218{
219
222 {
223
225 }
226 else
227 {
230 if (reallen<=0) reallen=
currRing->N;
234
236 {
238 {
240 {
243 while ((
j>0) && (r[0]->
m[
j]==
NULL))
j--;
246 {
249 }
250 }
251 else
252 {
256 {
259 }
260 else
261 {
263 }
265 }
267 if ((weights!=
NULL) && (weights[
i]!=
NULL))
268 {
270 (*w) += add_row_shift;
273 }
274 }
275 #ifdef TEST
276 else
277 {
278
279 WarnS(
"internal NULL in resolvente");
281 }
282 #endif
284 }
288 {
292 }
294 {
296 ideal I=(ideal)L->
m[
i-1].
data;
297 ideal J;
300 {
302 }
303 else
304 {
306 }
309 }
310
311 }
312 return L;
313}
void atSet(idhdl root, char *name, void *data, int typ)
static int si_max(const int a, const int b)
INLINE_THIS void Init(int l=0)
#define idDelete(H)
delete an ideal
ideal idFreeModule(int i)
static BOOLEAN length(leftv result, leftv arg)
void pEnlargeSet(poly **p, int l, int increment)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
ideal idInit(int idsize, int rank)
initialise an ideal / module
ideal id_FreeModule(int i, const ring r)
the free module of rank i
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size