44#include "factory/factory.h"
50#define TRANSEXT_PRIVATES 1
54#define naTest(a) naDBTest(a,__FILE__,__LINE__,cf)
57#define naTest(a) do {} while (0)
61#define naRing cf->extRing
67#define naCoeffs cf->extRing->cf
70#define naMinpoly naRing->qideal->m[0]
122 if (
p ==
NULL)
return;
123 number n =
n_Init(1, r->cf);
165static inline poly
p_Gcd(
const poly
p,
const poly q,
const ring r)
169 poly a =
p; poly
b = q;
197 poly ppFactor =
NULL; poly qqFactor =
NULL;
216poly
p_ExtGcd(poly
p, poly &pFactor, poly q, poly &qFactor, ring r)
221 { a = q;
b =
p; aCorrespondsToP =
FALSE; }
223 poly aFactor =
NULL; poly bFactor =
NULL;
225 if (aCorrespondsToP) { pFactor = aFactor; qFactor = bFactor; }
226 else { pFactor = bFactor; qFactor = aFactor; }
266 cf =
cf->extRing->cf;
280 if (*a ==
NULL)
return;
282 poly aAsPoly = (poly)(*a);
317 poly aAsPoly = (poly)a;
325 poly aAsPoly = (poly)a;
340 if (
i == 0)
return NULL;
347 return (number)
p_NSet(n,r->extRing);
353 poly aAsPoly = (poly)a;
377 if (aDeg>bDeg)
return TRUE;
378 if (aDeg<bDeg)
return FALSE;
396 const ring
A =
cf->extRing;
405 const int P =
rVar(
A);
410 for (
int nop=0; nop < P; nop ++)
413 if (nop!=P-1)
PrintS(
", ");
418 const ideal I =
A->qideal;
450 return (number)aPlusB;
458 if (a ==
NULL)
return (number)minusB;
461 return (number)aMinusB;
471 return (number)aTimesB;
485 return (number)aDivB;
513 int expAbs =
exp;
if (expAbs < 0) expAbs = -expAbs;
516 poly
pow; poly aAsPoly = (poly)a;
520 for (
int i = 2;
i <= expAbs;
i++)
550 number n = (number)
pow;
582 poly aAsPoly = (poly)a;
600 poly aAsPoly = (poly)a;
616 *a = (number)aAsPoly;
622number naLcm(number a, number
b,
const coeffs cf)
631 return naDiv(theProduct, theGcd,
cf);
700 const ideal mi =
naRing->qideal;
702 const ideal ii = e->
r->qideal;
719 if (a ==
NULL)
return 0;
720 poly aAsPoly = (poly)a;
722 while (aAsPoly !=
NULL)
828 poly aFactor =
NULL; poly mFactor =
NULL; poly theGcd =
NULL;
844 WerrorS(
"zero divisor found - your minpoly is not irreducible");
849 return (number)(aFactor);
856 assume(src->rep == dst->extRing->cf->rep);
879 int n =
n_Int(a, src);
880 number q =
n_Init(n, dst->extRing->cf);
889number naCopyMap(number a,
const coeffs src,
const coeffs dst)
899 fraction
fa=(fraction)a;
932 number t=
naDiv ((number)
p,(number)q, dst);
937 WerrorS (
"mapping denominator to zero");
948 number q =
nlModP(a, src, dst->extRing->cf);
959 assume(src == dst->extRing->cf);
970 int n =
n_Int(a, src);
971 number q =
n_Init(n, dst->extRing->cf);
981 const ring rSrc =
cf->extRing;
982 const ring rDst = dst->extRing;
986 poly
g =
prMapR(
f, nMap, rSrc, rDst);
996 const ring rSrc =
cf->extRing;
997 const ring rDst = dst->extRing;
1000 fraction
f = (fraction)a;
1001 poly
g =
prMapR(NUM(
f), nMap, rSrc, rDst);
1007 h =
prMapR(DEN(
f), nMap, rSrc, rDst);
1046 if (src->ch == dst->ch)
return naMapPP;
1050 if (
h != 1)
return NULL;
1062 else if ((nMap!=
NULL) && (strcmp(
rRingVar(0,src->extRing),
rRingVar(0,dst->extRing))==0) && (
rVar (src->extRing) ==
rVar (dst->extRing)))
1075 if (a ==
NULL)
return -1;
1077 return cf->extRing->pFDeg(aa,
cf->extRing);
1085 const ring
R =
cf->extRing;
1087 assume( 0 < iParameter && iParameter <=
rVar(
R) );
1100 const ring
R =
cf->extRing;
1113 const ring
R =
cf->extRing;
1119 numberCollectionEnumerator.
Reset();
1121 if( !numberCollectionEnumerator.
MoveNext() )
1130 int s1;
int s=2147483647;
1134 int normalcount = 0;
1140 number& n = numberCollectionEnumerator.
Current();
1153 }
while (numberCollectionEnumerator.
MoveNext() );
1160 numberCollectionEnumerator.
Reset();
1163 while (numberCollectionEnumerator.
MoveNext() )
1165 number& n = numberCollectionEnumerator.
Current();
1168 if( (--normalcount) <= 0)
1218 numberCollectionEnumerator.
Reset();
1221 while (numberCollectionEnumerator.
MoveNext() )
1223 number& n = numberCollectionEnumerator.
Current();
1234 n = (number)
p_Mult_q(cInverse, (poly)n,
R);
1325 c = (number)
p_NSet(n,
cf->extRing);
1331 if(
cf->extRing->ref<0)
1342 l+=(strlen(
p[
i])+1);
1346 snprintf(
s,10+1,
"%d",r->ch);
1360 poly *P=(poly*)
omAlloc(rl*
sizeof(poly*));
1361 number *X=(number *)
omAlloc(rl*
sizeof(number));
1390 (e->
r->qideal->m[0] !=
NULL) );
1396 const ring
R = e->
r;
1461 cf->iNumberOfParameters =
rVar(
R);
1462 cf->pParameterNames = (
const char**)
R->names;
1464 cf->has_simple_Inverse=
R->cf->has_simple_Inverse;
1495#define n2pTest(a) n2pDBTest(a,__FILE__,__LINE__,cf)
1498#define n2pTest(a) do {} while (0)
1502#define n2pRing cf->extRing
1508#define n2pCoeffs cf->extRing->cf
1530 return (number)aTimesB;
1553 *a = (number)aAsPoly;
1585 l+=(strlen(
p[
i])+1);
1590 snprintf(
s,strlen(cf_s)+2,
"%s",cf_s);
1600 else { tt[0]=
']'; strcat(
s,tt); }
1609 const ring
A =
cf->extRing;
1612 PrintS(
"// polynomial ring as coefficient ring :\n");
1646 const ring
R = e->
r;
1704 cf->iNumberOfParameters =
rVar(
R);
1705 cf->pParameterNames = (
const char**)
R->names;
Rational pow(const Rational &a, int e)
Concrete implementation of enumerators over polynomials.
number n2pDiv(number a, number b, const coeffs cf)
BOOLEAN naGreater(number a, number b, const coeffs cf)
void heuristicReduce(poly &p, poly reducer, const coeffs cf)
static void p_Monic(poly p, const ring r)
returns NULL if p == NULL, otherwise makes p monic by dividing by its leading coefficient (only done ...
number naNeg(number a, const coeffs cf)
this is in-place, modifies a
number n2pMult(number a, number b, const coeffs cf)
long naInt(number &a, const coeffs cf)
number naMap00(number a, const coeffs src, const coeffs dst)
const char * n2pRead(const char *s, number *a, const coeffs cf)
number naCopy(number a, const coeffs cf)
BOOLEAN naIsOne(number a, const coeffs cf)
CanonicalForm naConvSingNFactoryN(number n, BOOLEAN, const coeffs cf)
number naGcd(number a, number b, const coeffs cf)
void naClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs cf)
BOOLEAN naDBTest(number a, const char *f, const int l, const coeffs r)
number naInit(long i, const coeffs cf)
BOOLEAN naIsZero(number a, const coeffs cf)
number naGetNumerator(number &a, const coeffs cf)
static void naClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs cf)
number naGenMap(number a, const coeffs cf, const coeffs dst)
number naSub(number a, number b, const coeffs cf)
number naCopyTrans2AlgExt(number a, const coeffs src, const coeffs dst)
poly p_ExtGcd(poly p, poly &pFactor, poly q, poly &qFactor, ring r)
assumes that p and q are univariate polynomials in r, mentioning the same variable; assumes a global ...
static poly p_Gcd(const poly p, const poly q, const ring r)
BOOLEAN naEqual(number a, number b, const coeffs cf)
void naNormalize(number &a, const coeffs cf)
void naWriteShort(number a, const coeffs cf)
number napNormalizeHelper(number b, const coeffs cf)
void naPower(number a, int exp, number *b, const coeffs cf)
number naChineseRemainder(number *x, number *q, int rl, BOOLEAN, CFArray &inv_cache, const coeffs cf)
BOOLEAN n2pDBTest(number a, const char *f, const int l, const coeffs r)
void naKillChar(coeffs cf)
number naMap0P(number a, const coeffs src, const coeffs dst)
number naInvers(number a, const coeffs cf)
void naWriteLong(number a, const coeffs cf)
void naDelete(number *a, const coeffs cf)
void naCoeffWrite(const coeffs cf, BOOLEAN details)
number naDiv(number a, number b, const coeffs cf)
number naGenTrans2AlgExt(number a, const coeffs cf, const coeffs dst)
number naLcmContent(number a, number b, const coeffs cf)
number naMult(number a, number b, const coeffs cf)
static number naInitMPZ(mpz_t m, const coeffs r)
const char * naRead(const char *s, number *a, const coeffs cf)
number naGetDenom(number &a, const coeffs cf)
static BOOLEAN n2pCoeffIsEqual(const coeffs cf, n_coeffType n, void *param)
void definiteReduce(poly &p, poly reducer, const coeffs cf)
char * n2pCoeffName(const coeffs cf)
number naConvFactoryNSingN(const CanonicalForm n, const coeffs cf)
static BOOLEAN naCoeffIsEqual(const coeffs cf, n_coeffType n, void *param)
char * naCoeffName(const coeffs r)
nMapFunc naSetMap(const coeffs src, const coeffs dst)
Get a mapping function from src into the domain of this type (n_algExt)
static poly p_ExtGcdHelper(poly &p, poly &pFactor, poly &q, poly &qFactor, ring r)
BOOLEAN naInitChar(coeffs cf, void *infoStruct)
Initialize the coeffs object.
number naMapPP(number a, const coeffs src, const coeffs dst)
BOOLEAN n2pInitChar(coeffs cf, void *infoStruct)
number n2pInvers(number a, const coeffs cf)
int naParDeg(number a, const coeffs cf)
int naIsParam(number m, const coeffs cf)
if m == var(i)/1 => return i,
number naAdd(number a, number b, const coeffs cf)
int naSize(number a, const coeffs cf)
number naParameter(const int iParameter, const coeffs cf)
return the specified parameter as a number in the given alg. field
BOOLEAN naGreaterZero(number a, const coeffs cf)
forward declarations
void n2pCoeffWrite(const coeffs cf, BOOLEAN details)
#define n2pTest(a)
ABSTRACT: numbers as polys in the ring K[a] Assuming that we have a coeffs object cf,...
void n2pNormalize(number &a, const coeffs cf)
number naFarey(number p, number n, const coeffs cf)
number naMapP0(number a, const coeffs src, const coeffs dst)
static coeffs nCoeff_bottom(const coeffs r, int &height)
number naMapZ0(number a, const coeffs src, const coeffs dst)
number naMapUP(number a, const coeffs src, const coeffs dst)
BOOLEAN naIsMOne(number a, const coeffs cf)
void n2pPower(number a, int exp, number *b, const coeffs cf)
static poly p_GcdHelper(poly &p, poly &q, const ring r)
see p_Gcd; additional assumption: deg(p) >= deg(q); must destroy p and q (unless one of them is retur...
struct for passing initialization parameters to naInitChar
const CanonicalForm const CanonicalForm const CanonicalForm const CanonicalForm & cand
CanonicalForm convSingPFactoryP(poly p, const ring r)
poly convFactoryPSingP(const CanonicalForm &f, const ring r)
poly singclap_pdivide(poly f, poly g, const ring r)
BOOLEAN singclap_extgcd(poly f, poly g, poly &res, poly &pa, poly &pb, const ring r)
poly singclap_gcd_r(poly f, poly g, const ring r)
go into polynomials over an alg. extension recursively
Templated accessor interface for accessing individual data (for instance, of an enumerator).
virtual reference Current()=0
Gets the current element in the collection (read and write).
virtual void Reset()=0
Sets the enumerator to its initial position: -1, which is before the first element in the collection.
virtual bool MoveNext()=0
Advances the enumerator to the next element of the collection. returns true if the enumerator was suc...
Templated enumerator interface for simple iteration over a generic collection of T's.
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1,...
static FORCE_INLINE void n_CoeffWrite(const coeffs r, BOOLEAN details=TRUE)
output the coeff description
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
number ndCopyMap(number a, const coeffs src, const coeffs dst)
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
@ n_polyExt
used to represent polys as coeffcients
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of 'a'; raise an error if 'a' is not invertible
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
static FORCE_INLINE BOOLEAN n_IsMOne(number n, const coeffs r)
TRUE iff 'n' represents the additive inverse of the one element, i.e. -1.
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
static FORCE_INLINE BOOLEAN nCoeff_is_Q_algext(const coeffs r)
is it an alg. ext. of Q?
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
static FORCE_INLINE BOOLEAN n_Greater(number a, number b, const coeffs r)
ordered fields: TRUE iff 'a' is larger than 'b'; in Z/pZ: TRUE iff la > lb, where la and lb are the l...
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
static FORCE_INLINE BOOLEAN nCoeff_is_Q_or_BI(const coeffs r)
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
static FORCE_INLINE char * nCoeffName(const coeffs cf)
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
static FORCE_INLINE int n_NumberOfParameters(const coeffs r)
Returns the number of parameters.
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
@ n_rep_gap_rat
(number), see longrat.h
@ n_rep_gap_gmp
(), see rinteger.h, new impl.
@ n_rep_poly
(poly), see algext.h
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
BOOLEAN fa(leftv res, leftv args)
const CanonicalForm int s
const CanonicalForm int const CFList const Variable & y
void WerrorS(const char *s)
static BOOLEAN length(leftv result, leftv arg)
poly p_ChineseRemainder(poly *xx, mpz_ptr *x, mpz_ptr *q, int rl, mpz_ptr *C, const ring R)
number nlModP(number q, const coeffs, const coeffs Zp)
int dReportError(const char *fmt,...)
#define p_SetCoeff0(p, n, r)
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
gmp_float exp(const gmp_float &a)
The main handler for Singular numbers which are suitable for Singular polynomials.
number ndGcd(number, number, const coeffs r)
const char *const nDivBy0
#define omFreeSize(addr, size)
poly p_Farey(poly p, number N, const ring r)
poly p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes div...
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
poly p_Power(poly p, int i, const ring r)
void p_Normalize(poly p, const ring r)
int p_Var(poly m, const ring r)
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
long p_Deg(poly a, const ring r)
const char * p_Read(const char *st, poly &rc, const ring r)
BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r)
static poly p_Neg(poly p, const ring r)
static poly p_Add_q(poly p, poly q, const ring r)
static poly p_Mult_q(poly p, poly q, const ring r)
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
void p_String0Long(const poly p, ring lmRing, ring tailRing)
print p in a long way
void p_String0Short(const poly p, ring lmRing, ring tailRing)
print p in a short way, if possible
static void p_Setm(poly p, const ring r)
static number p_SetCoeff(poly p, number n, ring r)
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
static BOOLEAN p_IsConstant(const poly p, const ring r)
static void p_Delete(poly *p, const ring r)
void p_Write0(poly p, ring lmRing, ring tailRing)
static poly pp_Mult_qq(poly p, poly q, const ring r)
static poly p_Init(const ring r, omBin bin)
static poly p_Copy(poly p, const ring r)
returns a copy of p
static long p_Totaldegree(poly p, const ring r)
#define __p_Mult_nn(p, n, r)
poly prMapR(poly src, nMapFunc nMap, ring src_r, ring dest_r)
void StringAppendS(const char *st)
void PrintS(const char *s)
void rWrite(ring r, BOOLEAN details)
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
void rDelete(ring r)
unconditionally deletes fields in r
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
static ring rIncRefCnt(ring r)
static char * rRingVar(short i, const ring r)
static void rDecRefCnt(ring r)
static BOOLEAN rCanShortOut(const ring r)
static short rVar(const ring r)
#define rVar(r) (r->N)
poly gcd_over_Q(poly f, poly g, const ring r)
helper routine for calling singclap_gcd_r