My Project
kstd1.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT:
6*/
7
8// TODO: why the following is here instead of mod2.h???
9
10
11// define if buckets should be used
12#define MORA_USE_BUCKETS
13
14#define PRE_INTEGER_CHECK 0
15
16#include "kernel/mod2.h"
17
18#include "misc/options.h"
19#include "misc/intvec.h"
20
21#include "polys/weight.h"
22#include "kernel/polys.h"
23
28#include "kernel/ideals.h"
29
30//#include "ipprint.h"
31
32#ifdef HAVE_PLURAL
33#include "polys/nc/nc.h"
34#include "polys/nc/sca.h"
35#include "kernel/GBEngine/nc.h"
36#endif
37
39
40#ifdef HAVE_SHIFTBBA
41#include "polys/shiftop.h"
42#endif
43
44/* the list of all options which give a warning by test */
46 |Sy_bit(OPT_REDSB) /* 1 */
47 |Sy_bit(OPT_NOT_SUGAR) /* 3 */
48 |Sy_bit(OPT_INTERRUPT) /* 4 */
49 |Sy_bit(OPT_SUGARCRIT) /* 5 */
52 |Sy_bit(OPT_FASTHC) /* 10 */
53 |Sy_bit(OPT_INTSTRATEGY) /* 26 */
54 |Sy_bit(OPT_INFREDTAIL) /* 28 */
55 |Sy_bit(OPT_NOTREGULARITY) /* 30 */
56 |Sy_bit(OPT_WEIGHTM); /* 31 */
57
58/* the list of all options which may be used by option and test */
59/* defintion of ALL options: libpolys/misc/options.h */
61 |Sy_bit(1)
62 |Sy_bit(2) // obachman 10/00: replaced by notBucket
63 |Sy_bit(3)
64 |Sy_bit(4)
65 |Sy_bit(5)
66 |Sy_bit(6)
67// |Sy_bit(7) obachman 11/00 tossed: 12/00 used for redThrough
68 |Sy_bit(7) // OPT_REDTHROUGH
69 |Sy_bit(8) // obachman 11/00 tossed -> motsak 2011 experimental: OPT_NO_SYZ_MINIM
70 |Sy_bit(9)
71 |Sy_bit(10)
72 |Sy_bit(11)
73 |Sy_bit(12)
74 |Sy_bit(13)
75 |Sy_bit(14)
76 |Sy_bit(15)
77 |Sy_bit(16)
78 |Sy_bit(17)
79 |Sy_bit(18)
80 |Sy_bit(19)
81// |Sy_bit(20) obachman 11/00 tossed: 12/00 used for redOldStd
83 |Sy_bit(21)
84 |Sy_bit(22)
85 /*|Sy_bit(23)*/
86 /*|Sy_bit(24)*/
89 |Sy_bit(27)
90 |Sy_bit(28)
91 |Sy_bit(29)
92 |Sy_bit(30)
93 |Sy_bit(31);
94
95//static BOOLEAN posInLOldFlag;
96 /*FALSE, if posInL == posInL10*/
97// returns TRUE if mora should use buckets, false otherwise
98static BOOLEAN kMoraUseBucket(kStrategy strat);
99
100static void kOptimizeLDeg(pLDegProc ldeg, kStrategy strat)
101{
102// if (strat->ak == 0 && !rIsSyzIndexRing(currRing))
103 strat->length_pLength = TRUE;
104// else
105// strat->length_pLength = FALSE;
106
107 if ((ldeg == pLDeg0c /*&& !rIsSyzIndexRing(currRing)*/) ||
108 (ldeg == pLDeg0 && strat->ak == 0))
109 {
110 strat->LDegLast = TRUE;
111 }
112 else
113 {
114 strat->LDegLast = FALSE;
115 }
116}
117
118
119static int doRed (LObject* h, TObject* with,BOOLEAN intoT,kStrategy strat, bool redMoraNF)
120{
121 int ret;
122#if KDEBUG > 0
123 kTest_L(h);
124 kTest_T(with);
125#endif
126 // Hmmm ... why do we do this -- polys from T should already be normalized
128 with->pNorm();
129#ifdef KDEBUG
130 if (TEST_OPT_DEBUG)
131 {
132 PrintS("reduce ");h->wrp();PrintS(" with ");with->wrp();PrintLn();
133 }
134#endif
135 if (intoT)
136 {
137 // need to do it exacly like this: otherwise
138 // we might get errors
139 LObject L= *h;
140 L.Copy();
141 h->GetP();
142 h->length=h->pLength=pLength(h->p);
143 ret = ksReducePoly(&L, with, strat->kNoetherTail(), NULL, NULL, strat);
144 if (ret)
145 {
146 if (ret < 0) return ret;
147 if (h->tailRing != strat->tailRing)
148 h->ShallowCopyDelete(strat->tailRing,
150 strat->tailRing));
151 }
153 enterT_strong(*h,strat);
154 else
155 enterT(*h,strat);
156 *h = L;
157 }
158 else
159 ret = ksReducePoly(h, with, strat->kNoetherTail(), NULL, NULL, strat);
160#ifdef KDEBUG
161 if (TEST_OPT_DEBUG)
162 {
163 PrintS("to ");h->wrp();PrintLn();
164 }
165#endif
166 return ret;
167}
168
170{
171 int i,at,ei,li,ii;
172 int j = 0;
173 int pass = 0;
174 long d,reddeg;
175
176 d = h->GetpFDeg()+ h->ecart;
177 reddeg = strat->LazyDegree+d;
178 h->SetShortExpVector();
179 loop
180 {
181 j = kFindDivisibleByInT(strat, h);
182 if (j < 0)
183 {
184 if (strat->honey) h->SetLength(strat->length_pLength);
185 return 1;
186 }
187
188 ei = strat->T[j].ecart;
189 ii = j;
190
191 if (ei > h->ecart && ii < strat->tl)
192 {
193 unsigned long not_sev=~h->sev;
194 poly h_t= h->GetLmTailRing();
195 li = strat->T[j].length;
196 if (li<=0) li=strat->T[j].GetpLength();
197 // the polynomial to reduce with (up to the moment) is;
198 // pi with ecart ei and length li
199 // look for one with smaller ecart
200 i = j;
201 loop
202 {
203 /*- takes the first possible with respect to ecart -*/
204 i++;
205#if 1
206 if (i > strat->tl) break;
207 if (strat->T[i].length<=0) strat->T[i].GetpLength();
208 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
209 strat->T[i].length < li))
210 &&
211 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h_t, not_sev, strat->tailRing))
212#else
213 j = kFindDivisibleByInT(strat, h, i);
214 if (j < 0) break;
215 i = j;
216 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
217 strat->T[i].length < li))
218#endif
219 {
220 // the polynomial to reduce with is now
221 ii = i;
222 ei = strat->T[i].ecart;
223 if (ei <= h->ecart) break;
224 li = strat->T[i].length;
225 }
226 }
227 }
228
229 // end of search: have to reduce with pi
230 if (ei > h->ecart)
231 {
232 // It is not possible to reduce h with smaller ecart;
233 // if possible h goes to the lazy-set L,i.e
234 // if its position in L would be not the last one
235 strat->fromT = TRUE;
236 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
237 {
238 h->SetLmCurrRing();
239 if (strat->honey && strat->posInLDependsOnLength)
240 h->SetLength(strat->length_pLength);
241 assume(h->FDeg == h->pFDeg());
242 at = strat->posInL(strat->L,strat->Ll,h,strat);
243 if (at <= strat->Ll)
244 {
245 /*- h will not become the next element to reduce -*/
246 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
247#ifdef KDEBUG
248 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
249#endif
250 h->Clear();
251 strat->fromT = FALSE;
252 return -1;
253 }
254 }
255 }
256
257 // now we finally can reduce
258 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
259 strat->fromT=FALSE;
260
261 // are we done ???
262 if (h->IsNull())
263 {
265 kDeleteLcm(h);
266 h->Clear();
267 return 0;
268 }
269 if (TEST_OPT_IDLIFT)
270 {
271 if (h->p!=NULL)
272 {
273 if(p_GetComp(h->p,currRing)>strat->syzComp)
274 {
275 h->Delete();
276 return 0;
277 }
278 }
279 else if (h->t_p!=NULL)
280 {
281 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
282 {
283 h->Delete();
284 return 0;
285 }
286 }
287 }
288 #if 0
289 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
290 {
291 if (h->p!=NULL)
292 {
293 if(p_GetComp(h->p,currRing)>strat->syzComp)
294 {
295 return 1;
296 }
297 }
298 else if (h->t_p!=NULL)
299 {
300 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
301 {
302 return 1;
303 }
304 }
305 }
306 #endif
307
308 // done ? NO!
309 h->SetShortExpVector();
310 h->SetpFDeg();
311 if (strat->honey)
312 {
313 if (ei <= h->ecart)
314 h->ecart = d-h->GetpFDeg();
315 else
316 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
317 }
318 else
319 // this has the side effect of setting h->length
320 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
321#if 0
322 if (strat->syzComp!=0)
323 {
324 if ((strat->syzComp>0) && (h->Comp() > strat->syzComp))
325 {
326 assume(h->MinComp() > strat->syzComp);
327 if (strat->honey) h->SetLength();
328#ifdef KDEBUG
329 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
330#endif
331 return -2;
332 }
333 }
334#endif
335 /*- try to reduce the s-polynomial -*/
336 pass++;
337 d = h->GetpFDeg()+h->ecart;
338 /*
339 *test whether the polynomial should go to the lazyset L
340 *-if the degree jumps
341 *-if the number of pre-defined reductions jumps
342 */
343 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
344 && ((d >= reddeg) || (pass > strat->LazyPass)))
345 {
346 h->SetLmCurrRing();
347 if (strat->honey && strat->posInLDependsOnLength)
348 h->SetLength(strat->length_pLength);
349 assume(h->FDeg == h->pFDeg());
350 at = strat->posInL(strat->L,strat->Ll,h,strat);
351 if (at <= strat->Ll)
352 {
353 int dummy=strat->sl;
354 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
355 {
356 if (strat->honey && !strat->posInLDependsOnLength)
357 h->SetLength(strat->length_pLength);
358 return 1;
359 }
360 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
361#ifdef KDEBUG
362 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
363#endif
364 h->Clear();
365 return -1;
366 }
367 }
368 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
369 {
370 Print(".%ld",d);mflush();
371 reddeg = d+1;
372 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
373 {
374 strat->overflow=TRUE;
375 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
376 h->GetP();
377 at = strat->posInL(strat->L,strat->Ll,h,strat);
378 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
379 h->Clear();
380 return -1;
381 }
382 }
383 }
384}
385
386#ifdef HAVE_RINGS
388{
389 int i,at,ei,li,ii;
390 int j = 0;
391 int pass = 0;
392 long d,reddeg;
393
394 d = h->GetpFDeg()+ h->ecart;
395 reddeg = strat->LazyDegree+d;
396 h->SetShortExpVector();
397 loop
398 {
399 j = kFindDivisibleByInT(strat, h);
400 if (j < 0)
401 {
402 // over ZZ: cleanup coefficients by complete reduction with monomials
403 postReduceByMon(h, strat);
404 if(h->p == NULL)
405 {
406 kDeleteLcm(h);
407 h->Clear();
408 return 0;
409 }
410 if (strat->honey) h->SetLength(strat->length_pLength);
411 if(strat->tl >= 0)
412 h->i_r1 = strat->tl;
413 else
414 h->i_r1 = -1;
415 if (h->GetLmTailRing() == NULL)
416 {
417 kDeleteLcm(h);
418 h->Clear();
419 return 0;
420 }
421 return 1;
422 }
423
424 ei = strat->T[j].ecart;
425 ii = j;
426 if (ei > h->ecart && ii < strat->tl)
427 {
428 li = strat->T[j].length;
429 // the polynomial to reduce with (up to the moment) is;
430 // pi with ecart ei and length li
431 // look for one with smaller ecart
432 i = j;
433 loop
434 {
435 /*- takes the first possible with respect to ecart -*/
436 i++;
437#if 1
438 if (i > strat->tl) break;
439 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
440 strat->T[i].length < li))
441 &&
442 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
443 &&
444 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
445#else
446 j = kFindDivisibleByInT(strat, h, i);
447 if (j < 0) break;
448 i = j;
449 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
450 strat->T[i].length < li))
451#endif
452 {
453 // the polynomial to reduce with is now
454 ii = i;
455 ei = strat->T[i].ecart;
456 if (ei <= h->ecart) break;
457 li = strat->T[i].length;
458 }
459 }
460 }
461
462 // end of search: have to reduce with pi
463 if (ei > h->ecart)
464 {
465 // It is not possible to reduce h with smaller ecart;
466 // if possible h goes to the lazy-set L,i.e
467 // if its position in L would be not the last one
468 strat->fromT = TRUE;
469 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
470 {
471 h->SetLmCurrRing();
472 if (strat->honey && strat->posInLDependsOnLength)
473 h->SetLength(strat->length_pLength);
474 assume(h->FDeg == h->pFDeg());
475 at = strat->posInL(strat->L,strat->Ll,h,strat);
476 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
477 {
478 /*- h will not become the next element to reduce -*/
479 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
480 #ifdef KDEBUG
481 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
482 #endif
483 h->Clear();
484 strat->fromT = FALSE;
485 return -1;
486 }
487 }
488 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
489 }
490 else
491 {
492 // now we finally can reduce
493 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
494 }
495 strat->fromT=FALSE;
496 // are we done ???
497 if (h->IsNull())
498 {
499 kDeleteLcm(h);
500 h->Clear();
501 return 0;
502 }
503
504 // NO!
505 h->SetShortExpVector();
506 h->SetpFDeg();
507 if (strat->honey)
508 {
509 if (ei <= h->ecart)
510 h->ecart = d-h->GetpFDeg();
511 else
512 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
513 }
514 else
515 // this has the side effect of setting h->length
516 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
517 /*- try to reduce the s-polynomial -*/
518 pass++;
519 d = h->GetpFDeg()+h->ecart;
520 /*
521 *test whether the polynomial should go to the lazyset L
522 *-if the degree jumps
523 *-if the number of pre-defined reductions jumps
524 */
525 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
526 && ((d >= reddeg) || (pass > strat->LazyPass)))
527 {
528 h->SetLmCurrRing();
529 if (strat->honey && strat->posInLDependsOnLength)
530 h->SetLength(strat->length_pLength);
531 assume(h->FDeg == h->pFDeg());
532 at = strat->posInL(strat->L,strat->Ll,h,strat);
533 if (at <= strat->Ll)
534 {
535 int dummy=strat->sl;
536 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
537 {
538 if (strat->honey && !strat->posInLDependsOnLength)
539 h->SetLength(strat->length_pLength);
540 return 1;
541 }
542 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
543#ifdef KDEBUG
544 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
545#endif
546 h->Clear();
547 return -1;
548 }
549 }
550 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
551 {
552 Print(".%ld",d);mflush();
553 reddeg = d+1;
554 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
555 {
556 strat->overflow=TRUE;
557 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
558 h->GetP();
559 at = strat->posInL(strat->L,strat->Ll,h,strat);
560 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
561 h->Clear();
562 return -1;
563 }
564 }
565 }
566}
567
569{
570 int i,at,ei,li,ii;
571 int j = 0;
572 int pass = 0;
573 long d,reddeg;
574 int docoeffred = 0;
575 poly T0p = strat->T[0].p;
576 int T0ecart = strat->T[0].ecart;
577
578
579 d = h->GetpFDeg()+ h->ecart;
580 reddeg = strat->LazyDegree+d;
581 h->SetShortExpVector();
582 if ((strat->tl>=0)
583 &&strat->T[0].GetpFDeg() == 0
584 && strat->T[0].length <= 2)
585 {
586 docoeffred = 1;
587 }
588 loop
589 {
590 /* cut down the lead coefficients, only possible if the degree of
591 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
592 * we ask for the length of T[0] to be <= 2 */
593 if (docoeffred)
594 {
595 j = kTestDivisibleByT0_Z(strat, h);
596 if (j == 0 && n_DivBy(pGetCoeff(h->p), pGetCoeff(T0p), currRing->cf) == FALSE
597 && T0ecart <= h->ecart)
598 {
599 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
600 * => we try to cut down the lead coefficient at least */
601 /* first copy T[j] in order to multiply it with a coefficient later on */
602 number mult, rest;
603 TObject tj = strat->T[0];
604 tj.Copy();
605 /* compute division with remainder of lc(h) and lc(T[j]) */
606 mult = n_QuotRem(pGetCoeff(h->p), pGetCoeff(T0p),
607 &rest, currRing->cf);
608 /* set corresponding new lead coefficient already. we do not
609 * remove the lead term in ksReducePolyLC, but only apply
610 * a lead coefficient reduction */
611 tj.Mult_nn(mult);
612 ksReducePolyLC(h, &tj, NULL, &rest, strat);
613 tj.Delete();
614 tj.Clear();
615 if (n_IsZero(pGetCoeff(h->GetP()),currRing->cf))
616 {
617 h->LmDeleteAndIter();
618 }
619 }
620 }
621 j = kFindDivisibleByInT(strat, h);
622 if (j < 0)
623 {
624 // over ZZ: cleanup coefficients by complete reduction with monomials
625 postReduceByMon(h, strat);
626 if(h->p == NULL)
627 {
628 kDeleteLcm(h);
629 h->Clear();
630 return 0;
631 }
632 if (strat->honey) h->SetLength(strat->length_pLength);
633 if(strat->tl >= 0)
634 h->i_r1 = strat->tl;
635 else
636 h->i_r1 = -1;
637 if (h->GetLmTailRing() == NULL)
638 {
639 kDeleteLcm(h);
640 h->Clear();
641 return 0;
642 }
643 return 1;
644 }
645
646 ei = strat->T[j].ecart;
647 ii = j;
648#if 1
649 if (ei > h->ecart && ii < strat->tl)
650 {
651 li = strat->T[j].length;
652 // the polynomial to reduce with (up to the moment) is;
653 // pi with ecart ei and length li
654 // look for one with smaller ecart
655 i = j;
656 loop
657 {
658 /*- takes the first possible with respect to ecart -*/
659 i++;
660#if 1
661 if (i > strat->tl) break;
662 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
663 strat->T[i].length < li))
664 &&
665 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
666 &&
667 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
668#else
669 j = kFindDivisibleByInT(strat, h, i);
670 if (j < 0) break;
671 i = j;
672 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
673 strat->T[i].length < li))
674#endif
675 {
676 // the polynomial to reduce with is now
677 ii = i;
678 ei = strat->T[i].ecart;
679 if (ei <= h->ecart) break;
680 li = strat->T[i].length;
681 }
682 }
683 }
684#endif
685
686 // end of search: have to reduce with pi
687 if (ei > h->ecart)
688 {
689 // It is not possible to reduce h with smaller ecart;
690 // if possible h goes to the lazy-set L,i.e
691 // if its position in L would be not the last one
692 strat->fromT = TRUE;
693 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
694 {
695 h->SetLmCurrRing();
696 if (strat->honey && strat->posInLDependsOnLength)
697 h->SetLength(strat->length_pLength);
698 assume(h->FDeg == h->pFDeg());
699 at = strat->posInL(strat->L,strat->Ll,h,strat);
700 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
701 {
702 /*- h will not become the next element to reduce -*/
703 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
704#ifdef KDEBUG
705 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
706#endif
707 h->Clear();
708 strat->fromT = FALSE;
709 return -1;
710 }
711 }
712 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
713 }
714 else
715 {
716 // now we finally can reduce
717 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
718 }
719 strat->fromT=FALSE;
720 // are we done ???
721 if (h->IsNull())
722 {
723 kDeleteLcm(h);
724 h->Clear();
725 return 0;
726 }
727
728 // NO!
729 h->SetShortExpVector();
730 h->SetpFDeg();
731 if (strat->honey)
732 {
733 if (ei <= h->ecart)
734 h->ecart = d-h->GetpFDeg();
735 else
736 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
737 }
738 else
739 // this has the side effect of setting h->length
740 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
741 /*- try to reduce the s-polynomial -*/
742 pass++;
743 d = h->GetpFDeg()+h->ecart;
744 /*
745 *test whether the polynomial should go to the lazyset L
746 *-if the degree jumps
747 *-if the number of pre-defined reductions jumps
748 */
749 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
750 && ((d >= reddeg) || (pass > strat->LazyPass)))
751 {
752 h->SetLmCurrRing();
753 if (strat->honey && strat->posInLDependsOnLength)
754 h->SetLength(strat->length_pLength);
755 assume(h->FDeg == h->pFDeg());
756 at = strat->posInL(strat->L,strat->Ll,h,strat);
757 if (at <= strat->Ll)
758 {
759 int dummy=strat->sl;
760 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
761 {
762 if (strat->honey && !strat->posInLDependsOnLength)
763 h->SetLength(strat->length_pLength);
764 return 1;
765 }
766 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
767#ifdef KDEBUG
768 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
769#endif
770 h->Clear();
771 return -1;
772 }
773 }
774 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
775 {
776 Print(".%ld",d);mflush();
777 reddeg = d+1;
778 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
779 {
780 strat->overflow=TRUE;
781 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
782 h->GetP();
783 at = strat->posInL(strat->L,strat->Ll,h,strat);
784 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
785 h->Clear();
786 return -1;
787 }
788 }
789 }
790}
791#endif
792
793/*2
794*reduces h with elements from T choosing the first possible
795* element in t with respect to the given pDivisibleBy
796*/
798{
799 if (strat->tl<0) return 1;
800 if (h->IsNull()) return 0;
801
802 int at;
803 long reddeg,d;
804 int pass = 0;
805 int cnt = RED_CANONICALIZE;
806 int j = 0;
807
808 if (! strat->homog)
809 {
810 d = h->GetpFDeg() + h->ecart;
811 reddeg = strat->LazyDegree+d;
812 }
813 h->SetShortExpVector();
814 loop
815 {
816 j = kFindDivisibleByInT(strat, h);
817 if (j < 0)
818 {
819 h->SetDegStuffReturnLDeg(strat->LDegLast);
820 return 1;
821 }
822
824 strat->T[j].pNorm();
825#ifdef KDEBUG
826 if (TEST_OPT_DEBUG)
827 {
828 PrintS("reduce ");
829 h->wrp();
830 PrintS(" with ");
831 strat->T[j].wrp();
832 }
833#endif
834 ksReducePoly(h, &(strat->T[j]), strat->kNoetherTail(), NULL, NULL, strat);
835#ifdef KDEBUG
836 if (TEST_OPT_DEBUG)
837 {
838 PrintS(" to ");
839 wrp(h->p);
840 PrintLn();
841 }
842#endif
843 if (h->IsNull())
844 {
846 kDeleteLcm(h);
847 h->Clear();
848 return 0;
849 }
850 if (TEST_OPT_IDLIFT)
851 {
852 if (h->p!=NULL)
853 {
854 if(p_GetComp(h->p,currRing)>strat->syzComp)
855 {
856 h->Delete();
857 return 0;
858 }
859 }
860 else if (h->t_p!=NULL)
861 {
862 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
863 {
864 h->Delete();
865 return 0;
866 }
867 }
868 }
869 #if 0
870 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
871 {
872 if (h->p!=NULL)
873 {
874 if(p_GetComp(h->p,currRing)>strat->syzComp)
875 {
876 return 1;
877 }
878 }
879 else if (h->t_p!=NULL)
880 {
881 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
882 {
883 return 1;
884 }
885 }
886 }
887 #endif
888 h->SetShortExpVector();
889
890#if 0
891 if ((strat->syzComp!=0) && !strat->honey)
892 {
893 if ((strat->syzComp>0) &&
894 (h->Comp() > strat->syzComp))
895 {
896 assume(h->MinComp() > strat->syzComp);
897#ifdef KDEBUG
898 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
899#endif
900 if (strat->homog)
901 h->SetDegStuffReturnLDeg(strat->LDegLast);
902 return -2;
903 }
904 }
905#endif
906 if (!strat->homog)
907 {
908 if (!TEST_OPT_OLDSTD && strat->honey)
909 {
910 h->SetpFDeg();
911 if (strat->T[j].ecart <= h->ecart)
912 h->ecart = d - h->GetpFDeg();
913 else
914 h->ecart = d - h->GetpFDeg() + strat->T[j].ecart - h->ecart;
915
916 d = h->GetpFDeg() + h->ecart;
917 }
918 else
919 d = h->SetDegStuffReturnLDeg(strat->LDegLast);
920 /*- try to reduce the s-polynomial -*/
921 cnt--;
922 pass++;
923 /*
924 *test whether the polynomial should go to the lazyset L
925 *-if the degree jumps
926 *-if the number of pre-defined reductions jumps
927 */
928 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
929 && ((d >= reddeg) || (pass > strat->LazyPass)))
930 {
931 h->SetLmCurrRing();
932 if (strat->posInLDependsOnLength)
933 h->SetLength(strat->length_pLength);
934 at = strat->posInL(strat->L,strat->Ll,h,strat);
935 if (at <= strat->Ll)
936 {
937 int dummy=strat->sl;
938 if (kFindDivisibleByInS(strat,&dummy, h) < 0)
939 return 1;
940 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
941#ifdef KDEBUG
942 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
943#endif
944 h->Clear();
945 return -1;
946 }
947 }
948 if (UNLIKELY(cnt==0))
949 {
950 h->CanonicalizeP();
952 //if (TEST_OPT_PROT) { PrintS("!");mflush(); }
953 }
954 if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
955 {
956 reddeg = d+1;
957 Print(".%ld",d);mflush();
958 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
959 {
960 strat->overflow=TRUE;
961 //Print("OVERFLOW in redFirst d=%ld, max=%ld",d,strat->tailRing->bitmask);
962 h->GetP();
963 at = strat->posInL(strat->L,strat->Ll,h,strat);
964 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
965 h->Clear();
966 return -1;
967 }
968 }
969 }
970 }
971}
972
973/*2
974* reduces h with elements from T choosing first possible
975* element in T with respect to the given ecart
976* used for computing normal forms outside kStd
977*/
978static poly redMoraNF (poly h,kStrategy strat, int flag)
979{
980 LObject H;
981 H.p = h;
982 int j = 0;
983 int z = 10;
984 int o = H.SetpFDeg();
985 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
986 if ((flag & 2) == 0) cancelunit(&H,TRUE);
987 H.sev = pGetShortExpVector(H.p);
988 loop
989 {
990 if (j > strat->tl)
991 {
992 return H.p;
993 }
994 if (TEST_V_DEG_STOP)
995 {
996 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
997 if (H.p==NULL) return NULL;
998 }
999 unsigned long not_sev = ~ H.sev;
1000 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
1001 )
1002 {
1003 /*- remember the found T-poly -*/
1004 // poly pi = strat->T[j].p;
1005 int ei = strat->T[j].ecart;
1006 int li = strat->T[j].length;
1007 int ii = j;
1008 /*
1009 * the polynomial to reduce with (up to the moment) is;
1010 * pi with ecart ei and length li
1011 */
1012 loop
1013 {
1014 /*- look for a better one with respect to ecart -*/
1015 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1016 j++;
1017 if (j > strat->tl) break;
1018 if (ei <= H.ecart) break;
1019 if (((strat->T[j].ecart < ei)
1020 || ((strat->T[j].ecart == ei)
1021 && (strat->T[j].length < li)))
1022 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1023 )
1024 {
1025 /*
1026 * the polynomial to reduce with is now;
1027 */
1028 // pi = strat->T[j].p;
1029 ei = strat->T[j].ecart;
1030 li = strat->T[j].length;
1031 ii = j;
1032 }
1033 }
1034 /*
1035 * end of search: have to reduce with pi
1036 */
1037 z++;
1038 if (z>10)
1039 {
1040 pNormalize(H.p);
1041 z=0;
1042 }
1043 if ((ei > H.ecart) && (strat->kNoether==NULL))
1044 {
1045 /*
1046 * It is not possible to reduce h with smaller ecart;
1047 * we have to reduce with bad ecart: H has to enter in T
1048 */
1049 doRed(&H,&(strat->T[ii]),TRUE,strat,TRUE);
1050 if (H.p == NULL)
1051 return NULL;
1052 }
1053 else
1054 {
1055 /*
1056 * we reduce with good ecart, h need not to be put to T
1057 */
1058 doRed(&H,&(strat->T[ii]),FALSE,strat,TRUE);
1059 if (H.p == NULL)
1060 return NULL;
1061 }
1062 /*- try to reduce the s-polynomial -*/
1063 o = H.SetpFDeg();
1064 if ((flag &2 ) == 0) cancelunit(&H,TRUE);
1065 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1066 j = 0;
1067 H.sev = pGetShortExpVector(H.p);
1068 }
1069 else
1070 {
1071 j++;
1072 }
1073 }
1074}
1075
1076#ifdef HAVE_RINGS
1077static poly redMoraNFRing (poly h,kStrategy strat, int flag)
1078{
1079 LObject H;
1080 H.p = h;
1081 int j0, j = 0;
1082 int z = 10;
1083 int docoeffred = 0;
1084 poly T0p = strat->T[0].p;
1085 int T0ecart = strat->T[0].ecart;
1086 int o = H.SetpFDeg();
1087 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
1088 if ((flag & 2) == 0) cancelunit(&H,TRUE);
1089 H.sev = pGetShortExpVector(H.p);
1090 unsigned long not_sev = ~ H.sev;
1091 if (strat->T[0].GetpFDeg() == 0 && strat->T[0].length <= 2) {
1092 docoeffred = 1;
1093 }
1094 loop
1095 {
1096 /* cut down the lead coefficients, only possible if the degree of
1097 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
1098 * we ask for the length of T[0] to be <= 2 */
1099 if (docoeffred) {
1100 j0 = kTestDivisibleByT0_Z(strat, &H);
1101 if (j0 == 0 && n_DivBy(pGetCoeff(H.p), pGetCoeff(T0p), currRing->cf) == FALSE
1102 && T0ecart <= H.ecart) {
1103 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
1104 * => we try to cut down the lead coefficient at least */
1105 /* first copy T[j0] in order to multiply it with a coefficient later on */
1106 number mult, rest;
1107 TObject tj = strat->T[0];
1108 tj.Copy();
1109 /* compute division with remainder of lc(h) and lc(T[j]) */
1110 mult = n_QuotRem(pGetCoeff(H.p), pGetCoeff(T0p),
1111 &rest, currRing->cf);
1112 /* set corresponding new lead coefficient already. we do not
1113 * remove the lead term in ksReducePolyLC, but only apply
1114 * a lead coefficient reduction */
1115 tj.Mult_nn(mult);
1116 ksReducePolyLC(&H, &tj, NULL, &rest, strat);
1117 tj.Delete();
1118 tj.Clear();
1119 }
1120 }
1121 if (j > strat->tl)
1122 {
1123 return H.p;
1124 }
1125 if (TEST_V_DEG_STOP)
1126 {
1127 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
1128 if (H.p==NULL) return NULL;
1129 }
1130 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
1131 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1132 )
1133 {
1134 /*- remember the found T-poly -*/
1135 // poly pi = strat->T[j].p;
1136 int ei = strat->T[j].ecart;
1137 int li = strat->T[j].length;
1138 int ii = j;
1139 /*
1140 * the polynomial to reduce with (up to the moment) is;
1141 * pi with ecart ei and length li
1142 */
1143 loop
1144 {
1145 /*- look for a better one with respect to ecart -*/
1146 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1147 j++;
1148 if (j > strat->tl) break;
1149 if (ei <= H.ecart) break;
1150 if (((strat->T[j].ecart < ei)
1151 || ((strat->T[j].ecart == ei)
1152 && (strat->T[j].length < li)))
1153 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1154 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1155 )
1156 {
1157 /*
1158 * the polynomial to reduce with is now;
1159 */
1160 // pi = strat->T[j].p;
1161 ei = strat->T[j].ecart;
1162 li = strat->T[j].length;
1163 ii = j;
1164 }
1165 }
1166 /*
1167 * end of search: have to reduce with pi
1168 */
1169 z++;
1170 if (z>10)
1171 {
1172 pNormalize(H.p);
1173 z=0;
1174 }
1175 if ((ei > H.ecart) && (strat->kNoether==NULL))
1176 {
1177 /*
1178 * It is not possible to reduce h with smaller ecart;
1179 * we have to reduce with bad ecart: H has to enter in T
1180 */
1181 doRed(&H,&(strat->T[ii]),TRUE,strat,TRUE);
1182 if (H.p == NULL)
1183 return NULL;
1184 }
1185 else
1186 {
1187 /*
1188 * we reduce with good ecart, h need not to be put to T
1189 */
1190 doRed(&H,&(strat->T[ii]),FALSE,strat,TRUE);
1191 if (H.p == NULL)
1192 return NULL;
1193 }
1194 /*- try to reduce the s-polynomial -*/
1195 o = H.SetpFDeg();
1196 if ((flag &2 ) == 0) cancelunit(&H,TRUE);
1197 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1198 j = 0;
1199 H.sev = pGetShortExpVector(H.p);
1200 not_sev = ~ H.sev;
1201 }
1202 else
1203 {
1204 j++;
1205 }
1206 }
1207}
1208#endif
1209
1210/*2
1211*reorders L with respect to posInL
1212*/
1214{
1215 int i,j,at;
1216 LObject p;
1217
1218 for (i=1; i<=strat->Ll; i++)
1219 {
1220 at = strat->posInL(strat->L,i-1,&(strat->L[i]),strat);
1221 if (at != i)
1222 {
1223 p = strat->L[i];
1224 for (j=i-1; j>=at; j--) strat->L[j+1] = strat->L[j];
1225 strat->L[at] = p;
1226 }
1227 }
1228}
1229
1230/*2
1231*reorders T with respect to length
1232*/
1234{
1235 int i,j,at;
1236 TObject p;
1237 unsigned long sev;
1238
1239
1240 for (i=1; i<=strat->tl; i++)
1241 {
1242 if (strat->T[i-1].length > strat->T[i].length)
1243 {
1244 p = strat->T[i];
1245 sev = strat->sevT[i];
1246 at = i-1;
1247 loop
1248 {
1249 at--;
1250 if (at < 0) break;
1251 if (strat->T[i].length > strat->T[at].length) break;
1252 }
1253 for (j = i-1; j>at; j--)
1254 {
1255 strat->T[j+1]=strat->T[j];
1256 strat->sevT[j+1]=strat->sevT[j];
1257 strat->R[strat->T[j+1].i_r] = &(strat->T[j+1]);
1258 }
1259 strat->T[at+1]=p;
1260 strat->sevT[at+1] = sev;
1261 strat->R[p.i_r] = &(strat->T[at+1]);
1262 }
1263 }
1264}
1265
1266/*2
1267*looks whether exactly (currRing->N)-1 axis are used
1268*returns last != 0 in this case
1269*last is the (first) unused axis
1270*/
1271void missingAxis (int* last,kStrategy strat)
1272{
1273 int i = 0;
1274 int k = 0;
1275
1276 *last = 0;
1278 {
1279 loop
1280 {
1281 i++;
1282 if (i > (currRing->N)) break;
1283 if (strat->NotUsedAxis[i])
1284 {
1285 *last = i;
1286 k++;
1287 }
1288 if (k>1)
1289 {
1290 *last = 0;
1291 break;
1292 }
1293 }
1294 }
1295}
1296
1297/*2
1298*last is the only non used axis, it looks
1299*for a monomial in p being a pure power of this
1300*variable and returns TRUE in this case
1301*(*length) gives the length between the pure power and the leading term
1302*(should be minimal)
1303*/
1304BOOLEAN hasPurePower (const poly p,int last, int *length,kStrategy strat)
1305{
1306 poly h;
1307 int i;
1308
1309 if (pNext(p) == strat->tail)
1310 return FALSE;
1311 pp_Test(p, currRing, strat->tailRing);
1312 if (strat->ak <= 0 || p_MinComp(p, currRing, strat->tailRing) == strat->ak)
1313 {
1315 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(p), currRing->cf))) i=0;
1316 if (i == last)
1317 {
1318 *length = 0;
1319 return TRUE;
1320 }
1321 *length = 1;
1322 h = pNext(p);
1323 while (h != NULL)
1324 {
1325 i = p_IsPurePower(h, strat->tailRing);
1326 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(h), currRing->cf))) i=0;
1327 if (i==last) return TRUE;
1328 (*length)++;
1329 pIter(h);
1330 }
1331 }
1332 return FALSE;
1333}
1334
1336{
1337 if (L->bucket != NULL)
1338 {
1339 poly p = L->GetP();
1340 return hasPurePower(p, last, length, strat);
1341 }
1342 else
1343 {
1344 return hasPurePower(L->p, last, length, strat);
1345 }
1346}
1347
1348/*2
1349* looks up the position of polynomial p in L
1350* in the case of looking for the pure powers
1351*/
1352int posInL10 (const LSet set,const int length, LObject* p,const kStrategy strat)
1353{
1354 int j,dp,dL;
1355
1356 if (length<0) return 0;
1357 if (hasPurePower(p,strat->lastAxis,&dp,strat))
1358 {
1359 int op= p->GetpFDeg() +p->ecart;
1360 for (j=length; j>=0; j--)
1361 {
1362 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat))
1363 return j+1;
1364 if (dp < dL)
1365 return j+1;
1366 if ((dp == dL)
1367 && (set[j].GetpFDeg()+set[j].ecart >= op))
1368 return j+1;
1369 }
1370 }
1371 j=length;
1372 loop
1373 {
1374 if (j<0) break;
1375 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat)) break;
1376 j--;
1377 }
1378 return strat->posInLOld(set,j,p,strat);
1379}
1380
1381
1382/*2
1383* computes the s-polynomials L[ ].p in L
1384*/
1386{
1387 LObject p;
1388 int dL;
1389 int j=strat->Ll;
1390 loop
1391 {
1392 if (j<0) break;
1393 if (hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat))
1394 {
1395 p=strat->L[strat->Ll];
1396 strat->L[strat->Ll]=strat->L[j];
1397 strat->L[j]=p;
1398 break;
1399 }
1400 j--;
1401 }
1402 if (j<0)
1403 {
1404 j=strat->Ll;
1405 loop
1406 {
1407 if (j<0) break;
1408 if (pNext(strat->L[j].p) == strat->tail)
1409 {
1411 pLmDelete(strat->L[j].p); /*deletes the short spoly and computes*/
1412 else
1413 pLmFree(strat->L[j].p); /*deletes the short spoly and computes*/
1414 strat->L[j].p = NULL;
1415 poly m1 = NULL, m2 = NULL;
1416 // check that spoly creation is ok
1417 while (strat->tailRing != currRing &&
1418 !kCheckSpolyCreation(&(strat->L[j]), strat, m1, m2))
1419 {
1420 assume(m1 == NULL && m2 == NULL);
1421 // if not, change to a ring where exponents are at least
1422 // large enough
1423 kStratChangeTailRing(strat);
1424 }
1425 /* create the real one */
1426 ksCreateSpoly(&(strat->L[j]), strat->kNoetherTail(), FALSE,
1427 strat->tailRing, m1, m2, strat->R);
1428
1429 strat->L[j].SetLmCurrRing();
1430 if (!strat->honey)
1431 strat->initEcart(&strat->L[j]);
1432 else
1433 strat->L[j].SetLength(strat->length_pLength);
1434
1435 BOOLEAN pp = hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat);
1436
1437 if (strat->use_buckets) strat->L[j].PrepareRed(TRUE);
1438
1439 if (pp)
1440 {
1441 p=strat->L[strat->Ll];
1442 strat->L[strat->Ll]=strat->L[j];
1443 strat->L[j]=p;
1444 break;
1445 }
1446 }
1447 j--;
1448 }
1449 }
1450}
1451
1452/*2
1453* computes the s-polynomials L[ ].p in L and
1454* cuts elements in L above noether
1455*/
1457{
1458
1459 int i = 0;
1460 kTest_TS(strat);
1461 while (i <= strat->Ll)
1462 {
1463 if (pNext(strat->L[i].p) == strat->tail)
1464 {
1465 /*- deletes the int spoly and computes -*/
1466 if (pLmCmp(strat->L[i].p,strat->kNoether) == -1)
1467 {
1469 pLmDelete(strat->L[i].p);
1470 else
1471 pLmFree(strat->L[i].p);
1472 strat->L[i].p = NULL;
1473 }
1474 else
1475 {
1477 pLmDelete(strat->L[i].p);
1478 else
1479 pLmFree(strat->L[i].p);
1480 strat->L[i].p = NULL;
1481 poly m1 = NULL, m2 = NULL;
1482 // check that spoly creation is ok
1483 while (strat->tailRing != currRing &&
1484 !kCheckSpolyCreation(&(strat->L[i]), strat, m1, m2))
1485 {
1486 assume(m1 == NULL && m2 == NULL);
1487 // if not, change to a ring where exponents are at least
1488 // large enough
1489 kStratChangeTailRing(strat);
1490 }
1491 /* create the real one */
1492 ksCreateSpoly(&(strat->L[i]), strat->kNoetherTail(), FALSE,
1493 strat->tailRing, m1, m2, strat->R);
1494 if (! strat->L[i].IsNull())
1495 {
1496 strat->L[i].SetLmCurrRing();
1497 strat->L[i].SetpFDeg();
1498 strat->L[i].ecart
1499 = strat->L[i].pLDeg(strat->LDegLast) - strat->L[i].GetpFDeg();
1500 if (strat->use_buckets) strat->L[i].PrepareRed(TRUE);
1501 }
1502 }
1503 }
1504 deleteHC(&(strat->L[i]), strat);
1505 if (strat->L[i].IsNull())
1506 deleteInL(strat->L,&strat->Ll,i,strat);
1507 else
1508 {
1509#ifdef KDEBUG
1510 kTest_L(&(strat->L[i]), strat, TRUE, i, strat->T, strat->tl);
1511#endif
1512 i++;
1513 }
1514 }
1515 kTest_TS(strat);
1516}
1517
1518/*2
1519* cuts in T above strat->kNoether and tries to cancel a unit
1520* changes also S as S is a subset of T
1521*/
1523{
1524 int i = 0;
1525 LObject p;
1526
1527 while (i <= strat->tl)
1528 {
1529 p = strat->T[i];
1530 deleteHC(&p,strat, TRUE);
1531 /*- tries to cancel a unit: -*/
1532 cancelunit(&p);
1533 if (TEST_OPT_INTSTRATEGY) /* deleteHC and/or cancelunit may have changed p*/
1534 p.pCleardenom();
1535 if (p.p != strat->T[i].p)
1536 {
1537 strat->sevT[i] = pGetShortExpVector(p.p);
1538 p.SetpFDeg();
1539 }
1540 strat->T[i] = p;
1541 i++;
1542 }
1543}
1544
1545/*2
1546* arranges red, pos and T if strat->kAllAxis (first time)
1547*/
1549{
1550 if (strat->update)
1551 {
1552 kTest_TS(strat);
1553 strat->update = (strat->tl == -1);
1554 if (TEST_OPT_WEIGHTM)
1555 {
1557 if (strat->tailRing != currRing)
1558 {
1559 strat->tailRing->pFDeg = strat->pOrigFDeg_TailRing;
1560 strat->tailRing->pLDeg = strat->pOrigLDeg_TailRing;
1561 }
1562 int i;
1563 for (i=strat->Ll; i>=0; i--)
1564 {
1565 strat->L[i].SetpFDeg();
1566 }
1567 for (i=strat->tl; i>=0; i--)
1568 {
1569 strat->T[i].SetpFDeg();
1570 }
1571 if (ecartWeights)
1572 {
1573 omFreeSize((ADDRESS)ecartWeights,(rVar(currRing)+1)*sizeof(short));
1575 }
1576 }
1577 if (TEST_OPT_FASTHC)
1578 {
1579 strat->posInL = strat->posInLOld;
1580 strat->lastAxis = 0;
1581 }
1582 if (TEST_OPT_FINDET)
1583 return;
1584
1586 {
1587 strat->red = redFirst;
1588 strat->use_buckets = kMoraUseBucket(strat);
1589 }
1590 updateT(strat);
1591
1593 {
1594 strat->posInT = posInT2;
1595 reorderT(strat);
1596 }
1597 }
1598 kTest_TS(strat);
1599}
1600
1601/*2
1602*-puts p to the standardbasis s at position at
1603*-reduces the tail of p if TEST_OPT_REDTAIL
1604*-tries to cancel a unit
1605*-HEckeTest
1606* if TRUE
1607* - decides about reduction-strategies
1608* - computes noether
1609* - stops computation if TEST_OPT_FINDET
1610* - cuts the tails of the polynomials
1611* in s,t and the elements in L above noether
1612* and cancels units if possible
1613* - reorders s,L
1614*/
1615void enterSMora (LObject &p,int atS,kStrategy strat, int atR = -1)
1616{
1617 enterSBba(p, atS, strat, atR);
1618 #ifdef KDEBUG
1619 if (TEST_OPT_DEBUG)
1620 {
1621 Print("new s%d:",atS);
1622 p_wrp(p.p,currRing,strat->tailRing);
1623 PrintLn();
1624 }
1625 #endif
1626 HEckeTest(p.p,strat);
1627 if (strat->kAllAxis)
1628 {
1629 if (newHEdge(strat))
1630 {
1631 firstUpdate(strat);
1632 if (TEST_OPT_FINDET)
1633 return;
1634
1635 /*- cuts elements in L above noether and reorders L -*/
1636 updateLHC(strat);
1637 /*- reorders L with respect to posInL -*/
1638 reorderL(strat);
1639 }
1640 }
1641 else if ((strat->kNoether==NULL)
1642 && (TEST_OPT_FASTHC))
1643 {
1644 if (strat->posInLOldFlag)
1645 {
1646 missingAxis(&strat->lastAxis,strat);
1647 if (strat->lastAxis)
1648 {
1649 strat->posInLOld = strat->posInL;
1650 strat->posInLOldFlag = FALSE;
1651 strat->posInL = posInL10;
1652 strat->posInLDependsOnLength = TRUE;
1653 updateL(strat);
1654 reorderL(strat);
1655 }
1656 }
1657 else if (strat->lastAxis)
1658 updateL(strat);
1659 }
1660}
1661
1662/*2
1663*-puts p to the standardbasis s at position at
1664*-HEckeTest
1665* if TRUE
1666* - computes noether
1667*/
1668void enterSMoraNF (LObject &p, int atS,kStrategy strat, int atR = -1)
1669{
1670 enterSBba(p, atS, strat, atR);
1671 if ((!strat->kAllAxis) || (strat->kNoether!=NULL)) HEckeTest(p.p,strat);
1672 if (strat->kAllAxis)
1673 newHEdge(strat);
1674}
1675
1677{
1678 /* setting global variables ------------------- */
1679 strat->enterS = enterSBba;
1680 strat->red = redHoney;
1681 if (strat->honey)
1682 strat->red = redHoney;
1683 else if (currRing->pLexOrder && !strat->homog)
1684 strat->red = redLazy;
1685 else
1686 {
1687 strat->LazyPass *=4;
1688 strat->red = redHomog;
1689 }
1691 {
1692 if (rField_is_Z(currRing))
1693 strat->red = redRing_Z;
1694 else
1695 strat->red = redRing;
1696 }
1697 if (TEST_OPT_IDLIFT)
1698 strat->red=redLiftstd;
1699 if (currRing->pLexOrder && strat->honey)
1700 strat->initEcart = initEcartNormal;
1701 else
1702 strat->initEcart = initEcartBBA;
1703 if (strat->honey)
1705 else
1707// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1708// {
1709// //interred machen Aenderung
1710// strat->pOrigFDeg=pFDeg;
1711// strat->pOrigLDeg=pLDeg;
1712// //h=ggetid("ecart");
1713// //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1714// //{
1715// // ecartWeights=iv2array(IDINTVEC(h));
1716// //}
1717// //else
1718// {
1719// ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1720// /*uses automatic computation of the ecartWeights to set them*/
1721// kEcartWeights(F->m,IDELEMS(F)-1,ecartWeights);
1722// }
1723// pRestoreDegProcs(currRing,totaldegreeWecart, maxdegreeWecart);
1724// if (TEST_OPT_PROT)
1725// {
1726// for(i=1; i<=(currRing->N); i++)
1727// Print(" %d",ecartWeights[i]);
1728// PrintLn();
1729// mflush();
1730// }
1731// }
1732}
1733
1734void initSba(ideal F,kStrategy strat)
1735{
1736 int i;
1737 //idhdl h;
1738 /* setting global variables ------------------- */
1739 strat->enterS = enterSSba;
1740 strat->red2 = redHoney;
1741 if (strat->honey)
1742 strat->red2 = redHoney;
1743 else if (currRing->pLexOrder && !strat->homog)
1744 strat->red2 = redLazy;
1745 else
1746 {
1747 strat->LazyPass *=4;
1748 strat->red2 = redHomog;
1749 }
1751 {
1753 {strat->red2 = redRiloc;}
1754 else
1755 {strat->red2 = redRing;}
1756 }
1757 if (currRing->pLexOrder && strat->honey)
1758 strat->initEcart = initEcartNormal;
1759 else
1760 strat->initEcart = initEcartBBA;
1761 if (strat->honey)
1763 else
1765 //strat->kIdeal = NULL;
1766 //if (strat->ak==0) strat->kIdeal->rtyp=IDEAL_CMD;
1767 //else strat->kIdeal->rtyp=MODUL_CMD;
1768 //strat->kIdeal->data=(void *)strat->Shdl;
1769 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1770 {
1771 //interred machen Aenderung
1772 strat->pOrigFDeg = currRing->pFDeg;
1773 strat->pOrigLDeg = currRing->pLDeg;
1774 //h=ggetid("ecart");
1775 //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1776 //{
1777 // ecartWeights=iv2array(IDINTVEC(h));
1778 //}
1779 //else
1780 {
1781 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1782 /*uses automatic computation of the ecartWeights to set them*/
1784 }
1786 if (TEST_OPT_PROT)
1787 {
1788 for(i=1; i<=(currRing->N); i++)
1789 Print(" %d",ecartWeights[i]);
1790 PrintLn();
1791 mflush();
1792 }
1793 }
1794 // for sig-safe reductions in signature-based
1795 // standard basis computations
1797 strat->red = redSigRing;
1798 else
1799 strat->red = redSig;
1800 //strat->sbaOrder = 1;
1801 strat->currIdx = 1;
1802}
1803
1804void initMora(ideal F,kStrategy strat)
1805{
1806 int i,j;
1807
1808 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
1809 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
1810 strat->enterS = enterSMora;
1811 strat->initEcartPair = initEcartPairMora; /*- ecart approximation -*/
1812 strat->posInLOld = strat->posInL;
1813 strat->posInLOldFlag = TRUE;
1814 strat->initEcart = initEcartNormal;
1815 strat->kAllAxis = (currRing->ppNoether) != NULL; //!!
1816 if ( currRing->ppNoether != NULL )
1817 {
1818 strat->kNoether = pCopy((currRing->ppNoether));
1819 strat->red = redFirst; /*take the first possible in T*/
1820 if (TEST_OPT_PROT)
1821 {
1822 Print("H(%ld)",p_FDeg(currRing->ppNoether,currRing)+1);
1823 mflush();
1824 }
1825 }
1826 else if (strat->homog)
1827 strat->red = redFirst; /*take the first possible in T*/
1828 else
1829 strat->red = redEcart;/*take the first possible in under ecart-restriction*/
1830 if (currRing->ppNoether != NULL)
1831 {
1832 HCord = currRing->pFDeg((currRing->ppNoether),currRing)+1;
1833 }
1834 else
1835 {
1836 HCord = 32000;/*- very large -*/
1837 }
1838
1839 if (rField_is_Ring(currRing)) {
1840 if (rField_is_Z(currRing))
1841 strat->red = redRiloc_Z;
1842 else
1843 strat->red = redRiloc;
1844 }
1845
1846 /*reads the ecartWeights used for Graebes method from the
1847 *intvec ecart and set ecartWeights
1848 */
1849 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1850 {
1851 //interred machen Aenderung
1852 strat->pOrigFDeg=currRing->pFDeg;
1853 strat->pOrigLDeg=currRing->pLDeg;
1854 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1855 /*uses automatic computation of the ecartWeights to set them*/
1857
1859 if (TEST_OPT_PROT)
1860 {
1861 for(i=1; i<=(currRing->N); i++)
1862 Print(" %d",ecartWeights[i]);
1863 PrintLn();
1864 mflush();
1865 }
1866 }
1867 kOptimizeLDeg(currRing->pLDeg, strat);
1868}
1869
1870void kDebugPrint(kStrategy strat);
1871
1872ideal mora (ideal F, ideal Q,intvec *w,intvec *hilb,kStrategy strat)
1873{
1874 int olddeg = 0;
1875 int reduc = 0;
1876 int red_result = 1;
1877 int hilbeledeg=1,hilbcount=0;
1878 BITSET save1;
1879 SI_SAVE_OPT1(save1);
1881 {
1882 si_opt_1 &= ~Sy_bit(OPT_REDSB);
1883 si_opt_1 &= ~Sy_bit(OPT_REDTAIL);
1884 }
1885
1886 strat->update = TRUE;
1887 /*- setting global variables ------------------- -*/
1888 initBuchMoraCrit(strat);
1889 initHilbCrit(F,Q,&hilb,strat);
1890 initMora(F,strat);
1892 initBuchMoraPosRing(strat);
1893 else
1894 initBuchMoraPos(strat);
1895 /*Shdl=*/initBuchMora(F,Q,strat);
1896 if (TEST_OPT_FASTHC) missingAxis(&strat->lastAxis,strat);
1897 /*updateS in initBuchMora has Hecketest
1898 * and could have put strat->kHEdgdeFound FALSE*/
1899 if (TEST_OPT_FASTHC && (strat->lastAxis) && strat->posInLOldFlag)
1900 {
1901 strat->posInLOld = strat->posInL;
1902 strat->posInLOldFlag = FALSE;
1903 strat->posInL = posInL10;
1904 updateL(strat);
1905 reorderL(strat);
1906 }
1907 kTest_TS(strat);
1908 strat->use_buckets = kMoraUseBucket(strat);
1909
1910#ifdef HAVE_TAIL_RING
1911 if (strat->homog && strat->red == redFirst)
1912 if(!idIs0(F) &&(!rField_is_Ring(currRing)))
1914#endif
1915
1916 if (BVERBOSE(23))
1917 {
1918 kDebugPrint(strat);
1919 }
1920//deleteInL(strat->L,&strat->Ll,1,strat);
1921//deleteInL(strat->L,&strat->Ll,0,strat);
1922
1923 /*- compute-------------------------------------------*/
1924 while (strat->Ll >= 0)
1925 {
1926 #ifdef KDEBUG
1927 if (TEST_OPT_DEBUG) messageSets(strat);
1928 #endif
1929 if (siCntrlc)
1930 {
1931 while (strat->Ll >= 0)
1932 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1933 strat->noClearS=TRUE;
1934 }
1936 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg))
1937 {
1938 /*
1939 * stops computation if
1940 * - 24 (degBound)
1941 * && upper degree is bigger than Kstd1_deg
1942 */
1943 while ((strat->Ll >= 0)
1944 && (strat->L[strat->Ll].p1!=NULL) && (strat->L[strat->Ll].p2!=NULL)
1945 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg)
1946 )
1947 {
1948 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1949 //if (TEST_OPT_PROT)
1950 //{
1951 // PrintS("D"); mflush();
1952 //}
1953 }
1954 if (strat->Ll<0) break;
1955 else strat->noClearS=TRUE;
1956 }
1957 strat->P = strat->L[strat->Ll];/*- picks the last element from the lazyset L -*/
1958 if (strat->Ll==0) strat->interpt=TRUE;
1959 strat->Ll--;
1960 // create the real Spoly
1961 if (pNext(strat->P.p) == strat->tail)
1962 {
1963 /*- deletes the short spoly and computes -*/
1965 pLmDelete(strat->P.p);
1966 else
1967 pLmFree(strat->P.p);
1968 strat->P.p = NULL;
1969 poly m1 = NULL, m2 = NULL;
1970 // check that spoly creation is ok
1971 while (strat->tailRing != currRing &&
1972 !kCheckSpolyCreation(&(strat->P), strat, m1, m2))
1973 {
1974 assume(m1 == NULL && m2 == NULL);
1975 // if not, change to a ring where exponents are large enough
1976 kStratChangeTailRing(strat);
1977 }
1978 /* create the real one */
1979 ksCreateSpoly(&(strat->P), strat->kNoetherTail(), strat->use_buckets,
1980 strat->tailRing, m1, m2, strat->R);
1981 if (!strat->use_buckets)
1982 strat->P.SetLength(strat->length_pLength);
1983 }
1984 else if (strat->P.p1 == NULL)
1985 {
1986 // for input polys, prepare reduction (buckets !)
1987 strat->P.SetLength(strat->length_pLength);
1988 strat->P.PrepareRed(strat->use_buckets);
1989 }
1990
1991 // the s-poly
1992 if (!strat->P.IsNull())
1993 {
1994 // might be NULL from noether !!!
1995 if (TEST_OPT_PROT)
1996 message(strat->P.ecart+strat->P.GetpFDeg(),&olddeg,&reduc,strat, red_result);
1997 // reduce
1998 red_result = strat->red(&strat->P,strat);
1999 }
2000
2001 // the reduced s-poly
2002 if (! strat->P.IsNull())
2003 {
2004 strat->P.GetP();
2005 // statistics
2006 if (TEST_OPT_PROT) PrintS("s");
2007 // normalization
2009 strat->P.pCleardenom();
2010 else
2011 strat->P.pNorm();
2012 // tailreduction
2013 strat->P.p = redtail(&(strat->P),strat->sl,strat);
2014 if (strat->P.p==NULL)
2015 {
2016 WerrorS("exponent overflow - wrong ordering");
2017 return(idInit(1,1));
2018 }
2019 // set ecart -- might have changed because of tail reductions
2020 if ((!strat->noTailReduction) && (!strat->honey))
2021 strat->initEcart(&strat->P);
2022 // cancel unit
2023 cancelunit(&strat->P);
2024 // for char 0, clear denominators
2025 if ((strat->P.p->next==NULL) /* i.e. cancelunit did something*/
2027 strat->P.pCleardenom();
2028
2029 strat->P.SetShortExpVector();
2030 enterT(strat->P,strat);
2031 // build new pairs
2033 superenterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2034 else
2035 enterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2036 // put in S
2037 strat->enterS(strat->P,
2038 posInS(strat,strat->sl,strat->P.p, strat->P.ecart),
2039 strat, strat->tl);
2040 // apply hilbert criterion
2041 if (hilb!=NULL)
2042 {
2043 if (strat->homog==isHomog)
2044 khCheck(Q,w,hilb,hilbeledeg,hilbcount,strat);
2045 else
2046 khCheckLocInhom(Q,w,hilb,hilbcount,strat);
2047 }
2048
2049 // clear strat->P
2050 kDeleteLcm(&strat->P);
2051
2052#ifdef KDEBUG
2053 // make sure kTest_TS does not complain about strat->P
2054 strat->P.Clear();
2055#endif
2056 }
2057 if (strat->kAllAxis)
2058 {
2059 if ((TEST_OPT_FINDET)
2060 || ((TEST_OPT_MULTBOUND) && (scMult0Int(strat->Shdl,NULL,strat->tailRing) < Kstd1_mu)))
2061 {
2062 // obachman: is this still used ???
2063 /*
2064 * stops computation if strat->kAllAxis and
2065 * - 27 (finiteDeterminacyTest)
2066 * or
2067 * - 23
2068 * (multBound)
2069 * && multiplicity of the ideal is smaller then a predefined number mu
2070 */
2071 while (strat->Ll >= 0) deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
2072 }
2073 }
2074 kTest_TS(strat);
2075 }
2076 /*- complete reduction of the standard basis------------------------ -*/
2077 if (TEST_OPT_REDSB) completeReduce(strat);
2078 else if (TEST_OPT_PROT) PrintLn();
2079 /*- release temp data------------------------------- -*/
2080 exitBuchMora(strat);
2081 /*- polynomials used for HECKE: HC, noether -*/
2082 if (TEST_OPT_FINDET)
2083 {
2084 if (strat->kNoether!=NULL)
2085 Kstd1_mu=currRing->pFDeg(strat->kNoether,currRing);
2086 else
2087 Kstd1_mu=-1;
2088 }
2089 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2090 if (strat->kNoether!=NULL) pLmDelete(&strat->kNoether);
2091 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2092 if ((TEST_OPT_PROT)||(TEST_OPT_DEBUG)) messageStat(hilbcount,strat);
2093// if (TEST_OPT_WEIGHTM)
2094// {
2095// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2096// if (ecartWeights)
2097// {
2098// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
2099// ecartWeights=NULL;
2100// }
2101// }
2102 if(nCoeff_is_Z(currRing->cf))
2103 finalReduceByMon(strat);
2104 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
2105 SI_RESTORE_OPT1(save1);
2106 idTest(strat->Shdl);
2107 return (strat->Shdl);
2108}
2109
2110poly kNF1 (ideal F,ideal Q,poly q, kStrategy strat, int lazyReduce)
2111{
2112 assume(q!=NULL);
2113 assume(!(idIs0(F)&&(Q==NULL)));
2114
2115// lazy_reduce flags: can be combined by |
2116//#define KSTD_NF_LAZY 1
2117 // do only a reduction of the leading term
2118//#define KSTD_NF_ECART 2
2119 // only local: recude even with bad ecart
2120 poly p;
2121 int i;
2122 int j;
2123 int o;
2124 LObject h;
2125 BITSET save1;
2126 SI_SAVE_OPT1(save1);
2127
2128 //if ((idIs0(F))&&(Q==NULL))
2129 // return pCopy(q); /*F=0*/
2130 //strat->ak = si_max(idRankFreeModule(F),pMaxComp(q));
2131 /*- creating temp data structures------------------- -*/
2132 //strat->kAllAxis = (currRing->ppNoether) != NULL;
2133 strat->kNoether = pCopy((currRing->ppNoether));
2136 si_opt_1&=~Sy_bit(OPT_INTSTRATEGY);
2138 && (! TEST_V_DEG_STOP)
2139 && (0<Kstd1_deg)
2140 && ((strat->kNoether==NULL)
2142 {
2143 pLmDelete(&strat->kNoether);
2144 strat->kNoether=pOne();
2145 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2146 pSetm(strat->kNoether);
2147 // strat->kAllAxis=TRUE;
2148 }
2149 initBuchMoraCrit(strat);
2151 initBuchMoraPosRing(strat);
2152 else
2153 initBuchMoraPos(strat);
2154 initMora(F,strat);
2155 strat->enterS = enterSMoraNF;
2156 /*- set T -*/
2157 strat->tl = -1;
2158 strat->tmax = setmaxT;
2159 strat->T = initT();
2160 strat->R = initR();
2161 strat->sevT = initsevT();
2162 /*- set S -*/
2163 strat->sl = -1;
2164 /*- init local data struct.-------------------------- -*/
2165 /*Shdl=*/initS(F,Q,strat);
2166 if ((strat->ak!=0)
2167 && (strat->kAllAxis))
2168 {
2169 if (strat->ak!=1)
2170 {
2171 pSetComp(strat->kNoether,1);
2172 pSetmComp(strat->kNoether);
2173 poly p=pHead(strat->kNoether);
2174 pSetComp(p,strat->ak);
2175 pSetmComp(p);
2176 p=pAdd(strat->kNoether,p);
2177 strat->kNoether=pNext(p);
2179 }
2180 }
2181 if (((lazyReduce & KSTD_NF_LAZY)==0)
2182 && (!rField_is_Ring(currRing)))
2183 {
2184 for (i=strat->sl; i>=0; i--)
2185 pNorm(strat->S[i]);
2186 }
2187 /*- puts the elements of S also to T -*/
2188 for (i=0; i<=strat->sl; i++)
2189 {
2190 h.p = strat->S[i];
2191 h.ecart = strat->ecartS[i];
2192 if (strat->sevS[i] == 0) strat->sevS[i] = pGetShortExpVector(h.p);
2193 else assume(strat->sevS[i] == pGetShortExpVector(h.p));
2194 h.length = pLength(h.p);
2195 h.sev = strat->sevS[i];
2196 h.SetpFDeg();
2197 enterT(h,strat);
2198 }
2199#ifdef KDEBUG
2200// kDebugPrint(strat);
2201#endif
2202 /*- compute------------------------------------------- -*/
2203 p = pCopy(q);
2204 deleteHC(&p,&o,&j,strat);
2205 kTest(strat);
2206 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2207 if (BVERBOSE(23)) kDebugPrint(strat);
2209 {
2210 if (p!=NULL) p = redMoraNFRing(p,strat, lazyReduce & KSTD_NF_ECART);
2211 }
2212 else
2213 {
2214 if (p!=NULL) p = redMoraNF(p,strat, lazyReduce & KSTD_NF_ECART);
2215 }
2216 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2217 {
2218 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2219 p = redtail(p,strat->sl,strat);
2220 }
2221 /*- release temp data------------------------------- -*/
2222 cleanT(strat);
2223 assume(strat->L==NULL); /*strat->L unsed */
2224 assume(strat->B==NULL); /*strat->B unused */
2225 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2226 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2227 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2228 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2229 omFree(strat->sevT);
2230 omFree(strat->S_2_R);
2231 omFree(strat->R);
2232
2233 if ((Q!=NULL)&&(strat->fromQ!=NULL))
2234 {
2235 i=((IDELEMS(Q)+IDELEMS(F)+15)/16)*16;
2236 omFreeSize((ADDRESS)strat->fromQ,i*sizeof(int));
2237 strat->fromQ=NULL;
2238 }
2239 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2240// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2241// {
2242// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2243// if (ecartWeights)
2244// {
2245// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2246// ecartWeights=NULL;
2247// }
2248// }
2249 idDelete(&strat->Shdl);
2250 SI_RESTORE_OPT1(save1);
2251 if (TEST_OPT_PROT) PrintLn();
2252 return p;
2253}
2254
2255ideal kNF1 (ideal F,ideal Q,ideal q, kStrategy strat, int lazyReduce)
2256{
2257 assume(!idIs0(q));
2258 assume(!(idIs0(F)&&(Q==NULL)));
2259
2260// lazy_reduce flags: can be combined by |
2261//#define KSTD_NF_LAZY 1
2262 // do only a reduction of the leading term
2263//#define KSTD_NF_ECART 2
2264 // only local: recude even with bad ecart
2265 poly p;
2266 int i;
2267 int j;
2268 int o;
2269 LObject h;
2270 ideal res;
2271 BITSET save1;
2272 SI_SAVE_OPT1(save1);
2273
2274 //if (idIs0(q)) return idInit(IDELEMS(q),si_max(q->rank,F->rank));
2275 //if ((idIs0(F))&&(Q==NULL))
2276 // return idCopy(q); /*F=0*/
2277 //strat->ak = si_max(idRankFreeModule(F),idRankFreeModule(q));
2278 /*- creating temp data structures------------------- -*/
2279 //strat->kAllAxis = (currRing->ppNoether) != NULL;
2280 strat->kNoether=pCopy((currRing->ppNoether));
2283 && (0<Kstd1_deg)
2284 && ((strat->kNoether==NULL)
2286 {
2287 pLmDelete(&strat->kNoether);
2288 strat->kNoether=pOne();
2289 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2290 pSetm(strat->kNoether);
2291 //strat->kAllAxis=TRUE;
2292 }
2293 initBuchMoraCrit(strat);
2295 initBuchMoraPosRing(strat);
2296 else
2297 initBuchMoraPos(strat);
2298 initMora(F,strat);
2299 strat->enterS = enterSMoraNF;
2300 /*- set T -*/
2301 strat->tl = -1;
2302 strat->tmax = setmaxT;
2303 strat->T = initT();
2304 strat->R = initR();
2305 strat->sevT = initsevT();
2306 /*- set S -*/
2307 strat->sl = -1;
2308 /*- init local data struct.-------------------------- -*/
2309 /*Shdl=*/initS(F,Q,strat);
2310 if ((strat->ak!=0)
2311 && (strat->kNoether!=NULL))
2312 {
2313 if (strat->ak!=1)
2314 {
2315 pSetComp(strat->kNoether,1);
2316 pSetmComp(strat->kNoether);
2317 poly p=pHead(strat->kNoether);
2318 pSetComp(p,strat->ak);
2319 pSetmComp(p);
2320 p=pAdd(strat->kNoether,p);
2321 strat->kNoether=pNext(p);
2323 }
2324 }
2325 if (((lazyReduce & KSTD_NF_LAZY)==0)
2326 && (!rField_is_Ring(currRing)))
2327 {
2328 for (i=strat->sl; i>=0; i--)
2329 pNorm(strat->S[i]);
2330 }
2331 /*- compute------------------------------------------- -*/
2332 res=idInit(IDELEMS(q),strat->ak);
2333 for (i=0; i<IDELEMS(q); i++)
2334 {
2335 if (q->m[i]!=NULL)
2336 {
2337 p = pCopy(q->m[i]);
2338 deleteHC(&p,&o,&j,strat);
2339 if (p!=NULL)
2340 {
2341 /*- puts the elements of S also to T -*/
2342 for (j=0; j<=strat->sl; j++)
2343 {
2344 h.p = strat->S[j];
2345 h.ecart = strat->ecartS[j];
2346 h.pLength = h.length = pLength(h.p);
2347 if (strat->sevS[j] == 0) strat->sevS[j] = pGetShortExpVector(h.p);
2348 else assume(strat->sevS[j] == pGetShortExpVector(h.p));
2349 h.sev = strat->sevS[j];
2350 h.SetpFDeg();
2352 enterT_strong(h,strat);
2353 else
2354 enterT(h,strat);
2355 }
2356 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2358 {
2359 p = redMoraNFRing(p,strat, lazyReduce & KSTD_NF_ECART);
2360 }
2361 else
2362 p = redMoraNF(p,strat, lazyReduce & KSTD_NF_ECART);
2363 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2364 {
2365 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2366 p = redtail(p,strat->sl,strat);
2367 }
2368 cleanT(strat);
2369 }
2370 res->m[i]=p;
2371 }
2372 //else
2373 // res->m[i]=NULL;
2374 }
2375 /*- release temp data------------------------------- -*/
2376 assume(strat->L==NULL); /*strat->L unsed */
2377 assume(strat->B==NULL); /*strat->B unused */
2378 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2379 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2380 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2381 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2382 omFree(strat->sevT);
2383 omFree(strat->S_2_R);
2384 omFree(strat->R);
2385 if ((Q!=NULL)&&(strat->fromQ!=NULL))
2386 {
2388 omFreeSize((ADDRESS)strat->fromQ,i*sizeof(int));
2389 strat->fromQ=NULL;
2390 }
2391 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2392// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2393// {
2394// pFDeg=strat->pOrigFDeg;
2395// pLDeg=strat->pOrigLDeg;
2396// if (ecartWeights)
2397// {
2398// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2399// ecartWeights=NULL;
2400// }
2401// }
2402 idDelete(&strat->Shdl);
2403 SI_RESTORE_OPT1(save1);
2404 if (TEST_OPT_PROT) PrintLn();
2405 return res;
2406}
2407
2409
2410long kModDeg(poly p, ring r)
2411{
2412 long o=p_WDegree(p, r);
2413 long i=__p_GetComp(p, r);
2414 if (i==0) return o;
2415 //assume((i>0) && (i<=kModW->length()));
2416 if (i<=kModW->length())
2417 return o+(*kModW)[i-1];
2418 return o;
2419}
2420long kHomModDeg(poly p, ring r)
2421{
2422 int i;
2423 long j=0;
2424
2425 for (i=r->N;i>0;i--)
2426 j+=p_GetExp(p,i,r)*(*kHomW)[i-1];
2427 if (kModW == NULL) return j;
2428 i = __p_GetComp(p,r);
2429 if (i==0) return j;
2430 return j+(*kModW)[i-1];
2431}
2432
2433ideal kStd(ideal F, ideal Q, tHomog h,intvec ** w, intvec *hilb,int syzComp,
2434 int newIdeal, intvec *vw, s_poly_proc_t sp)
2435{
2436 if(idIs0(F))
2437 return idInit(1,F->rank);
2438
2439#ifdef HAVE_SHIFTBBA
2440 if(rIsLPRing(currRing)) return kStdShift(F, Q, h, w, hilb, syzComp, newIdeal, vw, FALSE);
2441#endif
2442
2443 ideal r;
2444 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2445 BOOLEAN delete_w=(w==NULL);
2446 kStrategy strat=new skStrategy;
2447
2448 strat->s_poly=sp;
2450 strat->syzComp = syzComp;
2451 if (TEST_OPT_SB_1
2453 )
2454 strat->newIdeal = newIdeal;
2456 strat->LazyPass=20;
2457 else
2458 strat->LazyPass=2;
2459 strat->LazyDegree = 1;
2460 strat->ak = id_RankFreeModule(F,currRing);
2461 strat->kModW=kModW=NULL;
2462 strat->kHomW=kHomW=NULL;
2463 if (vw != NULL)
2464 {
2465 currRing->pLexOrder=FALSE;
2466 strat->kHomW=kHomW=vw;
2467 strat->pOrigFDeg = currRing->pFDeg;
2468 strat->pOrigLDeg = currRing->pLDeg;
2470 toReset = TRUE;
2471 }
2472 if (h==testHomog)
2473 {
2474 if (strat->ak == 0)
2475 {
2476 h = (tHomog)idHomIdeal(F,Q);
2477 w=NULL;
2478 }
2479 else if (!TEST_OPT_DEGBOUND)
2480 {
2481 if (w!=NULL)
2482 h = (tHomog)idHomModule(F,Q,w);
2483 else
2484 h = (tHomog)idHomIdeal(F,Q);
2485 }
2486 }
2487 currRing->pLexOrder=b;
2488 if (h==isHomog)
2489 {
2490 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2491 {
2492 strat->kModW = kModW = *w;
2493 if (vw == NULL)
2494 {
2495 strat->pOrigFDeg = currRing->pFDeg;
2496 strat->pOrigLDeg = currRing->pLDeg;
2498 toReset = TRUE;
2499 }
2500 }
2501 currRing->pLexOrder = TRUE;
2502 if (hilb==NULL) strat->LazyPass*=2;
2503 }
2504 strat->homog=h;
2505#ifdef KDEBUG
2506 idTest(F);
2507 if (Q!=NULL) idTest(Q);
2508#endif
2509#ifdef HAVE_PLURAL
2511 {
2512 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2513 strat->no_prod_crit = ! bIsSCA;
2514 if (w!=NULL)
2515 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2516 else
2517 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2518 }
2519 else
2520#endif
2521 {
2522 #if PRE_INTEGER_CHECK
2523 //the preinteger check strategy is not for modules
2524 if(nCoeff_is_Z(currRing->cf) && strat->ak <= 0)
2525 {
2526 ideal FCopy = idCopy(F);
2527 poly pFmon = preIntegerCheck(FCopy, Q);
2528 if(pFmon != NULL)
2529 {
2530 idInsertPoly(FCopy, pFmon);
2531 strat->kModW=kModW=NULL;
2532 if (h==testHomog)
2533 {
2534 if (strat->ak == 0)
2535 {
2536 h = (tHomog)idHomIdeal(FCopy,Q);
2537 w=NULL;
2538 }
2539 else if (!TEST_OPT_DEGBOUND)
2540 {
2541 if (w!=NULL)
2542 h = (tHomog)idHomModule(FCopy,Q,w);
2543 else
2544 h = (tHomog)idHomIdeal(FCopy,Q);
2545 }
2546 }
2547 currRing->pLexOrder=b;
2548 if (h==isHomog)
2549 {
2550 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2551 {
2552 strat->kModW = kModW = *w;
2553 if (vw == NULL)
2554 {
2555 strat->pOrigFDeg = currRing->pFDeg;
2556 strat->pOrigLDeg = currRing->pLDeg;
2558 toReset = TRUE;
2559 }
2560 }
2561 currRing->pLexOrder = TRUE;
2562 if (hilb==NULL) strat->LazyPass*=2;
2563 }
2564 strat->homog=h;
2565 }
2566 omTestMemory(1);
2567 if(w == NULL)
2568 {
2570 r=mora(FCopy,Q,NULL,hilb,strat);
2571 else
2572 r=bba(FCopy,Q,NULL,hilb,strat);
2573 }
2574 else
2575 {
2577 r=mora(FCopy,Q,*w,hilb,strat);
2578 else
2579 r=bba(FCopy,Q,*w,hilb,strat);
2580 }
2581 idDelete(&FCopy);
2582 }
2583 else
2584 #endif
2585 {
2586 if(w==NULL)
2587 {
2589 r=mora(F,Q,NULL,hilb,strat);
2590 else
2591 r=bba(F,Q,NULL,hilb,strat);
2592 }
2593 else
2594 {
2596 r=mora(F,Q,*w,hilb,strat);
2597 else
2598 r=bba(F,Q,*w,hilb,strat);
2599 }
2600 }
2601 }
2602#ifdef KDEBUG
2603 idTest(r);
2604#endif
2605 if (toReset)
2606 {
2607 kModW = NULL;
2609 }
2610 currRing->pLexOrder = b;
2611//Print("%d reductions canceled \n",strat->cel);
2612 delete(strat);
2613 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2614 return r;
2615}
2616
2617ideal kSba(ideal F, ideal Q, tHomog h,intvec ** w, int sbaOrder, int arri, intvec *hilb,int syzComp,
2618 int newIdeal, intvec *vw)
2619{
2620 if(idIs0(F))
2621 return idInit(1,F->rank);
2623 {
2624 ideal r;
2625 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2626 BOOLEAN delete_w=(w==NULL);
2627 kStrategy strat=new skStrategy;
2628 strat->sbaOrder = sbaOrder;
2629 if (arri!=0)
2630 {
2631 strat->rewCrit1 = arriRewDummy;
2632 strat->rewCrit2 = arriRewCriterion;
2634 }
2635 else
2636 {
2640 }
2641
2643 strat->syzComp = syzComp;
2644 if (TEST_OPT_SB_1)
2645 //if(!rField_is_Ring(currRing)) // always true here
2646 strat->newIdeal = newIdeal;
2648 strat->LazyPass=20;
2649 else
2650 strat->LazyPass=2;
2651 strat->LazyDegree = 1;
2655 strat->ak = id_RankFreeModule(F,currRing);
2656 strat->kModW=kModW=NULL;
2657 strat->kHomW=kHomW=NULL;
2658 if (vw != NULL)
2659 {
2660 currRing->pLexOrder=FALSE;
2661 strat->kHomW=kHomW=vw;
2662 strat->pOrigFDeg = currRing->pFDeg;
2663 strat->pOrigLDeg = currRing->pLDeg;
2665 toReset = TRUE;
2666 }
2667 if (h==testHomog)
2668 {
2669 if (strat->ak == 0)
2670 {
2671 h = (tHomog)idHomIdeal(F,Q);
2672 w=NULL;
2673 }
2674 else if (!TEST_OPT_DEGBOUND)
2675 {
2676 if (w!=NULL)
2677 h = (tHomog)idHomModule(F,Q,w);
2678 else
2679 h = (tHomog)idHomIdeal(F,Q);
2680 }
2681 }
2682 currRing->pLexOrder=b;
2683 if (h==isHomog)
2684 {
2685 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2686 {
2687 strat->kModW = kModW = *w;
2688 if (vw == NULL)
2689 {
2690 strat->pOrigFDeg = currRing->pFDeg;
2691 strat->pOrigLDeg = currRing->pLDeg;
2693 toReset = TRUE;
2694 }
2695 }
2696 currRing->pLexOrder = TRUE;
2697 if (hilb==NULL) strat->LazyPass*=2;
2698 }
2699 strat->homog=h;
2700 #ifdef KDEBUG
2701 idTest(F);
2702 if(Q != NULL)
2703 idTest(Q);
2704 #endif
2705 #ifdef HAVE_PLURAL
2707 {
2708 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2709 strat->no_prod_crit = ! bIsSCA;
2710 if (w!=NULL)
2711 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2712 else
2713 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2714 }
2715 else
2716 #endif
2717 {
2719 {
2720 if (w!=NULL)
2721 r=mora(F,Q,*w,hilb,strat);
2722 else
2723 r=mora(F,Q,NULL,hilb,strat);
2724 }
2725 else
2726 {
2727 strat->sigdrop = FALSE;
2728 if (w!=NULL)
2729 r=sba(F,Q,*w,hilb,strat);
2730 else
2731 r=sba(F,Q,NULL,hilb,strat);
2732 }
2733 }
2734 #ifdef KDEBUG
2735 idTest(r);
2736 #endif
2737 if (toReset)
2738 {
2739 kModW = NULL;
2741 }
2742 currRing->pLexOrder = b;
2743 //Print("%d reductions canceled \n",strat->cel);
2744 //delete(strat);
2745 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2746 return r;
2747 }
2748 else
2749 {
2750 //--------------------------RING CASE-------------------------
2751 assume(sbaOrder == 1);
2752 assume(arri == 0);
2753 ideal r;
2754 r = idCopy(F);
2755 int sbaEnterS = -1;
2756 bool sigdrop = TRUE;
2757 //This is how we set the SBA algorithm;
2758 int totalsbaruns = 1,blockedreductions = 20,blockred = 0,loops = 0;
2759 while(sigdrop && (loops < totalsbaruns || totalsbaruns == -1)
2760 && (blockred <= blockedreductions))
2761 {
2762 loops++;
2763 if(loops == 1)
2764 sigdrop = FALSE;
2765 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2766 BOOLEAN delete_w=(w==NULL);
2767 kStrategy strat=new skStrategy;
2768 strat->sbaEnterS = sbaEnterS;
2769 strat->sigdrop = sigdrop;
2770 #if 0
2771 strat->blockred = blockred;
2772 #else
2773 strat->blockred = 0;
2774 #endif
2775 strat->blockredmax = blockedreductions;
2776 //printf("\nsbaEnterS beginning = %i\n",strat->sbaEnterS);
2777 //printf("\nsigdrop beginning = %i\n",strat->sigdrop);
2778 strat->sbaOrder = sbaOrder;
2779 if (arri!=0)
2780 {
2781 strat->rewCrit1 = arriRewDummy;
2782 strat->rewCrit2 = arriRewCriterion;
2784 }
2785 else
2786 {
2790 }
2791
2793 strat->syzComp = syzComp;
2794 if (TEST_OPT_SB_1)
2796 strat->newIdeal = newIdeal;
2798 strat->LazyPass=20;
2799 else
2800 strat->LazyPass=2;
2801 strat->LazyDegree = 1;
2805 strat->ak = id_RankFreeModule(F,currRing);
2806 strat->kModW=kModW=NULL;
2807 strat->kHomW=kHomW=NULL;
2808 if (vw != NULL)
2809 {
2810 currRing->pLexOrder=FALSE;
2811 strat->kHomW=kHomW=vw;
2812 strat->pOrigFDeg = currRing->pFDeg;
2813 strat->pOrigLDeg = currRing->pLDeg;
2815 toReset = TRUE;
2816 }
2817 if (h==testHomog)
2818 {
2819 if (strat->ak == 0)
2820 {
2821 h = (tHomog)idHomIdeal(F,Q);
2822 w=NULL;
2823 }
2824 else if (!TEST_OPT_DEGBOUND)
2825 {
2826 if (w!=NULL)
2827 h = (tHomog)idHomModule(F,Q,w);
2828 else
2829 h = (tHomog)idHomIdeal(F,Q);
2830 }
2831 }
2832 currRing->pLexOrder=b;
2833 if (h==isHomog)
2834 {
2835 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2836 {
2837 strat->kModW = kModW = *w;
2838 if (vw == NULL)
2839 {
2840 strat->pOrigFDeg = currRing->pFDeg;
2841 strat->pOrigLDeg = currRing->pLDeg;
2843 toReset = TRUE;
2844 }
2845 }
2846 currRing->pLexOrder = TRUE;
2847 if (hilb==NULL) strat->LazyPass*=2;
2848 }
2849 strat->homog=h;
2850 #ifdef KDEBUG
2851 idTest(F);
2852 if(Q != NULL)
2853 idTest(Q);
2854 #endif
2855 #ifdef HAVE_PLURAL
2857 {
2858 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2859 strat->no_prod_crit = ! bIsSCA;
2860 if (w!=NULL)
2861 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2862 else
2863 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2864 }
2865 else
2866 #endif
2867 {
2869 {
2870 if (w!=NULL)
2871 r=mora(F,Q,*w,hilb,strat);
2872 else
2873 r=mora(F,Q,NULL,hilb,strat);
2874 }
2875 else
2876 {
2877 if (w!=NULL)
2878 r=sba(r,Q,*w,hilb,strat);
2879 else
2880 {
2881 r=sba(r,Q,NULL,hilb,strat);
2882 }
2883 }
2884 }
2885 #ifdef KDEBUG
2886 idTest(r);
2887 #endif
2888 if (toReset)
2889 {
2890 kModW = NULL;
2892 }
2893 currRing->pLexOrder = b;
2894 //Print("%d reductions canceled \n",strat->cel);
2895 sigdrop = strat->sigdrop;
2896 sbaEnterS = strat->sbaEnterS;
2897 blockred = strat->blockred;
2898 delete(strat);
2899 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2900 }
2901 // Go to std
2902 if(sigdrop || blockred > blockedreductions)
2903 {
2904 r = kStd(r, Q, h, w, hilb, syzComp, newIdeal, vw);
2905 }
2906 return r;
2907 }
2908}
2909
2910#ifdef HAVE_SHIFTBBA
2911ideal kStdShift(ideal F, ideal Q, tHomog h,intvec ** w, intvec *hilb,int syzComp,
2912 int newIdeal, intvec *vw, BOOLEAN rightGB)
2913{
2915 assume(idIsInV(F));
2916 ideal r;
2917 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2918 BOOLEAN delete_w=(w==NULL);
2919 kStrategy strat=new skStrategy;
2920 intvec* temp_w=NULL;
2921
2922 strat->rightGB = rightGB;
2923
2925 strat->syzComp = syzComp;
2926 if (TEST_OPT_SB_1)
2928 strat->newIdeal = newIdeal;
2930 strat->LazyPass=20;
2931 else
2932 strat->LazyPass=2;
2933 strat->LazyDegree = 1;
2934 strat->ak = id_RankFreeModule(F,currRing);
2935 strat->kModW=kModW=NULL;
2936 strat->kHomW=kHomW=NULL;
2937 if (vw != NULL)
2938 {
2939 currRing->pLexOrder=FALSE;
2940 strat->kHomW=kHomW=vw;
2941 strat->pOrigFDeg = currRing->pFDeg;
2942 strat->pOrigLDeg = currRing->pLDeg;
2944 toReset = TRUE;
2945 }
2946 if (h==testHomog)
2947 {
2948 if (strat->ak == 0)
2949 {
2950 h = (tHomog)idHomIdeal(F,Q);
2951 w=NULL;
2952 }
2953 else if (!TEST_OPT_DEGBOUND)
2954 {
2955 if (w!=NULL)
2956 h = (tHomog)idHomModule(F,Q,w);
2957 else
2958 h = (tHomog)idHomIdeal(F,Q);
2959 }
2960 }
2961 currRing->pLexOrder=b;
2962 if (h==isHomog)
2963 {
2964 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2965 {
2966 strat->kModW = kModW = *w;
2967 if (vw == NULL)
2968 {
2969 strat->pOrigFDeg = currRing->pFDeg;
2970 strat->pOrigLDeg = currRing->pLDeg;
2972 toReset = TRUE;
2973 }
2974 }
2975 currRing->pLexOrder = TRUE;
2976 if (hilb==NULL) strat->LazyPass*=2;
2977 }
2978 strat->homog=h;
2979#ifdef KDEBUG
2980 idTest(F);
2981#endif
2983 {
2984 /* error: no local ord yet with shifts */
2985 WerrorS("No local ordering possible for shift algebra");
2986 return(NULL);
2987 }
2988 else
2989 {
2990 /* global ordering */
2991 if (w!=NULL)
2992 r=bbaShift(F,Q,*w,hilb,strat);
2993 else
2994 r=bbaShift(F,Q,NULL,hilb,strat);
2995 }
2996#ifdef KDEBUG
2997 idTest(r);
2998#endif
2999 if (toReset)
3000 {
3001 kModW = NULL;
3003 }
3004 currRing->pLexOrder = b;
3005//Print("%d reductions canceled \n",strat->cel);
3006 delete(strat);
3007 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
3008 assume(idIsInV(r));
3009 return r;
3010}
3011#endif
3012
3013//##############################################################
3014//##############################################################
3015//##############################################################
3016//##############################################################
3017//##############################################################
3018
3019ideal kMin_std(ideal F, ideal Q, tHomog h,intvec ** w, ideal &M, intvec *hilb,
3020 int syzComp, int reduced)
3021{
3022 if(idIs0(F))
3023 {
3024 M=idInit(1,F->rank);
3025 return idInit(1,F->rank);
3026 }
3028 {
3029 ideal sb;
3030 sb = kStd(F, Q, h, w, hilb);
3031 idSkipZeroes(sb);
3032 if(IDELEMS(sb) <= IDELEMS(F))
3033 {
3034 M = idCopy(sb);
3035 idSkipZeroes(M);
3036 return(sb);
3037 }
3038 else
3039 {
3040 M = idCopy(F);
3041 idSkipZeroes(M);
3042 return(sb);
3043 }
3044 }
3045 ideal r=NULL;
3046 int Kstd1_OldDeg = Kstd1_deg,i;
3047 intvec* temp_w=NULL;
3048 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
3049 BOOLEAN delete_w=(w==NULL);
3050 BOOLEAN oldDegBound=TEST_OPT_DEGBOUND;
3051 kStrategy strat=new skStrategy;
3052
3054 strat->syzComp = syzComp;
3056 strat->LazyPass=20;
3057 else
3058 strat->LazyPass=2;
3059 strat->LazyDegree = 1;
3060 strat->minim=(reduced % 2)+1;
3061 strat->ak = id_RankFreeModule(F,currRing);
3062 if (delete_w)
3063 {
3064 temp_w=new intvec((strat->ak)+1);
3065 w = &temp_w;
3066 }
3067 if (h==testHomog)
3068 {
3069 if (strat->ak == 0)
3070 {
3071 h = (tHomog)idHomIdeal(F,Q);
3072 w=NULL;
3073 }
3074 else
3075 {
3076 h = (tHomog)idHomModule(F,Q,w);
3077 }
3078 }
3079 if (h==isHomog)
3080 {
3081 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
3082 {
3083 kModW = *w;
3084 strat->kModW = *w;
3085 assume(currRing->pFDeg != NULL && currRing->pLDeg != NULL);
3086 strat->pOrigFDeg = currRing->pFDeg;
3087 strat->pOrigLDeg = currRing->pLDeg;
3089
3090 toReset = TRUE;
3091 if (reduced>1)
3092 {
3093 Kstd1_OldDeg=Kstd1_deg;
3094 Kstd1_deg = -1;
3095 for (i=IDELEMS(F)-1;i>=0;i--)
3096 {
3097 if ((F->m[i]!=NULL) && (currRing->pFDeg(F->m[i],currRing)>=Kstd1_deg))
3098 Kstd1_deg = currRing->pFDeg(F->m[i],currRing)+1;
3099 }
3100 }
3101 }
3102 currRing->pLexOrder = TRUE;
3103 strat->LazyPass*=2;
3104 }
3105 strat->homog=h;
3107 {
3108 if (w!=NULL)
3109 r=mora(F,Q,*w,hilb,strat);
3110 else
3111 r=mora(F,Q,NULL,hilb,strat);
3112 }
3113 else
3114 {
3115 if (w!=NULL)
3116 r=bba(F,Q,*w,hilb,strat);
3117 else
3118 r=bba(F,Q,NULL,hilb,strat);
3119 }
3120#ifdef KDEBUG
3121 {
3122 int i;
3123 for (i=IDELEMS(r)-1; i>=0; i--) pTest(r->m[i]);
3124 }
3125#endif
3126 idSkipZeroes(r);
3127 if (toReset)
3128 {
3130 kModW = NULL;
3131 }
3132 currRing->pLexOrder = b;
3133 if ((delete_w)&&(temp_w!=NULL)) delete temp_w;
3134 if ((IDELEMS(r)==1) && (r->m[0]!=NULL) && pIsConstant(r->m[0]) && (strat->ak==0))
3135 {
3136 M=idInit(1,F->rank);
3137 M->m[0]=pOne();
3138 //if (strat->ak!=0) { pSetComp(M->m[0],strat->ak); pSetmComp(M->m[0]); }
3139 if (strat->M!=NULL) idDelete(&strat->M);
3140 }
3141 else if (strat->M==NULL)
3142 {
3143 M=idInit(1,F->rank);
3144 WarnS("no minimal generating set computed");
3145 }
3146 else
3147 {
3148 idSkipZeroes(strat->M);
3149 M=strat->M;
3150 }
3151 delete(strat);
3152 if (reduced>2)
3153 {
3154 Kstd1_deg=Kstd1_OldDeg;
3155 if (!oldDegBound)
3156 si_opt_1 &= ~Sy_bit(OPT_DEGBOUND);
3157 }
3158 else
3159 {
3160 if (IDELEMS(M)>IDELEMS(r)) {
3161 idDelete(&M);
3162 M=idCopy(r); }
3163 }
3164 return r;
3165}
3166
3167poly kNF(ideal F, ideal Q, poly p,int syzComp, int lazyReduce)
3168{
3169 if (p==NULL)
3170 return NULL;
3171
3172 poly pp = p;
3173
3174#ifdef HAVE_PLURAL
3175 if(rIsSCA(currRing))
3176 {
3177 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3178 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3179 pp = p_KillSquares(pp, m_iFirstAltVar, m_iLastAltVar, currRing);
3180
3181 if(Q == currRing->qideal)
3183 }
3184#endif
3185
3186 if ((idIs0(F))&&(Q==NULL))
3187 {
3188#ifdef HAVE_PLURAL
3189 if(p != pp)
3190 return pp;
3191#endif
3192 return pCopy(p); /*F+Q=0*/
3193 }
3194
3195 kStrategy strat=new skStrategy;
3196 strat->syzComp = syzComp;
3198 poly res;
3199
3201 {
3202#ifdef HAVE_SHIFTBBA
3203 if (currRing->isLPring)
3204 {
3205 WerrorS("No local ordering possible for shift algebra");
3206 return(NULL);
3207 }
3208#endif
3209 res=kNF1(F,Q,pp,strat,lazyReduce);
3210 }
3211 else
3212 res=kNF2(F,Q,pp,strat,lazyReduce);
3213 delete(strat);
3214
3215#ifdef HAVE_PLURAL
3216 if(pp != p)
3217 p_Delete(&pp, currRing);
3218#endif
3219 return res;
3220}
3221
3222poly kNFBound(ideal F, ideal Q, poly p,int bound,int syzComp, int lazyReduce)
3223{
3224 if (p==NULL)
3225 return NULL;
3226
3227 poly pp = p;
3228
3229#ifdef HAVE_PLURAL
3230 if(rIsSCA(currRing))
3231 {
3232 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3233 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3234 pp = p_KillSquares(pp, m_iFirstAltVar, m_iLastAltVar, currRing);
3235
3236 if(Q == currRing->qideal)
3238 }
3239#endif
3240
3241 if ((idIs0(F))&&(Q==NULL))
3242 {
3243#ifdef HAVE_PLURAL
3244 if(p != pp)
3245 return pp;
3246#endif
3247 return pCopy(p); /*F+Q=0*/
3248 }
3249
3250 kStrategy strat=new skStrategy;
3251 strat->syzComp = syzComp;
3253 poly res;
3254 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3255 delete(strat);
3256
3257#ifdef HAVE_PLURAL
3258 if(pp != p)
3259 p_Delete(&pp, currRing);
3260#endif
3261 return res;
3262}
3263
3264ideal kNF(ideal F, ideal Q, ideal p,int syzComp,int lazyReduce)
3265{
3266 ideal res;
3267 if (TEST_OPT_PROT)
3268 {
3269 Print("(S:%d)",IDELEMS(p));mflush();
3270 }
3271 if (idIs0(p))
3272 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3273
3274 ideal pp = p;
3275#ifdef HAVE_PLURAL
3276 if(rIsSCA(currRing))
3277 {
3278 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3279 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3280 pp = id_KillSquares(pp, m_iFirstAltVar, m_iLastAltVar, currRing, false);
3281
3282 if(Q == currRing->qideal)
3284 }
3285#endif
3286
3287 if ((idIs0(F))&&(Q==NULL))
3288 {
3289#ifdef HAVE_PLURAL
3290 if(p != pp)
3291 return pp;
3292#endif
3293 return idCopy(p); /*F+Q=0*/
3294 }
3295
3296 kStrategy strat=new skStrategy;
3297 strat->syzComp = syzComp;
3299 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3300 {
3301 strat->ak = si_max(strat->ak,(int)F->rank);
3302 }
3303
3305 {
3306#ifdef HAVE_SHIFTBBA
3307 if (currRing->isLPring)
3308 {
3309 WerrorS("No local ordering possible for shift algebra");
3310 return(NULL);
3311 }
3312#endif
3313 res=kNF1(F,Q,pp,strat,lazyReduce);
3314 }
3315 else
3316 res=kNF2(F,Q,pp,strat,lazyReduce);
3317 delete(strat);
3318
3319#ifdef HAVE_PLURAL
3320 if(pp != p)
3322#endif
3323
3324 return res;
3325}
3326
3327ideal kNFBound(ideal F, ideal Q, ideal p,int bound,int syzComp,int lazyReduce)
3328{
3329 ideal res;
3330 if (TEST_OPT_PROT)
3331 {
3332 Print("(S:%d)",IDELEMS(p));mflush();
3333 }
3334 if (idIs0(p))
3335 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3336
3337 ideal pp = p;
3338#ifdef HAVE_PLURAL
3339 if(rIsSCA(currRing))
3340 {
3341 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3342 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3343 pp = id_KillSquares(pp, m_iFirstAltVar, m_iLastAltVar, currRing, false);
3344
3345 if(Q == currRing->qideal)
3347 }
3348#endif
3349
3350 if ((idIs0(F))&&(Q==NULL))
3351 {
3352#ifdef HAVE_PLURAL
3353 if(p != pp)
3354 return pp;
3355#endif
3356 return idCopy(p); /*F+Q=0*/
3357 }
3358
3359 kStrategy strat=new skStrategy;
3360 strat->syzComp = syzComp;
3362 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3363 {
3364 strat->ak = si_max(strat->ak,(int)F->rank);
3365 }
3366
3367 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3368 delete(strat);
3369
3370#ifdef HAVE_PLURAL
3371 if(pp != p)
3373#endif
3374
3375 return res;
3376}
3377
3378poly k_NF (ideal F, ideal Q, poly p,int syzComp, int lazyReduce, const ring _currRing)
3379{
3380 const ring save = currRing;
3381 if( currRing != _currRing ) rChangeCurrRing(_currRing);
3382 poly ret = kNF(F, Q, p, syzComp, lazyReduce);
3383 if( currRing != save ) rChangeCurrRing(save);
3384 return ret;
3385}
3386
3387/*2
3388*interreduces F
3389*/
3390// old version
3391ideal kInterRedOld (ideal F, ideal Q)
3392{
3393 int j;
3394 kStrategy strat = new skStrategy;
3395
3396 ideal tempF = F;
3397 ideal tempQ = Q;
3398
3399#ifdef HAVE_PLURAL
3400 if(rIsSCA(currRing))
3401 {
3402 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3403 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3404 tempF = id_KillSquares(F, m_iFirstAltVar, m_iLastAltVar, currRing);
3405
3406 // this should be done on the upper level!!! :
3407 // tempQ = SCAQuotient(currRing);
3408
3409 if(Q == currRing->qideal)
3410 tempQ = SCAQuotient(currRing);
3411 }
3412#endif
3413
3414// if (TEST_OPT_PROT)
3415// {
3416// writeTime("start InterRed:");
3417// mflush();
3418// }
3419 //strat->syzComp = 0;
3420 strat->kAllAxis = (currRing->ppNoether) != NULL;
3421 strat->kNoether=pCopy((currRing->ppNoether));
3422 strat->ak = id_RankFreeModule(tempF,currRing);
3423 initBuchMoraCrit(strat);
3424 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
3425 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
3426 strat->enterS = enterSBba;
3427 strat->posInT = posInT17;
3428 strat->initEcart = initEcartNormal;
3429 strat->sl = -1;
3430 strat->tl = -1;
3431 strat->tmax = setmaxT;
3432 strat->T = initT();
3433 strat->R = initR();
3434 strat->sevT = initsevT();
3436 initS(tempF, tempQ, strat);
3437 if (TEST_OPT_REDSB)
3438 strat->noTailReduction=FALSE;
3439 updateS(TRUE,strat);
3441 completeReduce(strat);
3442 //else if (TEST_OPT_PROT) PrintLn();
3443 cleanT(strat);
3444 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
3445 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
3446 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
3447 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
3448 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
3449 omfree(strat->sevT);
3450 omfree(strat->S_2_R);
3451 omfree(strat->R);
3452
3453 if (strat->fromQ)
3454 {
3455 for (j=IDELEMS(strat->Shdl)-1;j>=0;j--)
3456 {
3457 if(strat->fromQ[j]) pDelete(&strat->Shdl->m[j]);
3458 }
3459 omFreeSize((ADDRESS)strat->fromQ,IDELEMS(strat->Shdl)*sizeof(int));
3460 }
3461// if (TEST_OPT_PROT)
3462// {
3463// writeTime("end Interred:");
3464// mflush();
3465// }
3466 ideal shdl=strat->Shdl;
3467 idSkipZeroes(shdl);
3468 if (strat->fromQ)
3469 {
3470 strat->fromQ=NULL;
3471 ideal res=kInterRed(shdl,NULL);
3472 idDelete(&shdl);
3473 shdl=res;
3474 }
3475 delete(strat);
3476#ifdef HAVE_PLURAL
3477 if( tempF != F )
3478 id_Delete( &tempF, currRing);
3479#endif
3480 return shdl;
3481}
3482// new version
3483ideal kInterRedBba (ideal F, ideal Q, int &need_retry)
3484{
3485 need_retry=0;
3486 int red_result = 1;
3487 int olddeg,reduc;
3488 BOOLEAN withT = FALSE;
3489 // BOOLEAN toReset=FALSE;
3490 kStrategy strat=new skStrategy;
3491 tHomog h;
3492
3494 strat->LazyPass=20;
3495 else
3496 strat->LazyPass=2;
3497 strat->LazyDegree = 1;
3498 strat->ak = id_RankFreeModule(F,currRing);
3499 strat->syzComp = strat->ak;
3500 strat->kModW=kModW=NULL;
3501 strat->kHomW=kHomW=NULL;
3502 if (strat->ak == 0)
3503 {
3504 h = (tHomog)idHomIdeal(F,Q);
3505 }
3506 else if (!TEST_OPT_DEGBOUND)
3507 {
3508 h = (tHomog)idHomIdeal(F,Q);
3509 }
3510 else
3511 h = isNotHomog;
3512 if (h==isHomog)
3513 {
3514 strat->LazyPass*=2;
3515 }
3516 strat->homog=h;
3517#ifdef KDEBUG
3518 idTest(F);
3519#endif
3520
3521 initBuchMoraCrit(strat); /*set Gebauer, honey, sugarCrit*/
3523 initBuchMoraPosRing(strat);
3524 else
3525 initBuchMoraPos(strat);
3526 initBba(strat);
3527 /*set enterS, spSpolyShort, reduce, red, initEcart, initEcartPair*/
3528 strat->posInL=posInL0; /* ord according pComp */
3529
3530 /*Shdl=*/initBuchMora(F, Q, strat);
3531 reduc = olddeg = 0;
3532
3533#ifndef NO_BUCKETS
3535 strat->use_buckets = 1;
3536#endif
3537
3538 // redtailBBa against T for inhomogenous input
3539 if (!TEST_OPT_OLDSTD)
3540 withT = ! strat->homog;
3541
3542 // strat->posInT = posInT_pLength;
3543 kTest_TS(strat);
3544
3545#ifdef HAVE_TAIL_RING
3547#endif
3548
3549 /* compute------------------------------------------------------- */
3550 while (strat->Ll >= 0)
3551 {
3552 #ifdef KDEBUG
3553 if (TEST_OPT_DEBUG) messageSets(strat);
3554 #endif
3555 if (strat->Ll== 0) strat->interpt=TRUE;
3556 /* picks the last element from the lazyset L */
3557 strat->P = strat->L[strat->Ll];
3558 strat->Ll--;
3559
3560 if (strat->P.p1 == NULL)
3561 {
3562 // for input polys, prepare reduction
3563 strat->P.PrepareRed(strat->use_buckets);
3564 }
3565
3566 if (strat->P.p == NULL && strat->P.t_p == NULL)
3567 {
3568 red_result = 0;
3569 }
3570 else
3571 {
3572 if (TEST_OPT_PROT)
3573 message(strat->P.pFDeg(),
3574 &olddeg,&reduc,strat, red_result);
3575
3576 /* reduction of the element chosen from L */
3577 red_result = strat->red(&strat->P,strat);
3578 }
3579
3580 // reduction to non-zero new poly
3581 if (red_result == 1)
3582 {
3583 /* statistic */
3584 if (TEST_OPT_PROT) PrintS("s");
3585
3586 // get the polynomial (canonicalize bucket, make sure P.p is set)
3587 strat->P.GetP(strat->lmBin);
3588
3589 int pos=posInS(strat,strat->sl,strat->P.p,strat->P.ecart);
3590
3591 // reduce the tail and normalize poly
3592 // in the ring case we cannot expect LC(f) = 1,
3593 // therefore we call pCleardenom instead of pNorm
3595 {
3596 strat->P.pCleardenom();
3597 if (0)
3598 //if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL))
3599 {
3600 strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT);
3601 strat->P.pCleardenom();
3602 }
3603 }
3604 else
3605 {
3606 strat->P.pNorm();
3607 if (0)
3608 //if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL))
3609 strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT);
3610 }
3611
3612#ifdef KDEBUG
3613 if (TEST_OPT_DEBUG){PrintS("new s:");strat->P.wrp();PrintLn();}
3614#endif
3615
3616 // enter into S, L, and T
3617 if ((!TEST_OPT_IDLIFT) || (pGetComp(strat->P.p) <= strat->syzComp))
3618 {
3619 enterT(strat->P, strat);
3620 // posInS only depends on the leading term
3621 strat->enterS(strat->P, pos, strat, strat->tl);
3622
3623 if (pos<strat->sl)
3624 {
3625 need_retry++;
3626 // move all "larger" elements fromS to L
3627 // remove them from T
3628 int ii=pos+1;
3629 for(;ii<=strat->sl;ii++)
3630 {
3631 LObject h;
3632 h.Clear();
3633 h.tailRing=strat->tailRing;
3634 h.p=strat->S[ii]; strat->S[ii]=NULL;
3635 strat->initEcart(&h);
3636 h.sev=strat->sevS[ii];
3637 int jj=strat->tl;
3638 while (jj>=0)
3639 {
3640 if (strat->T[jj].p==h.p)
3641 {
3642 strat->T[jj].p=NULL;
3643 if (jj<strat->tl)
3644 {
3645 memmove(&(strat->T[jj]),&(strat->T[jj+1]),
3646 (strat->tl-jj)*sizeof(strat->T[jj]));
3647 memmove(&(strat->sevT[jj]),&(strat->sevT[jj+1]),
3648 (strat->tl-jj)*sizeof(strat->sevT[jj]));
3649 }
3650 strat->tl--;
3651 break;
3652 }
3653 jj--;
3654 }
3655 int lpos=strat->posInL(strat->L,strat->Ll,&h,strat);
3656 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,lpos);
3657 #ifdef KDEBUG
3658 if (TEST_OPT_DEBUG)
3659 {
3660 Print("move S[%d] -> L[%d]: ",ii,pos);
3661 p_wrp(h.p,currRing, strat->tailRing);
3662 PrintLn();
3663 }
3664 #endif
3665 }
3666 if (strat->fromQ!=NULL)
3667 {
3668 for(ii=pos+1;ii<=strat->sl;ii++) strat->fromQ[ii]=0;
3669 }
3670 strat->sl=pos;
3671 }
3672 }
3673 else
3674 {
3675 // clean P
3676 }
3677 kDeleteLcm(&strat->P);
3678 }
3679
3680#ifdef KDEBUG
3681 if (TEST_OPT_DEBUG)
3682 {
3683 messageSets(strat);
3684 }
3685 strat->P.Clear();
3686#endif
3687 //kTest_TS(strat);: i_r out of sync in kInterRedBba, but not used!
3688 }
3689#ifdef KDEBUG
3690 //if (TEST_OPT_DEBUG) messageSets(strat);
3691#endif
3692 /* complete reduction of the standard basis--------- */
3693
3694 if((need_retry<=0) && (TEST_OPT_REDSB))
3695 {
3696 completeReduce(strat);
3697 if (strat->completeReduce_retry)
3698 {
3699 // completeReduce needed larger exponents, retry
3700 // hopefully: kStratChangeTailRing already provided a larger tailRing
3701 // (otherwise: it will fail again)
3703 completeReduce(strat);
3704 if (strat->completeReduce_retry)
3705 {
3706#ifdef HAVE_TAIL_RING
3707 if(currRing->bitmask>strat->tailRing->bitmask)
3708 {
3709 // retry without T
3711 cleanT(strat);strat->tailRing=currRing;
3712 int i;
3713 for(i=strat->sl;i>=0;i--) strat->S_2_R[i]=-1;
3714 completeReduce(strat);
3715 }
3716 if (strat->completeReduce_retry)
3717#endif
3718 Werror("exponent bound is %ld",currRing->bitmask);
3719 }
3720 }
3721 }
3722 else if (TEST_OPT_PROT) PrintLn();
3723
3724
3725 /* release temp data-------------------------------- */
3726 exitBuchMora(strat);
3727// if (TEST_OPT_WEIGHTM)
3728// {
3729// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
3730// if (ecartWeights)
3731// {
3732// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
3733// ecartWeights=NULL;
3734// }
3735// }
3736 //if (TEST_OPT_PROT) messageStat(0/*hilbcount*/,strat);
3737 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
3738 ideal res=strat->Shdl;
3739 strat->Shdl=NULL;
3740 delete strat;
3741 return res;
3742}
3743ideal kInterRed (ideal F, ideal Q)
3744{
3745#ifdef HAVE_PLURAL
3746 if(rIsPluralRing(currRing)) return kInterRedOld(F,Q);
3747#endif
3750 )
3751 return kInterRedOld(F,Q);
3752
3753 //return kInterRedOld(F,Q);
3754
3755 BITSET save1;
3756 SI_SAVE_OPT1(save1);
3757 //si_opt_1|=Sy_bit(OPT_NOT_SUGAR);
3759 //si_opt_1&= ~Sy_bit(OPT_REDTAIL);
3760 //si_opt_1&= ~Sy_bit(OPT_REDSB);
3761 //extern char * showOption() ;
3762 //Print("%s\n",showOption());
3763
3764 int need_retry;
3765 int counter=3;
3766 ideal res, res1;
3767 int elems;
3768 ideal null=NULL;
3769 if ((Q==NULL) || (!TEST_OPT_REDSB))
3770 {
3771 elems=idElem(F);
3772 res=kInterRedBba(F,Q,need_retry);
3773 }
3774 else
3775 {
3776 ideal FF=idSimpleAdd(F,Q);
3777 res=kInterRedBba(FF,NULL,need_retry);
3778 idDelete(&FF);
3779 null=idInit(1,1);
3780 if (need_retry)
3781 res1=kNF(null,Q,res,0,KSTD_NF_LAZY);
3782 else
3783 res1=kNF(null,Q,res);
3784 idDelete(&res);
3785 res=res1;
3786 need_retry=1;
3787 }
3788 if (idElem(res)<=1) need_retry=0;
3789 while (need_retry && (counter>0))
3790 {
3791 #ifdef KDEBUG
3792 if (TEST_OPT_DEBUG) { Print("retry counter %d\n",counter); }
3793 #endif
3794 res1=kInterRedBba(res,Q,need_retry);
3795 int new_elems=idElem(res1);
3796 counter -= (new_elems >= elems);
3797 elems = new_elems;
3798 idDelete(&res);
3799 if (idElem(res1)<=1) need_retry=0;
3800 if ((Q!=NULL) && (TEST_OPT_REDSB))
3801 {
3802 if (need_retry)
3803 res=kNF(null,Q,res1,0,KSTD_NF_LAZY);
3804 else
3805 res=kNF(null,Q,res1);
3806 idDelete(&res1);
3807 }
3808 else
3809 res = res1;
3810 if (idElem(res)<=1) need_retry=0;
3811 }
3812 if (null!=NULL) idDelete(&null);
3813 SI_RESTORE_OPT1(save1);
3815 return res;
3816}
3817
3818// returns TRUE if mora should use buckets, false otherwise
3820{
3821#ifdef MORA_USE_BUCKETS
3823 return FALSE;
3824 if (strat->red == redFirst)
3825 {
3826#ifdef NO_LDEG
3827 if (strat->syzComp==0)
3828 return TRUE;
3829#else
3830 if ((strat->homog || strat->honey) && (strat->syzComp==0))
3831 return TRUE;
3832#endif
3833 }
3834 else
3835 {
3836 #ifdef HAVE_RINGS
3837 assume(strat->red == redEcart || strat->red == redRiloc || strat->red == redRiloc_Z);
3838 #else
3839 assume(strat->red == redEcart);
3840 #endif
3841 if (strat->honey && (strat->syzComp==0))
3842 return TRUE;
3843 }
3844#endif
3845 return FALSE;
3846}
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
#define UNLIKELY(X)
Definition: auxiliary.h:404
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:676
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
int p
Definition: cfModGcd.cc:4078
CanonicalForm b
Definition: cfModGcd.cc:4103
static CanonicalForm bound(const CFMatrix &M)
Definition: cf_linsys.cc:460
Definition: intvec.h:23
KINLINE poly kNoetherTail()
Definition: kInline.h:66
intvec * kModW
Definition: kutil.h:335
bool sigdrop
Definition: kutil.h:359
int syzComp
Definition: kutil.h:354
int * S_2_R
Definition: kutil.h:342
ring tailRing
Definition: kutil.h:343
void(* chainCrit)(poly p, int ecart, kStrategy strat)
Definition: kutil.h:291
char noTailReduction
Definition: kutil.h:378
int currIdx
Definition: kutil.h:317
char posInLOldFlag
Definition: kutil.h:382
pFDegProc pOrigFDeg_TailRing
Definition: kutil.h:298
int Ll
Definition: kutil.h:351
TSet T
Definition: kutil.h:326
BOOLEAN(* rewCrit1)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition: kutil.h:293
omBin lmBin
Definition: kutil.h:344
intset ecartS
Definition: kutil.h:309
char honey
Definition: kutil.h:377
char rightGB
Definition: kutil.h:369
polyset S
Definition: kutil.h:306
int minim
Definition: kutil.h:357
poly kNoether
Definition: kutil.h:329
BOOLEAN * NotUsedAxis
Definition: kutil.h:332
LSet B
Definition: kutil.h:328
int ak
Definition: kutil.h:353
TObject ** R
Definition: kutil.h:340
BOOLEAN(* rewCrit3)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition: kutil.h:295
int lastAxis
Definition: kutil.h:355
ideal M
Definition: kutil.h:305
int tl
Definition: kutil.h:350
int(* red2)(LObject *L, kStrategy strat)
Definition: kutil.h:279
unsigned long * sevT
Definition: kutil.h:325
intvec * kHomW
Definition: kutil.h:336
poly tail
Definition: kutil.h:334
int(* posInL)(const LSet set, const int length, LObject *L, const kStrategy strat)
Definition: kutil.h:284
int blockred
Definition: kutil.h:364
ideal Shdl
Definition: kutil.h:303
unsigned sbaOrder
Definition: kutil.h:316
pFDegProc pOrigFDeg
Definition: kutil.h:296
int blockredmax
Definition: kutil.h:365
int tmax
Definition: kutil.h:350
int(* posInLOld)(const LSet Ls, const int Ll, LObject *Lo, const kStrategy strat)
Definition: kutil.h:288
char LDegLast
Definition: kutil.h:385
void(* initEcartPair)(LObject *h, poly f, poly g, int ecartF, int ecartG)
Definition: kutil.h:287
char kAllAxis
Definition: kutil.h:376
intset fromQ
Definition: kutil.h:321
void(* enterS)(LObject &h, int pos, kStrategy strat, int atR)
Definition: kutil.h:286
char use_buckets
Definition: kutil.h:383
char interpt
Definition: kutil.h:371
int newIdeal
Definition: kutil.h:356
char fromT
Definition: kutil.h:379
char completeReduce_retry
Definition: kutil.h:403
void(* initEcart)(TObject *L)
Definition: kutil.h:280
LObject P
Definition: kutil.h:302
char noClearS
Definition: kutil.h:402
int Lmax
Definition: kutil.h:351
char z2homog
Definition: kutil.h:374
int LazyPass
Definition: kutil.h:353
char no_prod_crit
Definition: kutil.h:394
char overflow
Definition: kutil.h:404
void(* enterOnePair)(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR)
Definition: kutil.h:290
LSet L
Definition: kutil.h:327
char length_pLength
Definition: kutil.h:387
int(* posInT)(const TSet T, const int tl, LObject &h)
Definition: kutil.h:281
int(* red)(LObject *L, kStrategy strat)
Definition: kutil.h:278
BOOLEAN(* rewCrit2)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition: kutil.h:294
int sl
Definition: kutil.h:348
int sbaEnterS
Definition: kutil.h:362
int LazyDegree
Definition: kutil.h:353
char posInLDependsOnLength
Definition: kutil.h:389
unsigned long * sevS
Definition: kutil.h:322
char homog
Definition: kutil.h:372
pLDegProc pOrigLDeg
Definition: kutil.h:297
char update
Definition: kutil.h:381
s_poly_proc_t s_poly
Definition: kutil.h:300
pLDegProc pOrigLDeg_TailRing
Definition: kutil.h:299
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition: coeffs.h:816
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:515
static FORCE_INLINE number n_QuotRem(number a, number b, number *q, const coeffs r)
Definition: coeffs.h:681
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition: coeffs.h:464
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition: coeffs.h:753
#define Print
Definition: emacs.cc:80
#define WarnS
Definition: emacs.cc:78
CanonicalForm res
Definition: facAbsFact.cc:60
const CanonicalForm & w
Definition: facAbsFact.cc:51
CanonicalForm H
Definition: facAbsFact.cc:60
int j
Definition: facHensel.cc:110
void WerrorS(const char *s)
Definition: feFopen.cc:24
#define VAR
Definition: globaldefs.h:5
int scMult0Int(ideal S, ideal Q, const ring tailRing)
Definition: hdegree.cc:993
STATIC_VAR poly last
Definition: hdegree.cc:1151
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
#define idSimpleAdd(A, B)
Definition: ideals.h:42
BOOLEAN idInsertPoly(ideal h1, poly h2)
insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
Definition: ideals.h:96
#define idTest(id)
Definition: ideals.h:47
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
Definition: ideals.h:91
ideal idCopy(ideal A)
Definition: ideals.h:60
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
STATIC_VAR Poly * h
Definition: janet.cc:971
STATIC_VAR jList * Q
Definition: janet.cc:30
KINLINE TSet initT()
Definition: kInline.h:84
KINLINE poly redtailBba(poly p, int pos, kStrategy strat, BOOLEAN normalize)
Definition: kInline.h:1223
KINLINE TObject ** initR()
Definition: kInline.h:95
KINLINE BOOLEAN arriRewDummy(poly, unsigned long, poly, kStrategy, int)
Definition: kInline.h:1273
KINLINE unsigned long * initsevT()
Definition: kInline.h:100
int redLiftstd(LObject *h, kStrategy strat)
Definition: kLiftstd.cc:167
static ideal nc_GB(const ideal F, const ideal Q, const intvec *w, const intvec *hilb, kStrategy strat, const ring r)
Definition: nc.h:27
void khCheckLocInhom(ideal Q, intvec *w, intvec *hilb, int &count, kStrategy strat)
Definition: khstd.cc:133
void khCheck(ideal Q, intvec *w, intvec *hilb, int &eledeg, int &count, kStrategy strat)
Definition: khstd.cc:28
int ksReducePolyLC(LObject *PR, TObject *PW, poly spNoether, number *coef, kStrategy strat)
Definition: kspoly.cc:458
void ksCreateSpoly(LObject *Pair, poly spNoether, int use_buckets, ring tailRing, poly m1, poly m2, TObject **R)
Definition: kspoly.cc:1185
int ksReducePoly(LObject *PR, TObject *PW, poly spNoether, number *coef, poly *mon, kStrategy strat)
Definition: kspoly.cc:187
ideal kInterRedOld(ideal F, ideal Q)
Definition: kstd1.cc:3391
void reorderT(kStrategy strat)
Definition: kstd1.cc:1233
poly kNFBound(ideal F, ideal Q, poly p, int bound, int syzComp, int lazyReduce)
Definition: kstd1.cc:3222
ideal mora(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition: kstd1.cc:1872
void initMora(ideal F, kStrategy strat)
Definition: kstd1.cc:1804
int redFirst(LObject *h, kStrategy strat)
Definition: kstd1.cc:797
void firstUpdate(kStrategy strat)
Definition: kstd1.cc:1548
poly k_NF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce, const ring _currRing)
NOTE: this is just a wrapper which sets currRing for the actual kNF call.
Definition: kstd1.cc:3378
int redEcart(LObject *h, kStrategy strat)
Definition: kstd1.cc:169
void enterSMoraNF(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition: kstd1.cc:1668
long kModDeg(poly p, ring r)
Definition: kstd1.cc:2410
static int doRed(LObject *h, TObject *with, BOOLEAN intoT, kStrategy strat, bool redMoraNF)
Definition: kstd1.cc:119
ideal kMin_std(ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
Definition: kstd1.cc:3019
void updateLHC(kStrategy strat)
Definition: kstd1.cc:1456
ideal kStdShift(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, BOOLEAN rightGB)
Definition: kstd1.cc:2911
ideal kInterRed(ideal F, ideal Q)
Definition: kstd1.cc:3743
void missingAxis(int *last, kStrategy strat)
Definition: kstd1.cc:1271
void reorderL(kStrategy strat)
Definition: kstd1.cc:1213
int posInL10(const LSet set, const int length, LObject *p, const kStrategy strat)
Definition: kstd1.cc:1352
ideal kInterRedBba(ideal F, ideal Q, int &need_retry)
Definition: kstd1.cc:3483
static BOOLEAN kMoraUseBucket(kStrategy strat)
Definition: kstd1.cc:3819
poly kNF1(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition: kstd1.cc:2110
static void kOptimizeLDeg(pLDegProc ldeg, kStrategy strat)
Definition: kstd1.cc:100
void initBba(kStrategy strat)
Definition: kstd1.cc:1676
int redRiloc(LObject *h, kStrategy strat)
Definition: kstd1.cc:387
void initSba(ideal F, kStrategy strat)
Definition: kstd1.cc:1734
long kHomModDeg(poly p, ring r)
Definition: kstd1.cc:2420
static poly redMoraNFRing(poly h, kStrategy strat, int flag)
Definition: kstd1.cc:1077
void kDebugPrint(kStrategy strat)
Definition: kutil.cc:11817
void enterSMora(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition: kstd1.cc:1615
VAR intvec * kHomW
Definition: kstd1.cc:2408
VAR intvec * kModW
Definition: kstd1.cc:2408
void updateL(kStrategy strat)
Definition: kstd1.cc:1385
VAR BITSET validOpts
Definition: kstd1.cc:60
void updateT(kStrategy strat)
Definition: kstd1.cc:1522
BOOLEAN hasPurePower(const poly p, int last, int *length, kStrategy strat)
Definition: kstd1.cc:1304
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition: kstd1.cc:3167
static poly redMoraNF(poly h, kStrategy strat, int flag)
Definition: kstd1.cc:978
VAR BITSET kOptions
Definition: kstd1.cc:45
int redRiloc_Z(LObject *h, kStrategy strat)
Definition: kstd1.cc:568
ideal kSba(ideal F, ideal Q, tHomog h, intvec **w, int sbaOrder, int arri, intvec *hilb, int syzComp, int newIdeal, intvec *vw)
Definition: kstd1.cc:2617
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2433
#define KSTD_NF_LAZY
Definition: kstd1.h:17
EXTERN_VAR int Kstd1_deg
Definition: kstd1.h:49
BOOLEAN(* s_poly_proc_t)(kStrategy strat)
Definition: kstd1.h:14
#define KSTD_NF_ECART
Definition: kstd1.h:19
EXTERN_VAR int Kstd1_mu
Definition: kstd1.h:49
int redRing_Z(LObject *h, kStrategy strat)
Definition: kstd2.cc:673
int kFindDivisibleByInS(const kStrategy strat, int *max_ind, LObject *L)
return -1 if no divisor is found number of first divisor in S, otherwise
Definition: kstd2.cc:404
int kTestDivisibleByT0_Z(const kStrategy strat, const LObject *L)
tests if T[0] divides the leading monomial of L, returns -1 if not
Definition: kstd2.cc:142
poly kNF2(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition: kstd2.cc:3708
int redHoney(LObject *h, kStrategy strat)
Definition: kstd2.cc:1901
int redHomog(LObject *h, kStrategy strat)
Definition: kstd2.cc:938
ideal sba(ideal F0, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition: kstd2.cc:2742
ideal bba(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition: kstd2.cc:2383
int redLazy(LObject *h, kStrategy strat)
Definition: kstd2.cc:1696
int redSigRing(LObject *h, kStrategy strat)
Definition: kstd2.cc:1326
int redSig(LObject *h, kStrategy strat)
Definition: kstd2.cc:1158
poly kNF2Bound(ideal F, ideal Q, poly q, int bound, kStrategy strat, int lazyReduce)
Definition: kstd2.cc:3790
int redRing(LObject *h, kStrategy strat)
Definition: kstd2.cc:831
int kFindDivisibleByInT(const kStrategy strat, const LObject *L, const int start)
return -1 if no divisor is found number of first divisor in T, otherwise
Definition: kstd2.cc:290
ideal bbaShift(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition: kstd2.cc:4351
void message(int i, int *reduc, int *olddeg, kStrategy strat, int red_result)
Definition: kutil.cc:7768
poly redtail(LObject *L, int end_pos, kStrategy strat)
Definition: kutil.cc:7131
int posInT17(const TSet set, const int length, LObject &p)
Definition: kutil.cc:5456
void initBuchMora(ideal F, ideal Q, kStrategy strat)
Definition: kutil.cc:10057
VAR int HCord
Definition: kutil.cc:246
BOOLEAN arriRewCriterionPre(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int)
Definition: kutil.cc:6938
void enterT(LObject &p, kStrategy strat, int atT)
Definition: kutil.cc:9434
BOOLEAN arriRewCriterion(poly, unsigned long, poly, kStrategy strat, int start=0)
Definition: kutil.cc:6913
void enterSSba(LObject &p, int atS, kStrategy strat, int atR)
Definition: kutil.cc:9208
BOOLEAN kTest(kStrategy strat)
Definition: kutil.cc:1036
BOOLEAN kTest_TS(kStrategy strat)
Definition: kutil.cc:1097
void enterOnePairNormal(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition: kutil.cc:2032
void enterL(LSet *set, int *length, int *LSetmax, LObject p, int at)
Definition: kutil.cc:1360
BOOLEAN faugereRewCriterion(poly sig, unsigned long not_sevSig, poly, kStrategy strat, int start=0)
Definition: kutil.cc:6854
int posInT2(const TSet set, const int length, LObject &p)
Definition: kutil.cc:5024
void enterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition: kutil.cc:4587
void initHilbCrit(ideal, ideal, intvec **hilb, kStrategy strat)
Definition: kutil.cc:9714
void initEcartPairMora(LObject *Lp, poly, poly, int ecartF, int ecartG)
Definition: kutil.cc:1406
void initBuchMoraPos(kStrategy strat)
Definition: kutil.cc:9884
void initS(ideal F, ideal Q, kStrategy strat)
Definition: kutil.cc:7891
BOOLEAN kStratChangeTailRing(kStrategy strat, LObject *L, TObject *T, unsigned long expbound)
Definition: kutil.cc:11278
int posInL0(const LSet set, const int length, LObject *p, const kStrategy)
Definition: kutil.cc:5790
void chainCritOpt_1(poly, int, kStrategy strat)
Definition: kutil.cc:3538
void enterT_strong(LObject &p, kStrategy strat, int atT)
Definition: kutil.cc:9534
void postReduceByMon(LObject *h, kStrategy strat)
used for GB over ZZ: intermediate reduction by monomial elements background: any known constant eleme...
Definition: kutil.cc:11020
void HEckeTest(poly pp, kStrategy strat)
Definition: kutil.cc:505
BOOLEAN kTest_L(LObject *L, kStrategy strat, BOOLEAN testp, int lpos, TSet T, int tlength)
Definition: kutil.cc:950
void exitBuchMora(kStrategy strat)
Definition: kutil.cc:10142
void initEcartNormal(TObject *h)
Definition: kutil.cc:1384
int posInS(const kStrategy strat, const int length, const poly p, const int ecart_p)
Definition: kutil.cc:4763
void updateS(BOOLEAN toT, kStrategy strat)
Definition: kutil.cc:8850
BOOLEAN kCheckSpolyCreation(LObject *L, kStrategy strat, poly &m1, poly &m2)
Definition: kutil.cc:10791
void cleanT(kStrategy strat)
Definition: kutil.cc:569
BOOLEAN kTest_T(TObject *T, kStrategy strat, int i, char TN)
Definition: kutil.cc:825
void deleteHC(LObject *L, kStrategy strat, BOOLEAN fromNext)
Definition: kutil.cc:294
void updateResult(ideal r, ideal Q, kStrategy strat)
Definition: kutil.cc:10385
void superenterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition: kutil.cc:4556
void deleteInL(LSet set, int *length, int j, kStrategy strat)
Definition: kutil.cc:1295
void kStratInitChangeTailRing(kStrategy strat)
Definition: kutil.cc:11371
void initBuchMoraCrit(kStrategy strat)
Definition: kutil.cc:9732
void completeReduce(kStrategy strat, BOOLEAN withT)
Definition: kutil.cc:10597
void initBuchMoraPosRing(kStrategy strat)
Definition: kutil.cc:9970
void messageSets(kStrategy strat)
Definition: kutil.cc:7841
poly preIntegerCheck(const ideal Forig, const ideal Q)
used for GB over ZZ: look for constant and monomial elements in the ideal background: any known const...
Definition: kutil.cc:10853
void chainCritNormal(poly p, int ecart, kStrategy strat)
Definition: kutil.cc:3297
void initEcartBBA(TObject *h)
Definition: kutil.cc:1392
void initEcartPairBba(LObject *Lp, poly, poly, int, int)
Definition: kutil.cc:1399
void messageStat(int hilbcount, kStrategy strat)
Definition: kutil.cc:7809
void finalReduceByMon(kStrategy strat)
used for GB over ZZ: final reduction by constant elements background: any known constant element of i...
Definition: kutil.cc:11185
void enterSBba(LObject &p, int atS, kStrategy strat, int atR)
Definition: kutil.cc:9085
BOOLEAN newHEdge(kStrategy strat)
Definition: kutil.cc:10719
void cancelunit(LObject *L, BOOLEAN inNF)
Definition: kutil.cc:373
#define setmaxTinc
Definition: kutil.h:34
LObject * LSet
Definition: kutil.h:60
static void kDeleteLcm(LObject *P)
Definition: kutil.h:885
#define setmaxT
Definition: kutil.h:33
#define RED_CANONICALIZE
Definition: kutil.h:36
class sTObject TObject
Definition: kutil.h:57
class sLObject LObject
Definition: kutil.h:58
if(yy_init)
Definition: libparse.cc:1420
static bool rIsSCA(const ring r)
Definition: nc.h:190
ideal id_KillSquares(const ideal id, const short iFirstAltVar, const short iLastAltVar, const ring r, const bool bSkipZeroes)
Definition: sca.cc:1520
poly p_KillSquares(const poly p, const short iFirstAltVar, const short iLastAltVar, const ring r)
Definition: sca.cc:1465
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:647
#define assume(x)
Definition: mod2.h:387
#define p_GetComp(p, r)
Definition: monomials.h:64
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define __p_GetComp(p, r)
Definition: monomials.h:63
#define nEqual(n1, n2)
Definition: numbers.h:20
#define omfree(addr)
Definition: omAllocDecl.h:237
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
omError_t omTestMemory(int check_level)
Definition: omDebug.c:94
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omFree(addr)
Definition: omAllocDecl.h:261
#define NULL
Definition: omList.c:12
VAR BOOLEAN siCntrlc
Definition: options.c:14
VAR unsigned si_opt_1
Definition: options.c:5
#define TEST_OPT_WEIGHTM
Definition: options.h:121
#define OPT_SUGARCRIT
Definition: options.h:80
#define OPT_PROT
Definition: options.h:75
#define OPT_INFREDTAIL
Definition: options.h:94
#define OPT_INTSTRATEGY
Definition: options.h:92
#define TEST_OPT_IDLIFT
Definition: options.h:129
#define TEST_OPT_INTSTRATEGY
Definition: options.h:110
#define BVERBOSE(a)
Definition: options.h:34
#define OPT_WEIGHTM
Definition: options.h:97
#define TEST_OPT_FINDET
Definition: options.h:111
#define OPT_REDTAIL
Definition: options.h:91
#define SI_SAVE_OPT1(A)
Definition: options.h:21
#define SI_RESTORE_OPT1(A)
Definition: options.h:24
#define OPT_NOT_SUGAR
Definition: options.h:78
#define TEST_OPT_OLDSTD
Definition: options.h:123
#define OPT_REDTHROUGH
Definition: options.h:82
#define OPT_REDSB
Definition: options.h:76
#define Sy_bit(x)
Definition: options.h:31
#define TEST_OPT_REDSB
Definition: options.h:104
#define OPT_NOTREGULARITY
Definition: options.h:96
#define TEST_OPT_DEGBOUND
Definition: options.h:113
#define TEST_OPT_SB_1
Definition: options.h:119
#define TEST_OPT_RETURN_SB
Definition: options.h:112
#define TEST_OPT_MULTBOUND
Definition: options.h:114
#define TEST_OPT_PROT
Definition: options.h:103
#define TEST_OPT_REDTHROUGH
Definition: options.h:122
#define OPT_INTERRUPT
Definition: options.h:79
#define OPT_DEGBOUND
Definition: options.h:90
#define TEST_V_DEG_STOP
Definition: options.h:138
#define TEST_OPT_FASTHC
Definition: options.h:109
#define TEST_OPT_DEBUG
Definition: options.h:108
#define OPT_FASTHC
Definition: options.h:85
#define TEST_OPT_REDTAIL_SYZ
Definition: options.h:117
#define OPT_OLDSTD
Definition: options.h:86
#define TEST_OPT_STAIRCASEBOUND
Definition: options.h:115
#define TEST_OPT_NOT_BUCKETS
Definition: options.h:105
pShallowCopyDeleteProc pGetShallowCopyDeleteProc(ring, ring)
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition: p_polys.cc:1226
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition: p_polys.cc:3727
long pLDeg0c(poly p, int *l, const ring r)
Definition: p_polys.cc:770
long pLDeg0(poly p, int *l, const ring r)
Definition: p_polys.cc:739
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition: p_polys.cc:3715
long p_WDegree(poly p, const ring r)
Definition: p_polys.cc:714
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:723
static long p_FDeg(const poly p, const ring r)
Definition: p_polys.h:380
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:313
#define pp_Test(p, lmRing, tailRing)
Definition: p_polys.h:164
static BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
Definition: p_polys.h:1937
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
static unsigned pLength(poly a)
Definition: p_polys.h:191
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:373
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
Compatiblity layer for legacy polynomial operations (over currRing)
#define pAdd(p, q)
Definition: polys.h:203
#define pTest(p)
Definition: polys.h:415
#define pDelete(p_ptr)
Definition: polys.h:186
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition: polys.h:67
#define pSetm(p)
Definition: polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition: polys.h:238
#define pGetComp(p)
Component.
Definition: polys.h:37
void pNorm(poly p)
Definition: polys.h:363
#define pLmShortDivisibleBy(a, sev_a, b, not_sev_b)
Divisibility tests based on Short Exponent vectors sev_a == pGetShortExpVector(a) not_sev_b == ~ pGet...
Definition: polys.h:146
#define pMaxComp(p)
Definition: polys.h:299
#define pSetComp(p, v)
Definition: polys.h:38
#define pLmDelete(p)
assume p != NULL, deletes Lm(p)->coef and Lm(p)
Definition: polys.h:76
#define pGetShortExpVector(a)
returns the "Short Exponent Vector" – used to speed up divisibility tests (see polys-impl....
Definition: polys.h:152
void wrp(poly p)
Definition: polys.h:310
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
Definition: polys.h:70
#define pSetmComp(p)
TODO:
Definition: polys.h:273
#define pNormalize(p)
Definition: polys.h:317
#define pSetExp(p, i, v)
Definition: polys.h:42
#define pLmCmp(p, q)
returns 0|1|-1 if p=q|p>q|p<q w.r.t monomial ordering
Definition: polys.h:105
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
#define pOne()
Definition: polys.h:315
#define pWTotaldegree(p)
Definition: polys.h:283
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
void Werror(const char *fmt,...)
Definition: reporter.cc:189
#define mflush()
Definition: reporter.h:58
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:510
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
long(* pLDegProc)(poly p, int *length, ring r)
Definition: ring.h:37
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:516
BOOLEAN rHasMixedOrdering(const ring r)
Definition: ring.h:762
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:593
BOOLEAN rHasGlobalOrdering(const ring r)
Definition: ring.h:760
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition: ring.h:761
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition: ring.h:549
#define rField_is_Ring(R)
Definition: ring.h:486
ideal SCAQuotient(const ring r)
Definition: sca.h:10
static short scaLastAltVar(ring r)
Definition: sca.h:25
static short scaFirstAltVar(ring r)
Definition: sca.h:18
#define idIsInV(I)
Definition: shiftop.h:49
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
int idElem(const ideal F)
count non-zero elements
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
#define IDELEMS(i)
Definition: simpleideals.h:23
#define M
Definition: sirandom.c:25
tHomog
Definition: structs.h:35
@ isHomog
Definition: structs.h:37
@ testHomog
Definition: structs.h:38
@ isNotHomog
Definition: structs.h:36
#define BITSET
Definition: structs.h:16
#define loop
Definition: structs.h:75
long totaldegreeWecart(poly p, ring r)
Definition: weight.cc:217
long maxdegreeWecart(poly p, int *l, ring r)
Definition: weight.cc:247
void kEcartWeights(poly *s, int sl, short *eweight, const ring R)
Definition: weight.cc:182
EXTERN_VAR short * ecartWeights
Definition: weight.h:12