing);
1423 q = pAdd(q,p);
1424 j++;
1425 }
1426 }
1427 *kkmax = kmax = j*k+1;
1428/*--- adding a monomial for the result (syzygy) ----------*/
1429 p = q;
1430 while (pNext(p)!=NULL) pIter(p);
1431 pNext(p) = pOne();
1432 pIter(p);
1433 pSetComp(p,kmax);
1434 pSetmComp(p);
1435/*--- constructing the big matrix ------------------------*/
1436 ideal h4 = idInit(k,kmax+k-1);
1437 h4->m[0] = q;
1438 if (k2 == 0)
1439 {
1440 for (i=1; i<k; i++)
1441 {
1442 if (h4->m[i-1]!=NULL)
1443 {
1444 p = p_Copy_noCheck(h4->m[i-1], currRing); /*h4->m[i-1]!=NULL*/
1445 p_Shift(&p,1,currRing);
1446 h4->m[i] = p;
1447 }
1448 else break;
1449 }
1450 }
1451 idSkipZeroes(h4);
1452 kkk = IDELEMS(h4);
1453 i = IDELEMS(temph1);
1454 for (l=0; l<i; l++)
1455 {
1456 if(temph1->m[l]!=NULL)
1457 {
1458 for (ll=0; ll<j; ll++)
1459 {
1460 p = pCopy(temph1->m[l]);
1461 if (k1 == 0)
1462 p_Shift(&p,ll*k+1,currRing);
1463 else
1464 p_Shift(&p,ll*k,currRing);
1465 if (kkk >= IDELEMS(h4))
1466 {
1467 pEnlargeSet(&(h4->m),IDELEMS(h4),16);
1468 IDELEMS(h4) += 16;
1469 }
1470 h4->m[kkk] = p;
1471 kkk++;
1472 }
1473 }
1474 }
1475/*--- if h2 goes in as single vector - the h1-part is just SB ---*/
1476 if (*addOnlyOne)
1477 {
1478 idSkipZeroes(h4);
1479 p = h4->m[0];
1480 for (i=0;i<IDELEMS(h4)-1;i++)
1481 {
1482 h4->m[i] = h4->m[i+1];
1483 }
1484 h4->m[IDELEMS(h4)-1] = p;
1485 }
1486 idDelete(&temph1);
1487 //idTest(h4);//see remark at the beginning
1488 return h4;
1489}
1490
1491/*2
1492*computes the quotient of h1,h2
1493*/
1494ideal idQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN resultIsIdeal)
1495{
1496 // first check for special case h1:(0)
1497 if (idIs0(h2))
1498 {
1499 ideal res;
1500 if (resultIsIdeal)
1501 {
1502 res = idInit(1,1);
1503 res->m[0] = pOne();
1504 }
1505 else
1506 res = idFreeModule(h1->rank);
1507 return res;
1508 }
1509 int i, kmax;
1510 BOOLEAN addOnlyOne=TRUE;
1511 tHomog hom=isNotHomog;
1512 intvec * weights1;
1513
1514 ideal s_h4 = idInitializeQuot (h1,h2,h1IsStb,&addOnlyOne,&kmax);
1515
1516 hom = (tHomog)idHomModule(s_h4,currRing->qideal,&weights1);
1517
1518 ring orig_ring=currRing;
1519 ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
1520 rSetSyzComp(kmax-1,syz_ring);
1521 rChangeCurrRing(syz_ring);
1522 if (orig_ring!=syz_ring)
1523 // s_h4 = idrMoveR_NoSort(s_h4,orig_ring, syz_ring);
1524 s_h4 = idrMoveR(s_h4,orig_ring, syz_ring);
1525 idTest(s_h4);
1526
1527 #if 0
1528 matrix m=idModule2Matrix(idCopy(s_h4));
1529 PrintS("start:\n");
1530 ipPrint_MA0(m,"Q");
1531 idDelete((ideal *)&m);
1532 PrintS("last elem:");wrp(s_h4->m[IDELEMS(s_h4)-1]);PrintLn();
1533 #endif
1534
1535 ideal s_h3;
1536 BITSET old_test1;
1537 SI_SAVE_OPT1(old_test1);
1539 if (addOnlyOne)
1540 {
1542 s_h3 = kStd(s_h4,currRing->qideal,hom,&weights1,NULL,0/*kmax-1*/,IDELEMS(s_h4)-1);
1543 }
1544 else
1545 {
1546 s_h3 = kStd(s_h4,currRing->qideal,hom,&weights1,NULL,kmax-1);
1547 }
1548 SI_RESTORE_OPT1(old_test1);
1549
1550 #if 0
1551 // only together with the above debug stuff
1552 idSkipZeroes(s_h3);
1553 m=idModule2Matrix(idCopy(s_h3));
1554 Print("result, kmax=%d:\n",kmax);
1555 ipPrint_MA0(m,"S");
1556 idDelete((ideal *)&m);
1557 #endif
1558
1559 idTest(s_h3);
1560 if (weights1!=NULL) delete weights1;
1561 idDelete(&s_h4);
1562
1563 for (i=0;i<IDELEMS(s_h3);i++)
1564 {
1565 if ((s_h3->m[i]!=NULL) && (pGetComp(s_h3->m[i])>=kmax))
1566 {
1567 if (resultIsIdeal)
1568 p_Shift(&s_h3->m[i],-kmax,currRing);
1569 else
1570 p_Shift(&s_h3->m[i],-kmax+1,currRing);
1571 }
1572 else
1573 p_Delete(&s_h3->m[i],currRing);
1574 }
1575 if (resultIsIdeal)
1576 s_h3->rank = 1;
1577 else
1578 s_h3->rank = h1->rank;
1579 if(syz_ring!=orig_ring)
1580 {
1581 rChangeCurrRing(orig_ring);
1582 s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring);
1583 rDelete(syz_ring);
1584 }
1585 idSkipZeroes(s_h3);
1586 idTest(s_h3);
1587 return s_h3;
1588}
1589
1590/*2
1591* eliminate delVar (product of vars) in h1
1592*/
1593ideal idElimination (ideal h1,poly delVar,intvec *hilb, GbVariant alg)
1594{
1595 int i,j=0,k,l;
1596 ideal h,hh, h3;
1597 rRingOrder_t *ord;
1598 int *block0,*block1;
1599 int ordersize=2;
1600 int **wv;
1601 tHomog hom;
1602 intvec * w;
1603 ring tmpR;
1604 ring origR = currRing;
1605
1606 if (delVar==NULL)
1607 {
1608 return idCopy(h1);
1609 }
1610 if ((currRing->qideal!=NULL) && rIsPluralRing(origR))
1611 {
1612 WerrorS("cannot eliminate in a qring");
1613 return NULL;
1614 }
1615 if (idIs0(h1)) return idInit(1,h1->rank);
1616#ifdef HAVE_PLURAL
1617 if (rIsPluralRing(origR))
1618 /* in the NC case, we have to check the admissibility of */
1619 /* the subalgebra to be intersected with */
1620 {
1621 if ((ncRingType(origR) != nc_skew) && (ncRingType(origR) != nc_exterior)) /* in (quasi)-commutative algebras every subalgebra is admissible */
1622 {
1623 if (nc_CheckSubalgebra(delVar,origR))
1624 {
1625 WerrorS("no elimination is possible: subalgebra is not admissible");
1626 return NULL;
1627 }
1628 }
1629 }
1630#endif
1631 hom=(tHomog)idHomModule(h1,NULL,&w); //sets w to weight vector or NULL
1632 h3=idInit(16,h1->rank);
1633 for (k=0;; k++)
1634 {
1635 if (origR->order[k]!=0) ordersize++;
1636 else break;
1637 }
1638#if 0
1639 if (rIsPluralRing(origR)) // we have too keep the odering: it may be needed
1640 // for G-algebra
1641 {
1642 for (k=0;k<ordersize-1; k++)
1643 {
1644 block0[k+1] = origR->block0[k];
1645 block1[k+1] = origR->block1[k];
1646 ord[k+1] = origR->order[k];
1647 if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]);
1648 }
1649 }
1650 else
1651 {
1652 block0[1] = 1;
1653 block1[1] = (currRing->N);
1654 if (origR->OrdSgn==1) ord[1] = ringorder_wp;
1655 else ord[1] = ringorder_ws;
1656 wv[1]=(int*)omAlloc0((currRing->N)*sizeof(int));
1657 double wNsqr = (double)2.0 / (double)(currRing->N);
1659 int *x= (int * )omAlloc(2 * ((currRing->N) + 1) * sizeof(int));
1660 int sl=IDELEMS(h1) - 1;
1661 wCall(h1->m, sl, x, wNsqr);
1662 for (sl = (currRing->N); sl!=0; sl--)
1663 wv[1][sl-1] = x[sl + (currRing->N) + 1];
1664 omFreeSize((ADDRESS)x, 2 * ((currRing->N) + 1) * sizeof(int));
1665
1666 ord[2]=ringorder_C;
1667 ord[3]=0;
1668 }
1669#else
1670#endif
1671 if ((hom==TRUE) && (origR->OrdSgn==1) && (!rIsPluralRing(origR)))
1672 {
1673 #if 1
1674 // we change to an ordering:
1675 // aa(1,1,1,...,0,0,0),wp(...),C
1676 // this seems to be better than version 2 below,
1677 // according to Tst/../elimiate_[3568].tat (- 17 %)
1678 ord=(rRingOrder_t*)omAlloc0(4*sizeof(rRingOrder_t));
1679 block0=(int*)omAlloc0(4*sizeof(int));
1680 block1=(int*)omAlloc0(4*sizeof(int));
1681 wv=(int**) omAlloc0(4*sizeof(int**));
1682 block0[0] = block0[1] = 1;
1683 block1[0] = block1[1] = rVar(origR);
1684 wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1685 // use this special ordering: like ringorder_a, except that pFDeg, pWeights
1686 // ignore it
1687 ord[0] = ringorder_aa;
1688 for (j=0;j<rVar(origR);j++)
1689 if (pGetExp(delVar,j+1)!=0) wv[0][j]=1;
1690 BOOLEAN wp=FALSE;
1691 for (j=0;j<rVar(origR);j++)
1692 if (p_Weight(j+1,origR)!=1) { wp=TRUE;break; }
1693 if (wp)
1694 {
1695 wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1696 for (j=0;j<rVar(origR);j++)
1697 wv[1][j]=p_Weight(j+1,origR);
1698 ord[1] = ringorder_wp;
1699 }
1700 else
1701 ord[1] = ringorder_dp;
1702 #else
1703 // we change to an ordering:
1704 // a(w1,...wn),wp(1,...0.....),C
1705 ord=(int*)omAlloc0(4*sizeof(int));
1706 block0=(int*)omAlloc0(4*sizeof(int));
1707 block1=(int*)omAlloc0(4*sizeof(int));
1708 wv=(int**) omAlloc0(4*sizeof(int**));
1709 block0[0] = block0[1] = 1;
1710 block1[0] = block1[1] = rVar(origR);
1711 wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1712 wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1713 ord[0] = ringorder_a;
1714 for (j=0;j<rVar(origR);j++)
1715 wv[0][j]=pWeight(j+1,origR);
1716 ord[1] = ringorder_wp;
1717 for (j=0;j<rVar(origR);j++)
1718 if (pGetExp(delVar,j+1)!=0) wv[1][j]=1;
1719 #endif
1720 ord[2] = ringorder_C;
1721 ord[3] = (rRingOrder_t)0;
1722 }
1723 else
1724 {
1725 // we change to an ordering:
1726 // aa(....),orig_ordering
1727 ord=(rRingOrder_t*)omAlloc0(ordersize*sizeof(rRingOrder_t));
1728 block0=(int*)omAlloc0(ordersize*sizeof(int));
1729 block1=(int*)omAlloc0(ordersize*sizeof(int));
1730 wv=(int**) omAlloc0(ordersize*sizeof(int**));
1731 for (k=0;k<ordersize-1; k++)
1732 {
1733 block0[k+1] = origR->block0[k];
1734 block1[k+1] = origR->block1[k];
1735 ord[k+1] = origR->order[k];
1736 if (origR->wvhdl[k]!=NULL)
1737 #ifdef HAVE_OMALLOC
1738 wv[k+1] = (int*) omMemDup(origR->wvhdl[k]);
1739 #else
1740 {
1741 int l=(origR->block1[k]-origR->block0[k]+1)*sizeof(int);
1742 if (origR->order[k]==ringorder_a64) l*=2;
1743 wv[k+1]=(int*)omalloc(l);
1744 memcpy(wv[k+1],origR->wvhdl[k],l);
1745 }
1746 #endif
1747 }
1748 block0[0] = 1;
1749 block1[0] = rVar(origR);
1750 wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1751 for (j=0;j<rVar(origR);j++)
1752 if (pGetExp(delVar,j+1)!=0) wv[0][j]=1;
1753 // use this special ordering: like ringorder_a, except that pFDeg, pWeights
1754 // ignore it
1755 ord[0] = ringorder_aa;
1756 }
1757 // fill in tmp ring to get back the data later on
1758 tmpR = rCopy0(origR,FALSE,FALSE); // qring==NULL
1759 //rUnComplete(tmpR);
1760 tmpR->p_Procs=NULL;
1761 tmpR->order = ord;
1762 tmpR->block0 = block0;
1763 tmpR->block1 = block1;
1764 tmpR->wvhdl = wv;
1765 rComplete(tmpR, 1);
1766
1767#ifdef HAVE_PLURAL
1768 /* update nc structure on tmpR */
1769 if (rIsPluralRing(origR))
1770 {
1771 if ( nc_rComplete(origR, tmpR, false) ) // no quotient ideal!
1772 {
1773 WerrorS("no elimination is possible: ordering condition is violated");
1774 // cleanup
1775 rDelete(tmpR);
1776 if (w!=NULL)
1777 delete w;
1778 return NULL;
1779 }
1780 }
1781#endif
1782 // change into the new ring
1783 //pChangeRing((currRing->N),currRing->OrdSgn,ord,block0,block1,wv);
1784 rChangeCurrRing(tmpR);
1785
1786 //h = idInit(IDELEMS(h1),h1->rank);
1787 // fetch data from the old ring
1788 //for (k=0;k<IDELEMS(h1);k++) h->m[k] = prCopyR( h1->m[k], origR);
1789 h=idrCopyR(h1,origR,currRing);
1790 if (origR->qideal!=NULL)
1791 {
1792 WarnS("eliminate in q-ring: experimental");
1793 ideal q=idrCopyR(origR->qideal,origR,currRing);
1794 ideal s=idSimpleAdd(h,q);
1795 idDelete(&h);
1796 idDelete(&q);
1797 h=s;
1798 }
1799 // compute GB
1800 if ((alg!=GbDefault)
1801 && (alg!=GbGroebner)
1802 && (alg!=GbModstd)
1803 && (alg!=GbSlimgb)
1804 && (alg!=GbSba)
1805 && (alg!=GbStd))
1806 {
1807 WarnS("wrong algorithm for GB");
1808 alg=GbDefault;
1809 }
1810 BITSET save2;
1811 SI_SAVE_OPT2(save2);
1813 hh=idGroebner(h,0,alg,hilb);
1814 SI_RESTORE_OPT2(save2);
1815 // go back to the original ring
1816 rChangeCurrRing(origR);
1817 i = IDELEMS(hh)-1;
1818 while ((i >= 0) && (hh->m[i] == NULL)) i--;
1819 j = -1;
1820 // fetch data from temp ring
1821 for (k=0; k<=i; k++)
1822 {
1823 l=(currRing->N);
1824 while ((l>0) && (p_GetExp( hh->m[k],l,tmpR)*pGetExp(delVar,l)==0)) l--;
1825 if (l==0)
1826 {
1827 j++;
1828 if (j >= IDELEMS(h3))
1829 {
1830 pEnlargeSet(&(h3->m),IDELEMS(h3),16);
1831 IDELEMS(h3) += 16;
1832 }
1833 h3->m[j] = prMoveR( hh->m[k], tmpR,origR);
1834 hh->m[k] = NULL;
1835 }
1836 }
1837 id_Delete(&hh, tmpR);
1838 idSkipZeroes(h3);
1839 rDelete(tmpR);
1840 if (w!=NULL)
1841 delete w;
1842 return h3;
1843}
1844
1845#ifdef WITH_OLD_MINOR
1846/*2
1847* compute the which-th ar-minor of the matrix a
1848*/
1849poly idMinor(matrix a, int ar, unsigned long which, ideal R)
1850{
1851 int i,j/*,k,size*/;
1852 unsigned long curr;
1853 int *rowchoise,*colchoise;
1854 BOOLEAN rowch,colch;
1855 // ideal result;
1856 matrix tmp;
1857 poly p,q;
1858
1859 rowchoise=(int *)omAlloc(ar*sizeof(int));
1860 colchoise=(int *)omAlloc(ar*sizeof(int));
1861 tmp=mpNew(ar,ar);
1862 curr = 0; /* index of current minor */
1863 idInitChoise(ar,1,a->rows(),&rowch,rowchoise);
1864 while (!rowch)
1865 {
1866 idInitChoise(ar,1,a->cols(),&colch,colchoise);
1867 while (!colch)
1868 {
1869 if (curr == which)
1870 {
1871 for (i=1; i<=ar; i++)
1872 {
1873 for (j=1; j<=ar; j++)
1874 {
1875 MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]);
1876 }
1877 }
1878 p = mp_DetBareiss(tmp,currRing);
1879 if (p!=NULL)
1880 {
1881 if (R!=NULL)
1882 {
1883 q = p;
1884 p = kNF(R,currRing->qideal,q);
1885 p_Delete(&q,currRing);
1886 }
1887 }
1888 /*delete the matrix tmp*/
1889 for (i=1; i<=ar; i++)
1890 {
1891 for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL;
1892 }
1893 idDelete((ideal*)&tmp);
1894 omFreeSize((ADDRESS)rowchoise,ar*sizeof(int));
1895 omFreeSize((ADDRESS)colchoise,ar*sizeof(int));
1896 return (p);
1897 }
1898 curr++;
1899 idGetNextChoise(ar,a->cols(),&colch,colchoise);
1900 }
1901 idGetNextChoise(ar,a->rows(),&rowch,rowchoise);
1902 }
1903 return (poly) 1;
1904}
1905
1906/*2
1907* compute all ar-minors of the matrix a
1908*/
1909ideal idMinors(matrix a, int ar, ideal R)
1910{
1911 int i,j,/*k,*/size;
1912 int *rowchoise,*colchoise;
1913 BOOLEAN rowch,colch;
1914 ideal result;
1915 matrix tmp;
1916 poly p,q;
1917
1918 i = binom(a->rows(),ar);
1919 j = binom(a->cols(),ar);
1920 size=i*j;
1921
1922 rowchoise=(int *)omAlloc(ar*sizeof(int));
1923 colchoise=(int *)omAlloc(ar*sizeof(int));
1924 result=idInit(size,1);
1925 tmp=mpNew(ar,ar);
1926 // k = 0; /* the index in result*/
1927 idInitChoise(ar,1,a->rows(),&rowch,rowchoise);
1928 while (!rowch)
1929 {
1930 idInitChoise(ar,1,a->cols(),&colch,colchoise);
1931 while (!colch)
1932 {
1933 for (i=1; i<=ar; i++)
1934 {
1935 for (j=1; j<=ar; j++)
1936 {
1937 MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]);
1938 }
1939 }
1940 p = mp_DetBareiss(tmp,currRing);
1941 if (p!=NULL)
1942 {
1943 if (R!=NULL)
1944 {
1945 q = p;
1946 p = kNF(R,currRing->qideal,q);
1947 p_Delete(&q,currRing);
1948 }
1949 }
1950 if (k>=size)
1951 {
1952 pEnlargeSet(&result->m,size,32);
1953 size += 32;
1954 }
1955 result->m[k] = p;
1956 k++;
1957 idGetNextChoise(ar,a->cols(),&colch,colchoise);
1958 }
1959 idGetNextChoise(ar,a->rows(),&rowch,rowchoise);
1960 }
1961 /*delete the matrix tmp*/
1962 for (i=1; i<=ar; i++)
1963 {
1964 for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL;
1965 }
1966 idDelete((ideal*)&tmp);
1967 if (k==0)
1968 {
1969 k=1;
1970 result->m[0]=NULL;
1971 }
1972 omFreeSize((ADDRESS)rowchoise,ar*sizeof(int));
1973 omFreeSize((ADDRESS)colchoise,ar*sizeof(int));
1975 IDELEMS(result) = k;
1976 return (result);
1977}
1978#else
1979
1980
1981/// compute all ar-minors of the matrix a
1982/// the caller of mpRecMin
1983/// the elements of the result are not in R (if R!=NULL)
1984ideal idMinors(matrix a, int ar, ideal R)
1985{
1986
1987 const ring origR=currRing;
1988 id_Test((ideal)a, origR);
1989
1990 const int r = a->nrows;
1991 const int c = a->ncols;
1992
1993 if((ar<=0) || (ar>r) || (ar>c))
1994 {
1995 Werror("%d-th minor, matrix is %dx%d",ar,r,c);
1996 return NULL;
1997 }
1998
1999 ideal h = id_Matrix2Module(mp_Copy(a,origR),origR);
2000 long bound = sm_ExpBound(h,c,r,ar,origR);
2001 id_Delete(&h, origR);
2002
2003 ring tmpR = sm_RingChange(origR,bound);
2004
2005 matrix b = mpNew(r,c);
2006
2007 for (int i=r*c-1;i>=0;i--)
2008 if (a->m[i] != NULL)
2009 b->m[i] = prCopyR(a->m[i],origR,tmpR);
2010
2011 id_Test( (ideal)b, tmpR);
2012
2013 if (R!=NULL)
2014 {
2015 R = idrCopyR(R,origR,tmpR); // TODO: overwrites R? memory leak?
2016 //if (ar>1) // otherwise done in mpMinorToResult
2017 //{
2018 // matrix bb=(matrix)kNF(R,currRing->qideal,(ideal)b);
2019 // bb->rank=b->rank; bb->nrows=b->nrows; bb->ncols=b->ncols;
2020 // idDelete((ideal*)&b); b=bb;
2021 //}
2022 id_Test( R, tmpR);
2023 }
2024
2025 int size=binom(r,ar)*binom(c,ar);
2026 ideal result = idInit(size,1);
2027
2028 int elems = 0;
2029
2030 if(ar>1)
2031 mp_RecMin(ar-1,result,elems,b,r,c,NULL,R,tmpR);
2032 else
2033 mp_MinorToResult(result,elems,b,r,c,R,tmpR);
2034
2035 id_Test( (ideal)b, tmpR);
2036
2037 id_Delete((ideal *)&b, tmpR);
2038
2039 if (R!=NULL) id_Delete(&R,tmpR);
2040
2041 rChangeCurrRing(origR);
2042 result = idrMoveR(result,tmpR,origR);
2043 sm_KillModifiedRing(tmpR);
2044 idTest(result);
2045 return result;
2046}
2047#endif
2048
2049/*2
2050*returns TRUE if id1 is a submodule of id2
2051*/
2052BOOLEAN idIsSubModule(ideal id1,ideal id2)
2053{
2054 int i;
2055 poly p;
2056
2057 if (idIs0(id1)) return TRUE;
2058 for (i=0;i<IDELEMS(id1);i++)
2059 {
2060 if (id1->m[i] != NULL)
2061 {
2062 p = kNF(id2,currRing->qideal,id1->m[i]);
2063 if (p != NULL)
2064 {
2066 return FALSE;
2067 }
2068 }
2069 }
2070 return TRUE;
2071}
2072
2074{
2075 if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) { PrintS(" Q not hom\n"); return FALSE;}
2076 if (idIs0(m)) return TRUE;
2077
2078 int cmax=-1;
2079 int i;
2080 poly p=NULL;
2081 int length=IDELEMS(m);
2082 polyset P=m->m;
2083 for (i=length-1;i>=0;i--)
2084 {
2085 p=P[i];
2086 if (p!=NULL) cmax=si_max(cmax,(int)pMaxComp(p)+1);
2087 }
2088 if (w != NULL)
2089 if (w->length()+1 < cmax)
2090 {
2091 // Print("length: %d - %d \n", w->length(),cmax);
2092 return FALSE;
2093 }
2094
2095 if(w!=NULL)
2097
2098 for (i=length-1;i>=0;i--)
2099 {
2100 p=P[i];
2101 if (p!=NULL)
2102 {
2103 int d=currRing->pFDeg(p,currRing);
2104 loop
2105 {
2106 pIter(p);
2107 if (p==NULL) break;
2108 if (d!=currRing->pFDeg(p,currRing))
2109 {
2110 //pWrite(q); wrp(p); Print(" -> %d - %d\n",d,pFDeg(p,currRing));
2111 if(w!=NULL)
2113 return FALSE;
2114 }
2115 }
2116 }
2117 }
2118
2119 if(w!=NULL)
2121
2122 return TRUE;
2123}
2124
2125ideal idSeries(int n,ideal M,matrix U,intvec *w)
2126{
2127 for(int i=IDELEMS(M)-1;i>=0;i--)
2128 {
2129 if(U==NULL)
2130 M->m[i]=pSeries(n,M->m[i],NULL,w);
2131 else
2132 {
2133 M->m[i]=pSeries(n,M->m[i],MATELEM(U,i+1,i+1),w);
2134 MATELEM(U,i+1,i+1)=NULL;
2135 }
2136 }
2137 if(U!=NULL)
2138 idDelete((ideal*)&U);
2139 return M;
2140}
2141
2143{
2144 int e=MATCOLS(i)*MATROWS(i);
2146 r->rank=i->rank;
2147 int j;
2148 for(j=0; j<e; j++)
2149 {
2150 r->m[j]=pDiff(i->m[j],k);
2151 }
2152 return r;
2153}
2154
2155matrix idDiffOp(ideal I, ideal J,BOOLEAN multiply)
2156{
2157 matrix r=mpNew(IDELEMS(I),IDELEMS(J));
2158 int i,j;
2159 for(i=0; i<IDELEMS(I); i++)
2160 {
2161 for(j=0; j<IDELEMS(J); j++)
2162 {
2163 MATELEM(r,i+1,j+1)=pDiffOp(I->m[i],J->m[j],multiply);
2164 }
2165 }
2166 return r;
2167}
2168
2169/*3
2170*handles for some ideal operations the ring/syzcomp managment
2171*returns all syzygies (componentwise-)shifted by -syzcomp
2172*or -syzcomp-1 (in case of ideals as input)
2173static ideal idHandleIdealOp(ideal arg,int syzcomp,int isIdeal=FALSE)
2174{
2175 ring orig_ring=currRing;
2176 ring syz_ring=rAssure_SyzOrder(orig_ring, TRUE); rChangeCurrRing(syz_ring);
2177 rSetSyzComp(length, syz_ring);
2178
2179 ideal s_temp;
2180 if (orig_ring!=syz_ring)
2181 s_temp=idrMoveR_NoSort(arg,orig_ring, syz_ring);
2182 else
2183 s_temp=arg;
2184
2185 ideal s_temp1 = kStd(s_temp,currRing->qideal,testHomog,&w,NULL,length);
2186 if (w!=NULL) delete w;
2187
2188 if (syz_ring!=orig_ring)
2189 {
2190 idDelete(&s_temp);
2191 rChangeCurrRing(orig_ring);
2192 }
2193
2194 idDelete(&temp);
2195 ideal temp1=idRingCopy(s_temp1,syz_ring);
2196
2197 if (syz_ring!=orig_ring)
2198 {
2199 rChangeCurrRing(syz_ring);
2200 idDelete(&s_temp1);
2201 rChangeCurrRing(orig_ring);
2202 rDelete(syz_ring);
2203 }
2204
2205 for (i=0;i<IDELEMS(temp1);i++)
2206 {
2207 if ((temp1->m[i]!=NULL)
2208 && (pGetComp(temp1->m[i])<=length))
2209 {
2210 pDelete(&(temp1->m[i]));
2211 }
2212 else
2213 {
2214 p_Shift(&(temp1->m[i]),-length,currRing);
2215 }
2216 }
2217 temp1->rank = rk;
2218 idSkipZeroes(temp1);
2219
2220 return temp1;
2221}
2222*/
2223
2224#ifdef HAVE_SHIFTBBA
2225ideal idModuloLP (ideal h2,ideal h1, tHomog, intvec ** w, matrix *T, GbVariant alg)
2226{
2227 intvec *wtmp=NULL;
2228 if (T!=NULL) idDelete((ideal*)T);
2229
2230 int i,k,rk,flength=0,slength,length;
2231 poly p,q;
2232
2233 if (idIs0(h2))
2234 return idFreeModule(si_max(1,h2->ncols));
2235 if (!idIs0(h1))
2236 flength = id_RankFreeModule(h1,currRing);
2237 slength = id_RankFreeModule(h2,currRing);
2238 length = si_max(flength,slength);
2239 if (length==0)
2240 {
2241 length = 1;
2242 }
2243 ideal temp = idInit(IDELEMS(h2),length+IDELEMS(h2));
2244 if ((w!=NULL)&&((*w)!=NULL))
2245 {
2246 //Print("input weights:");(*w)->show(1);PrintLn();
2247 int d;
2248 int k;
2249 wtmp=new intvec(length+IDELEMS(h2));
2250 for (i=0;i<length;i++)
2251 ((*wtmp)[i])=(**w)[i];
2252 for (i=0;i<IDELEMS(h2);i++)
2253 {
2254 poly p=h2->m[i];
2255 if (p!=NULL)
2256 {
2257 d = p_Deg(p,currRing);
2258 k= pGetComp(p);
2259 if (slength>0) k--;
2260 d +=((**w)[k]);
2261 ((*wtmp)[i+length]) = d;
2262 }
2263 }
2264 //Print("weights:");wtmp->show(1);PrintLn();
2265 }
2266 for (i=0;i<IDELEMS(h2);i++)
2267 {
2268 temp->m[i] = pCopy(h2->m[i]);
2269 q = pOne();
2270 // non multiplicative variable
2271 pSetExp(q, currRing->isLPring - currRing->LPncGenCount + i + 1, 1);
2272 p_Setm(q, currRing);
2273 pSetComp(q,i+1+length);
2274 pSetmComp(q);
2275 if(temp->m[i]!=NULL)
2276 {
2277 if (slength==0) p_Shift(&(temp->m[i]),1,currRing);
2278 p = temp->m[i];
2279 temp->m[i] = pAdd(p, q);
2280 }
2281 else
2282 temp->m[i]=q;
2283 }
2284 rk = k = IDELEMS(h2);
2285 if (!idIs0(h1))
2286 {
2287 pEnlargeSet(&(temp->m),IDELEMS(temp),IDELEMS(h1));
2288 IDELEMS(temp) += IDELEMS(h1);
2289 for (i=0;i<IDELEMS(h1);i++)
2290 {
2291 if (h1->m[i]!=NULL)
2292 {
2293 temp->m[k] = pCopy(h1->m[i]);
2294 if (flength==0) p_Shift(&(temp->m[k]),1,currRing);
2295 k++;
2296 }
2297 }
2298 }
2299
2300 ring orig_ring=currRing;
2301 ring syz_ring=rAssure_SyzOrder(orig_ring, TRUE);
2302 rSetSyzComp(length,syz_ring);
2303 rChangeCurrRing(syz_ring);
2304 // we can use OPT_RETURN_SB only, if syz_ring==orig_ring,
2305 // therefore we disable OPT_RETURN_SB for modulo:
2306 // (see tr. #701)
2307 //if (TEST_OPT_RETURN_SB)
2308 // rSetSyzComp(IDELEMS(h2)+length, syz_ring);
2309 //else
2310 // rSetSyzComp(length, syz_ring);
2311 ideal s_temp;
2312
2313 if (syz_ring != orig_ring)
2314 {
2315 s_temp = idrMoveR_NoSort(temp, orig_ring, syz_ring);
2316 }
2317 else
2318 {
2319 s_temp = temp;
2320 }
2321
2322 idTest(s_temp);
2323 unsigned save_opt,save_opt2;
2324 SI_SAVE_OPT1(save_opt);
2325 SI_SAVE_OPT2(save_opt2);
2328 ideal s_temp1 = idGroebner(s_temp,length,alg);
2329 SI_RESTORE_OPT1(save_opt);
2330 SI_RESTORE_OPT2(save_opt2);
2331
2332 //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn();
2333 if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL))
2334 {
2335 delete *w;
2336 *w=new intvec(IDELEMS(h2));
2337 for (i=0;i<IDELEMS(h2);i++)
2338 ((**w)[i])=(*wtmp)[i+length];
2339 }
2340 if (wtmp!=NULL) delete wtmp;
2341
2342 if (T==NULL)
2343 {
2344 for (i=0;i<IDELEMS(s_temp1);i++)
2345 {
2346 if (s_temp1->m[i]!=NULL)
2347 {
2348 if (((int)pGetComp(s_temp1->m[i]))<=length)
2349 {
2350 p_Delete(&(s_temp1->m[i]),currRing);
2351 }
2352 else
2353 {
2354 p_Shift(&(s_temp1->m[i]),-length,currRing);
2355 }
2356 }
2357 }
2358 }
2359 else
2360 {
2361 *T=mpNew(IDELEMS(s_temp1),IDELEMS(h2));
2362 for (i=0;i<IDELEMS(s_temp1);i++)
2363 {
2364 if (s_temp1->m[i]!=NULL)
2365 {
2366 if (((int)pGetComp(s_temp1->m[i]))<=length)
2367 {
2368 do
2369 {
2370 p_LmDelete(&(s_temp1->m[i]),currRing);
2371 } while((int)pGetComp(s_temp1->m[i])<=length);
2372 poly q = prMoveR( s_temp1->m[i], syz_ring,orig_ring);
2373 s_temp1->m[i] = NULL;
2374 if (q!=NULL)
2375 {
2376 q=pReverse(q);
2377 do
2378 {
2379 poly p = q;
2380 long t=pGetComp(p);
2381 pIter(q);
2382 pNext(p) = NULL;
2383 pSetComp(p,0);
2384 pSetmComp(p);
2385 pTest(p);
2386 MATELEM(*T,(int)t-length,i) = pAdd(MATELEM(*T,(int)t-length,i),p);
2387 } while (q != NULL);
2388 }
2389 }
2390 else
2391 {
2392 p_Shift(&(s_temp1->m[i]),-length,currRing);
2393 }
2394 }
2395 }
2396 }
2397 s_temp1->rank = rk;
2398 idSkipZeroes(s_temp1);
2399
2400 if (syz_ring!=orig_ring)
2401 {
2402 rChangeCurrRing(orig_ring);
2403 s_temp1 = idrMoveR_NoSort(s_temp1, syz_ring, orig_ring);
2404 rDelete(syz_ring);
2405 // Hmm ... here seems to be a memory leak
2406 // However, simply deleting it causes memory trouble
2407 // idDelete(&s_temp);
2408 }
2409 idTest(s_temp1);
2410 return s_temp1;
2411}
2412#endif
2413
2414/*2
2415* represents (h1+h2)/h2=h1/(h1 intersect h2)
2416*/
2417//ideal idModulo (ideal h2,ideal h1)
2418ideal idModulo (ideal h2,ideal h1, tHomog hom, intvec ** w, matrix *T, GbVariant alg)
2419{
2420#ifdef HAVE_SHIFTBBA
2421 if (rIsLPRing(currRing))
2422 return idModuloLP(h2,h1,hom,w,T,alg);
2423#endif
2424 intvec *wtmp=NULL;
2425 if (T!=NULL) idDelete((ideal*)T);
2426
2427 int i,flength=0,slength,length;
2428
2429 if (idIs0(h2))
2430 return idFreeModule(si_max(1,h2->ncols));
2431 if (!idIs0(h1))
2432 flength = id_RankFreeModule(h1,currRing);
2433 slength = id_RankFreeModule(h2,currRing);
2434 length = si_max(flength,slength);
2435 BOOLEAN inputIsIdeal=FALSE;
2436 if (length==0)
2437 {
2438 length = 1;
2439 inputIsIdeal=TRUE;
2440 }
2441 if ((w!=NULL)&&((*w)!=NULL))
2442 {
2443 //Print("input weights:");(*w)->show(1);PrintLn();
2444 int d;
2445 int k;
2446 wtmp=new intvec(length+IDELEMS(h2));
2447 for (i=0;i<length;i++)
2448 ((*wtmp)[i])=(**w)[i];
2449 for (i=0;i<IDELEMS(h2);i++)
2450 {
2451 poly p=h2->m[i];
2452 if (p!=NULL)
2453 {
2454 d = p_Deg(p,currRing);
2455 k= pGetComp(p);
2456 if (slength>0) k--;
2457 d +=((**w)[k]);
2458 ((*wtmp)[i+length]) = d;
2459 }
2460 }
2461 //Print("weights:");wtmp->show(1);PrintLn();
2462 }
2463 ideal s_temp1;
2464 ring orig_ring=currRing;
2465 ring syz_ring=rAssure_SyzOrder(orig_ring, TRUE);
2466 rSetSyzComp(length,syz_ring);
2467 {
2468 rChangeCurrRing(syz_ring);
2469 ideal s1,s2;
2470
2471 if (syz_ring != orig_ring)
2472 {
2473 s1 = idrCopyR_NoSort(h1, orig_ring, syz_ring);
2474 s2 = idrCopyR_NoSort(h2, orig_ring, syz_ring);
2475 }
2476 else
2477 {
2478 s1=idCopy(h1);
2479 s2=idCopy(h2);
2480 }
2481
2482 unsigned save_opt,save_opt2;
2483 SI_SAVE_OPT1(save_opt);
2484 SI_SAVE_OPT2(save_opt2);
2485 if (T==NULL) si_opt_1 |= Sy_bit(OPT_REDTAIL);
2487 s_temp1 = idPrepare(s2,s1,testHomog,length,w,alg);
2488 SI_RESTORE_OPT1(save_opt);
2489 SI_RESTORE_OPT2(save_opt2);
2490 }
2491
2492 //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn();
2493 if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL))
2494 {
2495 delete *w;
2496 *w=new intvec(IDELEMS(h2));
2497 for (i=0;i<IDELEMS(h2);i++)
2498 ((**w)[i])=(*wtmp)[i+length];
2499 }
2500 if (wtmp!=NULL) delete wtmp;
2501
2502 ideal result=idInit(IDELEMS(s_temp1),IDELEMS(h2));
2503 s_temp1=idExtractG_T_S(s_temp1,T,&result,length,IDELEMS(h2),inputIsIdeal,orig_ring,syz_ring);
2504
2505 idDelete(&s_temp1);
2506 if (syz_ring!=orig_ring)
2507 {
2508 rDelete(syz_ring);
2509 }
2510 idTest(h2);
2511 idTest(h1);
2512 idTest(result);
2513 if (T!=NULL) idTest((ideal)*T);
2514 return result;
2515}
2516
2517/*
2518*computes module-weights for liftings of homogeneous modules
2519*/
2520#if 0
2521static intvec * idMWLift(ideal mod,intvec * weights)
2522{
2523 if (idIs0(mod)) return new intvec(2);
2524 int i=IDELEMS(mod);
2525 while ((i>0) && (mod->m[i-1]==NULL)) i--;
2526 intvec *result = new intvec(i+1);
2527 while (i>0)
2528 {
2529 (*result)[i]=currRing->pFDeg(mod->m[i],currRing)+(*weights)[pGetComp(mod->m[i])];
2530 }
2531 return result;
2532}
2533#endif
2534
2535/*2
2536*sorts the kbase for idCoef* in a special way (lexicographically
2537*with x_max,...,x_1)
2538*/
2539ideal idCreateSpecialKbase(ideal kBase,intvec ** convert)
2540{
2541 int i;
2542 ideal result;
2543
2544 if (idIs0(kBase)) return NULL;
2545 result = idInit(IDELEMS(kBase),kBase->rank);
2546 *convert = idSort(kBase,FALSE);
2547 for (i=0;i<(*convert)->length();i++)
2548 {
2549 result->m[i] = pCopy(kBase->m[(**convert)[i]-1]);
2550 }
2551 return result;
2552}
2553
2554/*2
2555*returns the index of a given monom in the list of the special kbase
2556*/
2557int idIndexOfKBase(poly monom, ideal kbase)
2558{
2559 int j=IDELEMS(kbase);
2560
2561 while ((j>0) && (kbase->m[j-1]==NULL)) j--;
2562 if (j==0) return -1;
2563 int i=(currRing->N);
2564 while (i>0)
2565 {
2566 loop
2567 {
2568 if (pGetExp(monom,i)>pGetExp(kbase->m[j-1],i)) return -1;
2569 if (pGetExp(monom,i)==pGetExp(kbase->m[j-1],i)) break;
2570 j--;
2571 if (j==0) return -1;
2572 }
2573 if (i==1)
2574 {
2575 while(j>0)
2576 {
2577 if (pGetComp(monom)==pGetComp(kbase->m[j-1])) return j-1;
2578 if (pGetComp(monom)>pGetComp(kbase->m[j-1])) return -1;
2579 j--;
2580 }
2581 }
2582 i--;
2583 }
2584 return -1;
2585}
2586
2587/*2
2588*decomposes the monom in a part of coefficients described by the
2589*complement of how and a monom in variables occuring in how, the
2590*index of which in kbase is returned as integer pos (-1 if it don't
2591*exists)
2592*/
2593poly idDecompose(poly monom, poly how, ideal kbase, int * pos)
2594{
2595 int i;
2596 poly coeff=pOne(), base=pOne();
2597
2598 for (i=1;i<=(currRing->N);i++)
2599 {
2600 if (pGetExp(how,i)>0)
2601 {
2602 pSetExp(base,i,pGetExp(monom,i));
2603 }
2604 else
2605 {
2606 pSetExp(coeff,i,pGetExp(monom,i));
2607 }
2608 }
2609 pSetComp(base,pGetComp(monom));
2610 pSetm(base);
2611 pSetCoeff(coeff,nCopy(pGetCoeff(monom)));
2612 pSetm(coeff);
2613 *pos = idIndexOfKBase(base,kbase);
2614 if (*pos<0)
2615 p_Delete(&coeff,currRing);
2617 return coeff;
2618}
2619
2620/*2
2621*returns a matrix A of coefficients with kbase*A=arg
2622*if all monomials in variables of how occur in kbase
2623*the other are deleted
2624*/
2625matrix idCoeffOfKBase(ideal arg, ideal kbase, poly how)
2626{
2627 matrix result;
2628 ideal tempKbase;
2629 poly p,q;
2630 intvec * convert;
2631 int i=IDELEMS(kbase),j=IDELEMS(arg),k,pos;
2632#if 0
2633 while ((i>0) && (kbase->m[i-1]==NULL)) i--;
2634 if (idIs0(arg))
2635 return mpNew(i,1);
2636 while ((j>0) && (arg->m[j-1]==NULL)) j--;
2637 result = mpNew(i,j);
2638#else
2639 result = mpNew(i, j);
2640 while ((j>0) && (arg->m[j-1]==NULL)) j--;
2641#endif
2642
2643 tempKbase = idCreateSpecialKbase(kbase,&convert);
2644 for (k=0;k<j;k++)
2645 {
2646 p = arg->m[k];
2647 while (p!=NULL)
2648 {
2649 q = idDecompose(p,how,tempKbase,&pos);
2650 if (pos>=0)
2651 {
2652 MATELEM(result,(*convert)[pos],k+1) =
2653 pAdd(MATELEM(result,(*convert)[pos],k+1),q);
2654 }
2655 else
2656 p_Delete(&q,currRing);
2657 pIter(p);
2658 }
2659 }
2660 idDelete(&tempKbase);
2661 return result;
2662}
2663
2664static void idDeleteComps(ideal arg,int* red_comp,int del)
2665// red_comp is an array [0..args->rank]
2666{
2667 int i,j;
2668 poly p;
2669
2670 for (i=IDELEMS(arg)-1;i>=0;i--)
2671 {
2672 p = arg->m[i];
2673 while (p!=NULL)
2674 {
2675 j = pGetComp(p);
2676 if (red_comp[j]!=j)
2677 {
2678 pSetComp(p,red_comp[j]);
2679 pSetmComp(p);
2680 }
2681 pIter(p);
2682 }
2683 }
2684 (arg->rank) -= del;
2685}
2686
2687/*2
2688* returns the presentation of an isomorphic, minimally
2689* embedded module (arg represents the quotient!)
2690*/
2691ideal idMinEmbedding(ideal arg,BOOLEAN inPlace, intvec **w)
2692{
2693 if (idIs0(arg)) return idInit(1,arg->rank);
2694 int i,next_gen,next_comp;
2695 ideal res=arg;
2696 if (!inPlace) res = idCopy(arg);
2698 int *red_comp=(int*)omAlloc((res->rank+1)*sizeof(int));
2699 for (i=res->rank;i>=0;i--) red_comp[i]=i;
2700
2701 int del=0;
2702 loop
2703 {
2704 next_gen = id_ReadOutPivot(res, &next_comp, currRing);
2705 if (next_gen<0) break;
2706 del++;
2707 syGaussForOne(res,next_gen,next_comp,0,IDELEMS(res));
2708 for(i=next_comp+1;i<=arg->rank;i++) red_comp[i]--;
2709 if ((w !=NULL)&&(*w!=NULL))
2710 {
2711 for(i=next_comp;i<(*w)->length();i++) (**w)[i-1]=(**w)[i];
2712 }
2713 }
2714
2715 idDeleteComps(res,red_comp,del);
2717 omFree(red_comp);
2718
2719 if ((w !=NULL)&&(*w!=NULL) &&(del>0))
2720 {
2721 int nl=si_max((*w)->length()-del,1);
2722 intvec *wtmp=new intvec(nl);
2723 for(i=0;i<res->rank;i++) (*wtmp)[i]=(**w)[i];
2724 delete *w;
2725 *w=wtmp;
2726 }
2727 return res;
2728}
2729
2730#include "polys/clapsing.h"
2731
2732#if 0
2733poly id_GCD(poly f, poly g, const ring r)
2734{
2735 ring save_r=currRing;
2736 rChangeCurrRing(r);
2737 ideal I=idInit(2,1); I->m[0]=f; I->m[1]=g;
2738 intvec *w = NULL;
2739 ideal S=idSyzygies(I,testHomog,&w);
2740 if (w!=NULL) delete w;
2741 poly gg=pTakeOutComp(&(S->m[0]),2);
2742 idDelete(&S);
2743 poly gcd_p=singclap_pdivide(f,gg,r);
2744 p_Delete(&gg,r);
2745 rChangeCurrRing(save_r);
2746 return gcd_p;
2747}
2748#else
2749poly id_GCD(poly f, poly g, const ring r)
2750{
2751 ideal I=idInit(2,1); I->m[0]=f; I->m[1]=g;
2752 intvec *w = NULL;
2753
2754 ring save_r = currRing;
2755 rChangeCurrRing(r);
2756 ideal S=idSyzygies(I,testHomog,&w);
2757 rChangeCurrRing(save_r);
2758
2759 if (w!=NULL) delete w;
2760 poly gg=p_TakeOutComp(&(S->m[0]), 2, r);
2761 id_Delete(&S, r);
2762 poly gcd_p=singclap_pdivide(f,gg, r);
2763 p_Delete(&gg, r);
2764
2765 return gcd_p;
2766}
2767#endif
2768
2769#if 0
2770/*2
2771* xx,q: arrays of length 0..rl-1
2772* xx[i]: SB mod q[i]
2773* assume: char=0
2774* assume: q[i]!=0
2775* destroys xx
2776*/
2777ideal id_ChineseRemainder(ideal *xx, number *q, int rl, const ring R)
2778{
2779 int cnt=IDELEMS(xx[0])*xx[0]->nrows;
2780 ideal result=idInit(cnt,xx[0]->rank);
2781 result->nrows=xx[0]->nrows; // for lifting matrices
2782 result->ncols=xx[0]->ncols; // for lifting matrices
2783 int i,j;
2784 poly r,h,hh,res_p;
2785 number *x=(number *)omAlloc(rl*sizeof(number));
2786 for(i=cnt-1;i>=0;i--)
2787 {
2788 res_p=NULL;
2789 loop
2790 {
2791 r=NULL;
2792 for(j=rl-1;j>=0;j--)
2793 {
2794 h=xx[j]->m[i];
2795 if ((h!=NULL)
2796 &&((r==NULL)||(p_LmCmp(r,h,R)==-1)))
2797 r=h;
2798 }
2799 if (r==NULL) break;
2800 h=p_Head(r, R);
2801 for(j=rl-1;j>=0;j--)
2802 {
2803 hh=xx[j]->m[i];
2804 if ((hh!=NULL) && (p_LmCmp(r,hh, R)==0))
2805 {
2806 x[j]=p_GetCoeff(hh, R);
2807 hh=p_LmFreeAndNext(hh, R);
2808 xx[j]->m[i]=hh;
2809 }
2810 else
2811 x[j]=n_Init(0, R->cf); // is R->cf really n_Q???, yes!
2812 }
2813
2814 number n=n_ChineseRemainder(x,q,rl, R->cf);
2815
2816 for(j=rl-1;j>=0;j--)
2817 {
2818 x[j]=NULL; // nlInit(0...) takes no memory
2819 }
2820 if (n_IsZero(n, R->cf)) p_Delete(&h, R);
2821 else
2822 {
2823 p_SetCoeff(h,n, R);
2824 //Print("new mon:");pWrite(h);
2825 res_p=p_Add_q(res_p, h, R);
2826 }
2827 }
2828 result->m[i]=res_p;
2829 }
2830 omFree(x);
2831 for(i=rl-1;i>=0;i--) id_Delete(&(xx[i]), R);
2832 omFree(xx);
2833 return result;
2834}
2835#endif
2836/* currently unused:
2837ideal idChineseRemainder(ideal *xx, intvec *iv)
2838{
2839 int rl=iv->length();
2840 number *q=(number *)omAlloc(rl*sizeof(number));
2841 int i;
2842 for(i=0; i<rl; i++)
2843 {
2844 q[i]=nInit((*iv)[i]);
2845 }
2846 return idChineseRemainder(xx,q,rl);
2847}
2848*/
2849/*
2850 * lift ideal with coeffs over Z (mod N) to Q via Farey
2851 */
2852ideal id_Farey(ideal x, number N, const ring r)
2853{
2854 int cnt=IDELEMS(x)*x->nrows;
2855 ideal result=idInit(cnt,x->rank);
2856 result->nrows=x->nrows; // for lifting matrices
2857 result->ncols=x->ncols; // for lifting matrices
2858
2859 int i;
2860 for(i=cnt-1;i>=0;i--)
2861 {
2862 result->m[i]=p_Farey(x->m[i],N,r);
2863 }
2864 return result;
2865}
2866
2867
2868
2869
2870// uses glabl vars via pSetModDeg
2871/*
2872BOOLEAN idTestHomModule(ideal m, ideal Q, intvec *w)
2873{
2874 if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) { PrintS(" Q not hom\n"); return FALSE;}
2875 if (idIs0(m)) return TRUE;
2876
2877 int cmax=-1;
2878 int i;
2879 poly p=NULL;
2880 int length=IDELEMS(m);
2881 poly* P=m->m;
2882 for (i=length-1;i>=0;i--)
2883 {
2884 p=P[i];
2885 if (p!=NULL) cmax=si_max(cmax,(int)pMaxComp(p)+1);
2886 }
2887 if (w != NULL)
2888 if (w->length()+1 < cmax)
2889 {
2890 // Print("length: %d - %d \n", w->length(),cmax);
2891 return FALSE;
2892 }
2893
2894 if(w!=NULL)
2895 p_SetModDeg(w, currRing);
2896
2897 for (i=length-1;i>=0;i--)
2898 {
2899 p=P[i];
2900 poly q=p;
2901 if (p!=NULL)
2902 {
2903 int d=p_FDeg(p,currRing);
2904 loop
2905 {
2906 pIter(p);
2907 if (p==NULL) break;
2908 if (d!=p_FDeg(p,currRing))
2909 {
2910 //pWrite(q); wrp(p); Print(" -> %d - %d\n",d,pFDeg(p,currRing));
2911 if(w!=NULL)
2912 p_SetModDeg(NULL, currRing);
2913 return FALSE;
2914 }
2915 }
2916 }
2917 }
2918
2919 if(w!=NULL)
2920 p_SetModDeg(NULL, currRing);
2921
2922 return TRUE;
2923}
2924*/
2925
2926/// keeps the first k (>= 1) entries of the given ideal
2927/// (Note that the kept polynomials may be zero.)
2928void idKeepFirstK(ideal id, const int k)
2929{
2930 for (int i = IDELEMS(id)-1; i >= k; i--)
2931 {
2932 if (id->m[i] != NULL) pDelete(&id->m[i]);
2933 }
2934 int kk=k;
2935 if (k==0) kk=1; /* ideals must have at least one element(0)*/
2936 pEnlargeSet(&(id->m), IDELEMS(id), kk-IDELEMS(id));
2937 IDELEMS(id) = kk;
2938}
2939
2940typedef struct
2941{
2942 poly p;
2944} poly_sort;
2945
2946int pCompare_qsort(const void *a, const void *b)
2947{
2948 return (p_Compare(((poly_sort *)a)->p, ((poly_sort *)b)->p,currRing));
2949}
2950
2951void idSort_qsort(poly_sort *id_sort, int idsize)
2952{
2953 qsort(id_sort, idsize, sizeof(poly_sort), pCompare_qsort);
2954}
2955
2956/*2
2957* ideal id = (id[i])
2958* if id[i] = id[j] then id[j] is deleted for j > i
2959*/
2960void idDelEquals(ideal id)
2961{
2962 int idsize = IDELEMS(id);
2963 poly_sort *id_sort = (poly_sort *)omAlloc0(idsize*sizeof(poly_sort));
2964 for (int i = 0; i < idsize; i++)
2965 {
2966 id_sort[i].p = id->m[i];
2967 id_sort[i].index = i;
2968 }
2969 idSort_qsort(id_sort, idsize);
2970 int index, index_i, index_j;
2971 int i = 0;
2972 for (int j = 1; j < idsize; j++)
2973 {
2974 if (id_sort[i].p != NULL && pEqualPolys(id_sort[i].p, id_sort[j].p))
2975 {
2976 index_i = id_sort[i].index;
2977 index_j = id_sort[j].index;
2978 if (index_j > index_i)
2979 {
2980 index = index_j;
2981 }
2982 else
2983 {
2984 index = index_i;
2985 i = j;
2986 }
2987 pDelete(&id->m[index]);
2988 }
2989 else
2990 {
2991 i = j;
2992 }
2993 }
2994 omFreeSize((ADDRESS)(id_sort), idsize*sizeof(poly_sort));
2995}
2996
2998
3000{
3001 BOOLEAN b = FALSE; // set b to TRUE, if spoly was changed,
3002 // let it remain FALSE otherwise
3003 if (strat->P.t_p==NULL)
3004 {
3005 poly p=strat->P.p;
3006
3007 // iterate over all terms of p and
3008 // compute the minimum mm of all exponent vectors
3009 int *mm=(int*)omAlloc((1+rVar(currRing))*sizeof(int));
3010 int *m0=(int*)omAlloc0((1+rVar(currRing))*sizeof(int));
3011 p_GetExpV(p,mm,currRing);
3012 bool nonTrivialSaturationToBeDone=true;
3013 for (p=pNext(p); p!=NULL; pIter(p))
3014 {
3015 nonTrivialSaturationToBeDone=false;
3016 p_GetExpV(p,m0,currRing);
3017 for (int i=rVar(currRing); i>0; i--)
3018 {
3020 {
3021 mm[i]=si_min(mm[i],m0[i]);
3022 if (mm[i]>0) nonTrivialSaturationToBeDone=true;
3023 }
3024 else mm[i]=0;
3025 }
3026 // abort if the minimum is zero in each component
3027 if (!nonTrivialSaturationToBeDone) break;
3028 }
3029 if (nonTrivialSaturationToBeDone)
3030 {
3031 // std::cout << "simplifying!" << std::endl;
3032 if (TEST_OPT_PROT) { PrintS("S"); mflush(); }
3033 p=p_Copy(strat->P.p,currRing);
3034 //pWrite(p);
3035 // for (int i=rVar(currRing); i>0; i--)
3036 // if (mm[i]!=0) Print("x_%d:%d ",i,mm[i]);
3037 //PrintLn();
3038 strat->P.Init(currRing);
3039 //memset(&strat->P,0,sizeof(strat->P));
3040 strat->P.tailRing = strat->tailRing;
3041 strat->P.p=p;
3042 while(p!=NULL)
3043 {
3044 for (int i=rVar(currRing); i>0; i--)
3045 {
3046 p_SubExp(p,i,mm[i],currRing);
3047 }
3048 p_Setm(p,currRing);
3049 pIter(p);
3050 }
3051 b = TRUE;
3052 }
3053 omFree(mm);
3054 omFree(m0);
3055 }
3056 else
3057 {
3058 poly p=strat->P.t_p;
3059
3060 // iterate over all terms of p and
3061 // compute the minimum mm of all exponent vectors
3062 int *mm=(int*)omAlloc((1+rVar(currRing))*sizeof(int));
3063 int *m0=(int*)omAlloc0((1+rVar(currRing))*sizeof(int));
3064 p_GetExpV(p,mm,strat->tailRing);
3065 bool nonTrivialSaturationToBeDone=true;
3066 for (p = pNext(p); p!=NULL; pIter(p))
3067 {
3068 nonTrivialSaturationToBeDone=false;
3069 p_GetExpV(p,m0,strat->tailRing);
3070 for(int i=rVar(currRing); i>0; i--)
3071 {
3073 {
3074 mm[i]=si_min(mm[i],m0[i]);
3075 if (mm[i]>0) nonTrivialSaturationToBeDone = true;
3076 }
3077 else mm[i]=0;
3078 }
3079 // abort if the minimum is zero in each component
3080 if (!nonTrivialSaturationToBeDone) break;
3081 }
3082 if (nonTrivialSaturationToBeDone)
3083 {
3084 if (TEST_OPT_PROT) { PrintS("S"); mflush(); }
3085 p=p_Copy(strat->P.t_p,strat->tailRing);
3086 //p_Write(p,strat->tailRing);
3087 // for (int i=rVar(currRing); i>0; i--)
3088 // if (mm[i]!=0) Print("x_%d:%d ",i,mm[i]);
3089 //PrintLn();
3090 strat->P.Init(currRing);
3091 //memset(&strat->P,0,sizeof(strat->P));
3092 strat->P.tailRing = strat->tailRing;
3093 strat->P.t_p=p;
3094 while(p!=NULL)
3095 {
3096 for(int i=rVar(currRing); i>0; i--)
3097 {
3098 p_SubExp(p,i,mm[i],strat->tailRing);
3099 }
3100 p_Setm(p,strat->tailRing);
3101 pIter(p);
3102 }
3103 strat->P.GetP();
3104 b = TRUE;
3105 }
3106 omFree(mm);
3107 omFree(m0);
3108 }
3109 return b; // return TRUE if sp was changed, FALSE if not
3110}
3111
3112ideal id_Satstd(const ideal I, ideal J, const ring r)
3113{
3114 ring save=currRing;
3115 if (currRing!=r) rChangeCurrRing(r);
3116 idSkipZeroes(J);
3117 id_satstdSaturatingVariables=(int*)omAlloc0((1+rVar(currRing))*sizeof(int));
3118 int k=IDELEMS(J);
3119 if (k>1)
3120 {
3121 for (int i=0; i<k; i++)
3122 {
3123 poly x = J->m[i];
3124 int li = p_Var(x,r);
3125 if (li>0)
3127 else
3128 {
3129 if (currRing!=save) rChangeCurrRing(save);
3130 WerrorS("ideal generators must be variables");
3131 return NULL;
3132 }
3133 }
3134 }
3135 else
3136 {
3137 poly x = J->m[0];
3138 for (int i=1; i<=r->N; i++)
3139 {
3140 int li = p_GetExp(x,i,r);
3141 if (li==1)
3143 else if (li>1)
3144 {
3145 if (currRing!=save) rChangeCurrRing(save);
3146 Werror("exponent(x(%d)^%d) must be 0 or 1",i,li);
3147 return NULL;
3148 }
3149 }
3150 }
3151 ideal res=kStd(I,r->qideal,testHomog,NULL,NULL,0,0,NULL,id_sat_vars_sp);
3154 if (currRing!=save) rChangeCurrRing(save);
3155 return res;
3156}
3157
3158GbVariant syGetAlgorithm(char *n, const ring r, const ideal /*M*/)
3159{
3160 GbVariant alg=GbDefault;
3161 if (strcmp(n,"default")==0) alg=GbDefault;
3162 else if (strcmp(n,"slimgb")==0) alg=GbSlimgb;
3163 else if (strcmp(n,"std")==0) alg=GbStd;
3164 else if (strcmp(n,"sba")==0) alg=GbSba;
3165 else if (strcmp(n,"singmatic")==0) alg=GbSingmatic;
3166 else if (strcmp(n,"groebner")==0) alg=GbGroebner;
3167 else if (strcmp(n,"modstd")==0) alg=GbModstd;
3168 else if (strcmp(n,"ffmod")==0) alg=GbFfmod;
3169 else if (strcmp(n,"nfmod")==0) alg=GbNfmod;
3170 else if (strcmp(n,"std:sat")==0) alg=GbStdSat;
3171 else Warn(">>%s<< is an unknown algorithm",n);
3172
3173 if (alg==GbSlimgb) // test conditions for slimgb
3174 {
3175 if(rHasGlobalOrdering(r)
3176 &&(!rIsNCRing(r))
3177 &&(r->qideal==NULL)
3178 &&(!rField_is_Ring(r)))
3179 {
3180 return GbSlimgb;
3181 }
3182 if (TEST_OPT_PROT)
3183 WarnS("requires: coef:field, commutative, global ordering, not qring");
3184 }
3185 else if (alg==GbSba) // cond. for sba
3186 {
3187 if(rField_is_Domain(r)
3188 &&(!rIsNCRing(r))
3189 &&(rHasGlobalOrdering(r)))
3190 {
3191 return GbSba;
3192 }
3193 if (TEST_OPT_PROT)
3194 WarnS("requires: coef:domain, commutative, global ordering");
3195 }
3196 else if (alg==GbGroebner) // cond. for groebner
3197 {
3198 return GbGroebner;
3199 }
3200 else if(alg==GbModstd) // cond for modstd: Q or Q(a)
3201 {
3202 if(ggetid("modStd")==NULL)
3203 {
3204 WarnS(">>modStd<< not found");
3205 }
3206 else if(rField_is_Q(r)
3207 &&(!rIsNCRing(r))
3208 &&(rHasGlobalOrdering(r)))
3209 {
3210 return GbModstd;
3211 }
3212 if (TEST_OPT_PROT)
3213 WarnS("requires: coef:QQ, commutative, global ordering");
3214 }
3215 else if(alg==GbStdSat) // cond for std:sat: 2 blocks of variables
3216 {
3217 if(ggetid("satstd")==NULL)
3218 {
3219 WarnS(">>satstd<< not found");
3220 }
3221 else
3222 {
3223 return GbStdSat;
3224 }
3225 }
3226
3227 return GbStd; // no conditions for std
3228}
3229//----------------------------------------------------------------------------
3230// GB-algorithms and their pre-conditions
3231// std slimgb sba singmatic modstd ffmod nfmod groebner
3232// + + + - + - - + coeffs: QQ
3233// + + + + - - - + coeffs: ZZ/p
3234// + + + - ? - + + coeffs: K[a]/f
3235// + + + - ? + - + coeffs: K(a)
3236// + - + - - - - + coeffs: domain, not field
3237// + - - - - - - + coeffs: zero-divisors
3238// + + + + - ? ? + also for modules: C
3239// + + - + - ? ? + also for modules: all orderings
3240// + + - - - - - + exterior algebra
3241// + + - - - - - + G-algebra
3242// + + + + + + + + degree ordering
3243// + - + + + + + + non-degree ordering
3244// - - - + + + + + parallel
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
int size(const CanonicalForm &f, const Variable &v)
int size ( const CanonicalForm & f, const Variable & v )
Definition: cf_ops.cc:600
CF_NO_INLINE FACTORY_PUBLIC CanonicalForm mod(const CanonicalForm &, const CanonicalForm &)
Definition: cf_inline.cc:571
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:56
int l
Definition: cfEzgcd.cc:100
int m
Definition: cfEzgcd.cc:128
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
Variable x
Definition: cfModGcd.cc:4082
int p
Definition: cfModGcd.cc:4078
g
Definition: cfModGcd.cc:4090
CanonicalForm b
Definition: cfModGcd.cc:4103
static CanonicalForm bound(const CFMatrix &M)
Definition: cf_linsys.cc:460
FILE * f
Definition: checklibs.c:9
poly singclap_pdivide(poly f, poly g, const ring r)
Definition: clapsing.cc:624
Definition: intvec.h:23
int nrows
Definition: matpol.h:20
long rank
Definition: matpol.h:19
int ncols
Definition: matpol.h:21
poly * m
Definition: matpol.h:18
int & cols()
Definition: matpol.h:24
int & rows()
Definition: matpol.h:23
ring tailRing
Definition: kutil.h:343
LObject P
Definition: kutil.h:302
Class used for (list of) interpreter objects.
Definition: subexpr.h:83
void * data
Definition: subexpr.h:88
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition: coeffs.h:464
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:538
#define Print
Definition: emacs.cc:80
#define Warn
Definition: emacs.cc:77
#define WarnS
Definition: emacs.cc:78
return result
Definition: facAbsBiFact.cc:75
const CanonicalForm int s
Definition: facAbsFact.cc:51
CanonicalForm res
Definition: facAbsFact.cc:60
const CanonicalForm & w
Definition: facAbsFact.cc:51
CanonicalForm divide(const CanonicalForm &ff, const CanonicalForm &f, const CFList &as)
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
int j
Definition: facHensel.cc:110
void WerrorS(const char *s)
Definition: feFopen.cc:24
#define STATIC_VAR
Definition: globaldefs.h:7
@ IDEAL_CMD
Definition: grammar.cc:284
@ MODUL_CMD
Definition: grammar.cc:287
GbVariant syGetAlgorithm(char *n, const ring r, const ideal)
Definition: ideals.cc:3158
int index
Definition: ideals.cc:2943
static void idPrepareStd(ideal s_temp, int k)
Definition: ideals.cc:1041
matrix idCoeffOfKBase(ideal arg, ideal kbase, poly how)
Definition: ideals.cc:2625
void idLiftW(ideal P, ideal Q, int n, matrix &T, ideal &R, int *w)
Definition: ideals.cc:1324
static void idLift_setUnit(int e_mod, matrix *unit)
Definition: ideals.cc:1082
ideal idSyzygies(ideal h1, tHomog h, intvec **w, BOOLEAN setSyzComp, BOOLEAN setRegularity, int *deg, GbVariant alg)
Definition: ideals.cc:830
poly p
Definition: ideals.cc:2942
matrix idDiff(matrix i, int k)
Definition: ideals.cc:2142
BOOLEAN idTestHomModule(ideal m, ideal Q, intvec *w)
Definition: ideals.cc:2073
ideal idLiftStd(ideal h1, matrix *T, tHomog hi, ideal *S, GbVariant alg, ideal h11)
Definition: ideals.cc:976
void idDelEquals(ideal id)
Definition: ideals.cc:2960
int pCompare_qsort(const void *a, const void *b)
Definition: ideals.cc:2946
ideal idQuot(ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN resultIsIdeal)
Definition: ideals.cc:1494
ideal idMinors(matrix a, int ar, ideal R)
compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R ...
Definition: ideals.cc:1984
BOOLEAN idIsSubModule(ideal id1, ideal id2)
Definition: ideals.cc:2052
ideal idSeries(int n, ideal M, matrix U, intvec *w)
Definition: ideals.cc:2125
static ideal idGroebner(ideal temp, int syzComp, GbVariant alg, intvec *hilb=NULL, intvec *w=NULL, tHomog hom=testHomog)
Definition: ideals.cc:201
ideal idCreateSpecialKbase(ideal kBase, intvec **convert)
Definition: ideals.cc:2539
static ideal idPrepare(ideal h1, ideal h11, tHomog hom, int syzcomp, intvec **w, GbVariant alg)
Definition: ideals.cc:607
poly id_GCD(poly f, poly g, const ring r)
Definition: ideals.cc:2749
int idIndexOfKBase(poly monom, ideal kbase)
Definition: ideals.cc:2557
poly idDecompose(poly monom, poly how, ideal kbase, int *pos)
Definition: ideals.cc:2593
matrix idDiffOp(ideal I, ideal J, BOOLEAN multiply)
Definition: ideals.cc:2155
void idSort_qsort(poly_sort *id_sort, int idsize)
Definition: ideals.cc:2951
static ideal idInitializeQuot(ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN *addOnlyOne, int *kkmax)
Definition: ideals.cc:1389
ideal idElimination(ideal h1, poly delVar, intvec *hilb, GbVariant alg)
Definition: ideals.cc:1593
static ideal idSectWithElim(ideal h1, ideal h2, GbVariant alg)
Definition: ideals.cc:133
ideal idMinBase(ideal h1)
Definition: ideals.cc:51
ideal idSect(ideal h1, ideal h2, GbVariant alg)
Definition: ideals.cc:316
ideal idMultSect(resolvente arg, int length, GbVariant alg)
Definition: ideals.cc:472
void idKeepFirstK(ideal id, const int k)
keeps the first k (>= 1) entries of the given ideal (Note that the kept polynomials may be zero....
Definition: ideals.cc:2928
ideal idLift(ideal mod, ideal submod, ideal *rest, BOOLEAN goodShape, BOOLEAN isSB, BOOLEAN divide, matrix *unit, GbVariant alg)
represents the generators of submod in terms of the generators of mod (Matrix(SM)*U-Matrix(rest)) = M...
Definition: ideals.cc:1105
STATIC_VAR int * id_satstdSaturatingVariables
Definition: ideals.cc:2997
ideal idExtractG_T_S(ideal s_h3, matrix *T, ideal *S, long syzComp, int h1_size, BOOLEAN inputIsIdeal, const ring oring, const ring sring)
Definition: ideals.cc:709
static void idDeleteComps(ideal arg, int *red_comp, int del)
Definition: ideals.cc:2664
ideal idModulo(ideal h2, ideal h1, tHomog hom, intvec **w, matrix *T, GbVariant alg)
Definition: ideals.cc:2418
ideal id_Farey(ideal x, number N, const ring r)
Definition: ideals.cc:2852
ideal id_Satstd(const ideal I, ideal J, const ring r)
Definition: ideals.cc:3112
ideal idModuloLP(ideal h2, ideal h1, tHomog, intvec **w, matrix *T, GbVariant alg)
Definition: ideals.cc:2225
static BOOLEAN id_sat_vars_sp(kStrategy strat)
Definition: ideals.cc:2999
ideal idMinEmbedding(ideal arg, BOOLEAN inPlace, intvec **w)
Definition: ideals.cc:2691
int binom(int n, int r)
GbVariant
Definition: ideals.h:119
@ GbGroebner
Definition: ideals.h:126
@ GbModstd
Definition: ideals.h:127
@ GbStdSat
Definition: ideals.h:130
@ GbSlimgb
Definition: ideals.h:123
@ GbFfmod
Definition: ideals.h:128
@ GbNfmod
Definition: ideals.h:129
@ GbDefault
Definition: ideals.h:120
@ GbStd
Definition: ideals.h:122
@ GbSingmatic
Definition: ideals.h:131
@ GbSba
Definition: ideals.h:124
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
#define idSimpleAdd(A, B)
Definition: ideals.h:42
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
Definition: ideals.h:96
#define idTest(id)
Definition: ideals.h:47
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
Definition: ideals.h:91
static ideal idMult(ideal h1, ideal h2)
hh := h1 * h2
Definition: ideals.h:84
ideal idCopy(ideal A)
Definition: ideals.h:60
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:33
ideal * resolvente
Definition: ideals.h:18
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
static intvec * idSort(ideal id, BOOLEAN nolex=TRUE)
Definition: ideals.h:184
ideal idFreeModule(int i)
Definition: ideals.h:111
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
intvec * ivCopy(const intvec *o)
Definition: intvec.h:135
idhdl ggetid(const char *n)
Definition: ipid.cc:572
EXTERN_VAR omBin sleftv_bin
Definition: ipid.h:145
leftv ii_CallLibProcM(const char *n, void **args, int *arg_types, const ring R, BOOLEAN &err)
args: NULL terminated array of arguments arg_types: 0 terminated array of corresponding types
Definition: iplib.cc:701
void * iiCallLibProc1(const char *n, void *arg, int arg_type, BOOLEAN &err)
Definition: iplib.cc:627
void ipPrint_MA0(matrix m, const char *name)
Definition: ipprint.cc:57
STATIC_VAR jList * T
Definition: janet.cc:30
STATIC_VAR Poly * h
Definition: janet.cc:971
STATIC_VAR jList * Q
Definition: janet.cc:30
void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r)
Definition: p_polys.cc:3574
ideal kMin_std(ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
Definition: kstd1.cc:3019
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition: kstd1.cc:3167
ideal kSba(ideal F, ideal Q, tHomog h, intvec **w, int sbaOrder, int arri, intvec *hilb, int syzComp, int newIdeal, intvec *vw)
Definition: kstd1.cc:2617
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2433
@ nc_skew
Definition: nc.h:16
@ nc_exterior
Definition: nc.h:21
static nc_type & ncRingType(nc_struct *p)
Definition: nc.h:159
BOOLEAN nc_CheckSubalgebra(poly PolyVar, ring r)
Definition: old.gring.cc:2568
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:37
matrix mp_MultP(matrix a, poly p, const ring R)
multiply a matrix 'a' by a poly 'p', destroy the args
Definition: matpol.cc:148
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:64
void mp_MinorToResult(ideal result, int &elems, matrix a, int r, int c, ideal R, const ring)
entries of a are minors and go to result (only if not in R)
Definition: matpol.cc:1507
void mp_RecMin(int ar, ideal result, int &elems, matrix a, int lr, int lc, poly barDiv, ideal R, const ring r)
produces recursively the ideal of all arxar-minors of a
Definition: matpol.cc:1603
poly mp_DetBareiss(matrix a, const ring r)
returns the determinant of the matrix m; uses Bareiss algorithm
Definition: matpol.cc:1676
#define MATELEM(mat, i, j)
1-based access to matrix
Definition: matpol.h:29
#define MATROWS(i)
Definition: matpol.h:26
#define MATCOLS(i)
Definition: matpol.h:27
#define assume(x)
Definition: mod2.h:387
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
#define p_GetCoeff(p, r)
Definition: monomials.h:50
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define __p_GetComp(p, r)
Definition: monomials.h:63
char N base
Definition: ValueTraits.h:144
#define nCopy(n)
Definition: numbers.h:15
#define omStrDup(s)
Definition: omAllocDecl.h:263
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omalloc(size)
Definition: omAllocDecl.h:228
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omMemDup(s)
Definition: omAllocDecl.h:264
#define NULL
Definition: omList.c:12
VAR unsigned si_opt_2
Definition: options.c:6
VAR unsigned si_opt_1
Definition: options.c:5
#define SI_SAVE_OPT2(A)
Definition: options.h:22
#define OPT_REDTAIL_SYZ
Definition: options.h:87
#define OPT_REDTAIL
Definition: options.h:91
#define OPT_SB_1
Definition: options.h:95
#define SI_SAVE_OPT1(A)
Definition: options.h:21
#define SI_RESTORE_OPT1(A)
Definition: options.h:24
#define SI_RESTORE_OPT2(A)
Definition: options.h:25
#define Sy_bit(x)
Definition: options.h:31
#define TEST_OPT_RETURN_SB
Definition: options.h:112
#define TEST_V_INTERSECT_ELIM
Definition: options.h:144
#define TEST_V_INTERSECT_SYZ
Definition: options.h:145
#define TEST_OPT_NOTREGULARITY
Definition: options.h:120
#define TEST_OPT_PROT
Definition: options.h:103
#define V_IDLIFT
Definition: options.h:62
#define V_IDELIM
Definition: options.h:70
static int index(p_Length length, p_Ord ord)
Definition: p_Procs_Impl.h:592
poly p_DivideM(poly a, poly b, const ring r)
Definition: p_polys.cc:1574
poly p_Farey(poly p, number N, const ring r)
Definition: p_polys.cc:54
int p_Weight(int i, const ring r)
Definition: p_polys.cc:705
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
Definition: p_polys.cc:4771
int p_Compare(const poly a, const poly b, const ring R)
Definition: p_polys.cc:4972
long p_DegW(poly p, const int *w, const ring R)
Definition: p_polys.cc:690
void p_SetModDeg(intvec *w, ring r)
Definition: p_polys.cc:3751
int p_Var(poly m, const ring r)
Definition: p_polys.cc:4721
poly p_One(const ring r)
Definition: p_polys.cc:1313
void pEnlargeSet(poly **p, int l, int increment)
Definition: p_polys.cc:3774
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:587
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1107
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:936
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:723
static long p_SubExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:613
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:313
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static poly p_Copy_noCheck(poly p, const ring r)
returns a copy of p (without any additional testing)
Definition: p_polys.h:836
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:412
static poly pReverse(poly p)
Definition: p_polys.h:335
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition: p_polys.h:860
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1580
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
static void p_GetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1520
static poly p_LmFreeAndNext(poly p, ring)
Definition: p_polys.h:711
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:846
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
Compatiblity layer for legacy polynomial operations (over currRing)
#define pAdd(p, q)
Definition: polys.h:203
#define pTest(p)
Definition: polys.h:415
#define pDelete(p_ptr)
Definition: polys.h:186
#define ppJet(p, m)
Definition: polys.h:367
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition: polys.h:67
#define pSetm(p)
Definition: polys.h:271
#define pNeg(p)
Definition: polys.h:198
#define ppMult_mm(p, m)
Definition: polys.h:201
#define pSetCompP(a, i)
Definition: polys.h:303
#define pGetComp(p)
Component.
Definition: polys.h:37
#define pDiff(a, b)
Definition: polys.h:296
#define pSetCoeff(p, n)
deletes old coeff before setting the new one
Definition: polys.h:31
#define pJet(p, m)
Definition: polys.h:368
#define pSub(a, b)
Definition: polys.h:287
#define pWeight(i)
Definition: polys.h:280
#define ppJetW(p, m, iv)
Definition: polys.h:369
#define pMaxComp(p)
Definition: polys.h:299
#define pSetComp(p, v)
Definition: polys.h:38
void wrp(poly p)
Definition: polys.h:310
#define pMult(p, q)
Definition: polys.h:207
#define pJetW(p, m, iv)
Definition: polys.h:370
#define pDiffOp(a, b, m)
Definition: polys.h:297
#define pSeries(n, p, u, w)
Definition: polys.h:372
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
#define pSetmComp(p)
TODO:
Definition: polys.h:273
#define pNormalize(p)
Definition: polys.h:317
#define pEqualPolys(p1, p2)
Definition: polys.h:400
#define pDivisibleBy(a, b)
returns TRUE, if leading monom of a divides leading monom of b i.e., if there exists a expvector c > ...
Definition: polys.h:138
#define pSetExp(p, i, v)
Definition: polys.h:42
void pTakeOutComp(poly *p, long comp, poly *q, int *lq, const ring R=currRing)
Splits *p into two polys: *q which consists of all monoms with component == comp and *p of all other ...
Definition: polys.h:339
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
#define pOne()
Definition: polys.h:315
#define pMinComp(p)
Definition: polys.h:300
poly * polyset
Definition: polys.h:259
poly prMoveR(poly &p, ring src_r, ring dest_r)
Definition: prCopy.cc:90
ideal idrMoveR(ideal &id, ring src_r, ring dest_r)
Definition: prCopy.cc:248
poly prCopyR(poly p, ring src_r, ring dest_r)
Definition: prCopy.cc:34
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:192
ideal idrMoveR_NoSort(ideal &id, ring src_r, ring dest_r)
Definition: prCopy.cc:261
poly prMoveR_NoSort(poly &p, ring src_r, ring dest_r)
Definition: prCopy.cc:101
ideal idrCopyR_NoSort(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:205
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
void Werror(const char *fmt,...)
Definition: reporter.cc:189
#define mflush()
Definition: reporter.h:58
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3492
ring rAssure_SyzComp(const ring r, BOOLEAN complete)
Definition: ring.cc:4515
BOOLEAN nc_rComplete(const ring src, ring dest, bool bSetupQuotient)
Definition: ring.cc:5786
ring rAssure_SyzOrder(const ring r, BOOLEAN complete)
Definition: ring.cc:4510
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1421
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:450
void rSetSyzComp(int k, const ring r)
Definition: ring.cc:5166
ring rAssure_dp_C(const ring r)
Definition: ring.cc:5060
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
static BOOLEAN rField_is_Domain(const ring r)
Definition: ring.h:488
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411
rRingOrder_t
order stuff
Definition: ring.h:68
@ ringorder_a
Definition: ring.h:70
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_C
Definition: ring.h:73
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_ws
Definition: ring.h:86
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:507
static BOOLEAN rIsNCRing(const ring r)
Definition: ring.h:421
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:593
BOOLEAN rHasGlobalOrdering(const ring r)
Definition: ring.h:760
#define rField_is_Ring(R)
Definition: ring.h:486
#define block
Definition: scanner.cc:646
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
matrix id_Module2Matrix(ideal mod, const ring R)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
int id_ReadOutPivot(ideal arg, int *comp, const ring r)
void id_DelMultiples(ideal id, const ring r)
ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
ideal id_Matrix2Module(matrix mat, const ring R)
converts mat to module, destroys mat
ideal id_SimpleAdd(ideal h1, ideal h2, const ring R)
concat the lists h1 and h2 without zeros
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
void id_Shift(ideal M, int s, const ring r)
ideal id_ChineseRemainder(ideal *xx, number *q, int rl, const ring r)
#define IDELEMS(i)
Definition: simpleideals.h:23
#define id_Test(A, lR)
Definition: simpleideals.h:78
#define R
Definition: sirandom.c:27
#define M
Definition: sirandom.c:25
long sm_ExpBound(ideal m, int di, int ra, int t, const ring currRing)
Definition: sparsmat.cc:188
ring sm_RingChange(const ring origR, long bound)
Definition: sparsmat.cc:258
void sm_KillModifiedRing(ring r)
Definition: sparsmat.cc:289
char * char_ptr
Definition: structs.h:53
tHomog
Definition: structs.h:35
@ isHomog
Definition: structs.h:37
@ testHomog
Definition: structs.h:38
@ isNotHomog
Definition: structs.h:36
#define BITSET
Definition: structs.h:16
#define loop
Definition: structs.h:75
void syGaussForOne(ideal syz, int elnum, int ModComp, int from, int till)
Definition: syz.cc:218
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:770
resolvente sySchreyerResolvente(ideal arg, int maxlength, int *length, BOOLEAN isMonomial=FALSE, BOOLEAN notReplace=FALSE)
Definition: syz0.cc:855
ideal t_rep_gb(const ring r, ideal arg_I, int syz_comp, BOOLEAN F4_mode)
Definition: tgb.cc:3571
@ INT_CMD
Definition: tok.h:96
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:20
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:108
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.cc:78