My Project
Macros | Typedefs | Enumerations | Functions
ideals.h File Reference
#include "polys/monomials/ring.h"
#include "polys/monomials/p_polys.h"
#include "polys/simpleideals.h"
#include "kernel/structs.h"

Go to the source code of this file.

Macros

#define idDelete(H)   id_Delete((H),currRing)
 delete an ideal More...
 
#define idMaxIdeal(D)   id_MaxIdeal(D,currRing)
 initialise the maximal ideal (at 0) More...
 
#define idPosConstant(I)   id_PosConstant(I,currRing)
 index of generator with leading term in ground ring (if any); otherwise -1 More...
 
#define idIsConstant(I)   id_IsConstant(I,currRing)
 
#define idSimpleAdd(A, B)   id_SimpleAdd(A,B,currRing)
 
#define idPrint(id)   id_Print(id, currRing, currRing)
 
#define idTest(id)   id_Test(id, currRing)
 

Typedefs

typedef ideal * resolvente
 

Enumerations

enum  GbVariant {
  GbDefault =0 , GbStd , GbSlimgb , GbSba ,
  GbGroebner , GbModstd , GbFfmod , GbNfmod ,
  GbStdSat , GbSingmatic
}
 

Functions

static ideal idCopyFirstK (const ideal ide, const int k)
 
void idKeepFirstK (ideal ide, const int k)
 keeps the first k (>= 1) entries of the given ideal (Note that the kept polynomials may be zero.) More...
 
void idDelEquals (ideal id)
 
ideal id_Copy (ideal h1, const ring r)
 copy an ideal More...
 
ideal idCopy (ideal A)
 
ideal idAdd (ideal h1, ideal h2)
 h1 + h2 More...
 
BOOLEAN idInsertPoly (ideal h1, poly h2)
 insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted More...
 
BOOLEAN idInsertPolyOnPos (ideal I, poly p, int pos)
 insert p into I on position pos More...
 
BOOLEAN idInsertPolyWithTests (ideal h1, const int validEntries, const poly h2, const bool zeroOk, const bool duplicateOk)
 
static ideal idMult (ideal h1, ideal h2)
 hh := h1 * h2 More...
 
BOOLEAN idIs0 (ideal h)
 returns true if h is the zero ideal More...
 
static BOOLEAN idHomIdeal (ideal id, ideal Q=NULL)
 
static BOOLEAN idHomModule (ideal m, ideal Q, intvec **w)
 
BOOLEAN idTestHomModule (ideal m, ideal Q, intvec *w)
 
ideal idMinBase (ideal h1)
 
void idInitChoise (int r, int beg, int end, BOOLEAN *endch, int *choise)
 
void idGetNextChoise (int r, int end, BOOLEAN *endch, int *choise)
 
int idGetNumberOfChoise (int t, int d, int begin, int end, int *choise)
 
int binom (int n, int r)
 
ideal idFreeModule (int i)
 
ideal idSect (ideal h1, ideal h2, GbVariant a=GbDefault)
 
ideal idMultSect (resolvente arg, int length, GbVariant a=GbDefault)
 
ideal idSyzygies (ideal h1, tHomog h, intvec **w, BOOLEAN setSyzComp=TRUE, BOOLEAN setRegularity=FALSE, int *deg=NULL, GbVariant a=GbDefault)
 
ideal idLiftStd (ideal h1, matrix *m, tHomog h=testHomog, ideal *syz=NULL, GbVariant a=GbDefault, ideal h11=NULL)
 
ideal idLift (ideal mod, ideal submod, ideal *rest=NULL, BOOLEAN goodShape=FALSE, BOOLEAN isSB=TRUE, BOOLEAN divide=FALSE, matrix *unit=NULL, GbVariant a=GbDefault)
 represents the generators of submod in terms of the generators of mod (Matrix(SM)*U-Matrix(rest)) = Matrix(M)*Matrix(result) goodShape: maximal non-zero index in generators of SM <= that of M isSB: generators of M form a Groebner basis divide: allow SM not to be a submodule of M U is an diagonal matrix of units (non-constant only in local rings) rest is: 0 if SM in M, SM if not divide, NF(SM,std(M)) if divide More...
 
void idLiftW (ideal P, ideal Q, int n, matrix &T, ideal &R, int *w=NULL)
 
ideal idQuot (ideal h1, ideal h2, BOOLEAN h1IsStb=FALSE, BOOLEAN resultIsIdeal=FALSE)
 
ideal idElimination (ideal h1, poly delVar, intvec *hilb=NULL, GbVariant a=GbDefault)
 
ideal idMinors (matrix a, int ar, ideal R=NULL)
 compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R (if R!=NULL) More...
 
ideal idMinEmbedding (ideal arg, BOOLEAN inPlace=FALSE, intvec **w=NULL)
 
ideal idHead (ideal h)
 
BOOLEAN idIsSubModule (ideal id1, ideal id2)
 
static ideal idVec2Ideal (poly vec)
 
ideal idSeries (int n, ideal M, matrix U=NULL, intvec *w=NULL)
 
static BOOLEAN idIsZeroDim (ideal i)
 
matrix idDiff (matrix i, int k)
 
matrix idDiffOp (ideal I, ideal J, BOOLEAN multiply=TRUE)
 
static intvecidSort (ideal id, BOOLEAN nolex=TRUE)
 
ideal idModulo (ideal h1, ideal h2, tHomog h=testHomog, intvec **w=NULL, matrix *T=NULL, GbVariant a=GbDefault)
 
matrix idCoeffOfKBase (ideal arg, ideal kbase, poly how)
 
poly id_GCD (poly f, poly g, const ring r)
 
ideal id_Farey (ideal x, number N, const ring r)
 
ideal id_TensorModuleMult (const int m, const ideal M, const ring rRing)
 
ideal id_Satstd (const ideal I, ideal J, const ring r)
 
GbVariant syGetAlgorithm (char *n, const ring r, const ideal M)
 

Macro Definition Documentation

◆ idDelete

#define idDelete (   H)    id_Delete((H),currRing)

delete an ideal

Definition at line 29 of file ideals.h.

◆ idIsConstant

#define idIsConstant (   I)    id_IsConstant(I,currRing)

Definition at line 40 of file ideals.h.

◆ idMaxIdeal

#define idMaxIdeal (   D)    id_MaxIdeal(D,currRing)

initialise the maximal ideal (at 0)

Definition at line 33 of file ideals.h.

◆ idPosConstant

#define idPosConstant (   I)    id_PosConstant(I,currRing)

index of generator with leading term in ground ring (if any); otherwise -1

Definition at line 37 of file ideals.h.

◆ idPrint

#define idPrint (   id)    id_Print(id, currRing, currRing)

Definition at line 46 of file ideals.h.

◆ idSimpleAdd

#define idSimpleAdd (   A,
  B 
)    id_SimpleAdd(A,B,currRing)

Definition at line 42 of file ideals.h.

◆ idTest

#define idTest (   id)    id_Test(id, currRing)

Definition at line 47 of file ideals.h.

Typedef Documentation

◆ resolvente

typedef ideal* resolvente

Definition at line 18 of file ideals.h.

Enumeration Type Documentation

◆ GbVariant

enum GbVariant
Enumerator
GbDefault 
GbStd 
GbSlimgb 
GbSba 
GbGroebner 
GbModstd 
GbFfmod 
GbNfmod 
GbStdSat 
GbSingmatic 

Definition at line 118 of file ideals.h.

119{
120 GbDefault=0,
121 // internal variants:
122 GbStd,
123 GbSlimgb,
124 GbSba,
125 // and the library functions:
127 GbModstd,
128 GbFfmod,
129 GbNfmod,
130 GbStdSat,
132};
@ GbGroebner
Definition: ideals.h:126
@ GbModstd
Definition: ideals.h:127
@ GbStdSat
Definition: ideals.h:130
@ GbSlimgb
Definition: ideals.h:123
@ GbFfmod
Definition: ideals.h:128
@ GbNfmod
Definition: ideals.h:129
@ GbDefault
Definition: ideals.h:120
@ GbStd
Definition: ideals.h:122
@ GbSingmatic
Definition: ideals.h:131
@ GbSba
Definition: ideals.h:124

Function Documentation

◆ binom()

int binom ( int  n,
int  r 
)

Definition at line 922 of file simpleideals.cc.

923{
924 int i;
926
927 if (r==0) return 1;
928 if (n-r<r) return binom(n,n-r);
929 result = n-r+1;
930 for (i=2;i<=r;i++)
931 {
932 result *= n-r+i;
933 result /= i;
934 }
936 {
937 WarnS("overflow in binomials");
938 result=0;
939 }
940 return (int)result;
941}
long int64
Definition: auxiliary.h:68
int i
Definition: cfEzgcd.cc:132
#define WarnS
Definition: emacs.cc:78
return result
Definition: facAbsBiFact.cc:75
const int MAX_INT_VAL
Definition: mylimits.h:12
int binom(int n, int r)

◆ id_Copy()

ideal id_Copy ( ideal  h1,
const ring  r 
)

copy an ideal

Definition at line 413 of file simpleideals.cc.

414{
415 id_Test(h1, r);
416
417 ideal h2 = idInit(IDELEMS(h1), h1->rank);
418 for (int i=IDELEMS(h1)-1; i>=0; i--)
419 h2->m[i] = p_Copy(h1->m[i],r);
420 return h2;
421}
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:846
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
#define IDELEMS(i)
Definition: simpleideals.h:23
#define id_Test(A, lR)
Definition: simpleideals.h:78

◆ id_Farey()

ideal id_Farey ( ideal  x,
number  N,
const ring  r 
)

Definition at line 2852 of file ideals.cc.

2853{
2854 int cnt=IDELEMS(x)*x->nrows;
2855 ideal result=idInit(cnt,x->rank);
2856 result->nrows=x->nrows; // for lifting matrices
2857 result->ncols=x->ncols; // for lifting matrices
2858
2859 int i;
2860 for(i=cnt-1;i>=0;i--)
2861 {
2862 result->m[i]=p_Farey(x->m[i],N,r);
2863 }
2864 return result;
2865}
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:56
Variable x
Definition: cfModGcd.cc:4082
poly p_Farey(poly p, number N, const ring r)
Definition: p_polys.cc:54

◆ id_GCD()

poly id_GCD ( poly  f,
poly  g,
const ring  r 
)

Definition at line 2749 of file ideals.cc.

2750{
2751 ideal I=idInit(2,1); I->m[0]=f; I->m[1]=g;
2752 intvec *w = NULL;
2753
2754 ring save_r = currRing;
2755 rChangeCurrRing(r);
2756 ideal S=idSyzygies(I,testHomog,&w);
2757 rChangeCurrRing(save_r);
2758
2759 if (w!=NULL) delete w;
2760 poly gg=p_TakeOutComp(&(S->m[0]), 2, r);
2761 id_Delete(&S, r);
2762 poly gcd_p=singclap_pdivide(f,gg, r);
2763 p_Delete(&gg, r);
2764
2765 return gcd_p;
2766}
g
Definition: cfModGcd.cc:4090
FILE * f
Definition: checklibs.c:9
poly singclap_pdivide(poly f, poly g, const ring r)
Definition: clapsing.cc:624
Definition: intvec.h:23
const CanonicalForm & w
Definition: facAbsFact.cc:51
ideal idSyzygies(ideal h1, tHomog h, intvec **w, BOOLEAN setSyzComp, BOOLEAN setRegularity, int *deg, GbVariant alg)
Definition: ideals.cc:830
void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r)
Definition: p_polys.cc:3574
#define NULL
Definition: omList.c:12
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
@ testHomog
Definition: structs.h:38

◆ id_Satstd()

ideal id_Satstd ( const ideal  I,
ideal  J,
const ring  r 
)

Definition at line 3112 of file ideals.cc.

3113{
3114 ring save=currRing;
3115 if (currRing!=r) rChangeCurrRing(r);
3116 idSkipZeroes(J);
3117 id_satstdSaturatingVariables=(int*)omAlloc0((1+rVar(currRing))*sizeof(int));
3118 int k=IDELEMS(J);
3119 if (k>1)
3120 {
3121 for (int i=0; i<k; i++)
3122 {
3123 poly x = J->m[i];
3124 int li = p_Var(x,r);
3125 if (li>0)
3127 else
3128 {
3129 if (currRing!=save) rChangeCurrRing(save);
3130 WerrorS("ideal generators must be variables");
3131 return NULL;
3132 }
3133 }
3134 }
3135 else
3136 {
3137 poly x = J->m[0];
3138 for (int i=1; i<=r->N; i++)
3139 {
3140 int li = p_GetExp(x,i,r);
3141 if (li==1)
3143 else if (li>1)
3144 {
3145 if (currRing!=save) rChangeCurrRing(save);
3146 Werror("exponent(x(%d)^%d) must be 0 or 1",i,li);
3147 return NULL;
3148 }
3149 }
3150 }
3151 ideal res=kStd(I,r->qideal,testHomog,NULL,NULL,0,0,NULL,id_sat_vars_sp);
3154 if (currRing!=save) rChangeCurrRing(save);
3155 return res;
3156}
int k
Definition: cfEzgcd.cc:99
CanonicalForm res
Definition: facAbsFact.cc:60
void WerrorS(const char *s)
Definition: feFopen.cc:24
STATIC_VAR int * id_satstdSaturatingVariables
Definition: ideals.cc:2997
static BOOLEAN id_sat_vars_sp(kStrategy strat)
Definition: ideals.cc:2999
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2433
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc0(size)
Definition: omAllocDecl.h:211
int p_Var(poly m, const ring r)
Definition: p_polys.cc:4721
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469
void Werror(const char *fmt,...)
Definition: reporter.cc:189
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:593
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size

◆ id_TensorModuleMult()

ideal id_TensorModuleMult ( const int  m,
const ideal  M,
const ring  rRing 
)

Definition at line 1799 of file simpleideals.cc.

1800{
1801// #ifdef DEBU
1802// WarnS("tensorModuleMult!!!!");
1803
1804 assume(m > 0);
1805 assume(M != NULL);
1806
1807 const int n = rRing->N;
1808
1809 assume(M->rank <= m * n);
1810
1811 const int k = IDELEMS(M);
1812
1813 ideal idTemp = idInit(k,m); // = {f_1, ..., f_k }
1814
1815 for( int i = 0; i < k; i++ ) // for every w \in M
1816 {
1817 poly pTempSum = NULL;
1818
1819 poly w = M->m[i];
1820
1821 while(w != NULL) // for each term of w...
1822 {
1823 poly h = p_Head(w, rRing);
1824
1825 const int gen = __p_GetComp(h, rRing); // 1 ...
1826
1827 assume(gen > 0);
1828 assume(gen <= n*m);
1829
1830 // TODO: write a formula with %, / instead of while!
1831 /*
1832 int c = gen;
1833 int v = 1;
1834 while(c > m)
1835 {
1836 c -= m;
1837 v++;
1838 }
1839 */
1840
1841 int cc = gen % m;
1842 if( cc == 0) cc = m;
1843 int vv = 1 + (gen - cc) / m;
1844
1845// assume( cc == c );
1846// assume( vv == v );
1847
1848 // 1<= c <= m
1849 assume( cc > 0 );
1850 assume( cc <= m );
1851
1852 assume( vv > 0 );
1853 assume( vv <= n );
1854
1855 assume( (cc + (vv-1)*m) == gen );
1856
1857 p_IncrExp(h, vv, rRing); // h *= var(j) && // p_AddExp(h, vv, 1, rRing);
1858 p_SetComp(h, cc, rRing);
1859
1860 p_Setm(h, rRing); // addjust degree after the previous steps!
1861
1862 pTempSum = p_Add_q(pTempSum, h, rRing); // it is slow since h will be usually put to the back of pTempSum!!!
1863
1864 pIter(w);
1865 }
1866
1867 idTemp->m[i] = pTempSum;
1868 }
1869
1870 // simplify idTemp???
1871
1872 ideal idResult = id_Transp(idTemp, rRing);
1873
1874 id_Delete(&idTemp, rRing);
1875
1876 return(idResult);
1877}
int m
Definition: cfEzgcd.cc:128
STATIC_VAR Poly * h
Definition: janet.cc:971
#define assume(x)
Definition: mod2.h:387
#define pIter(p)
Definition: monomials.h:37
#define __p_GetComp(p, r)
Definition: monomials.h:63
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:936
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:247
static long p_IncrExp(poly p, int v, ring r)
Definition: p_polys.h:591
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition: p_polys.h:860
ideal id_Transp(ideal a, const ring rRing)
transpose a module
#define M
Definition: sirandom.c:25

◆ idAdd()

ideal idAdd ( ideal  h1,
ideal  h2 
)
inline

h1 + h2

Definition at line 68 of file ideals.h.

69{
70 return id_Add(h1, h2, currRing);
71}
ideal id_Add(ideal h1, ideal h2, const ring r)
h1 + h2

◆ idCoeffOfKBase()

matrix idCoeffOfKBase ( ideal  arg,
ideal  kbase,
poly  how 
)

Definition at line 2625 of file ideals.cc.

2626{
2627 matrix result;
2628 ideal tempKbase;
2629 poly p,q;
2630 intvec * convert;
2631 int i=IDELEMS(kbase),j=IDELEMS(arg),k,pos;
2632#if 0
2633 while ((i>0) && (kbase->m[i-1]==NULL)) i--;
2634 if (idIs0(arg))
2635 return mpNew(i,1);
2636 while ((j>0) && (arg->m[j-1]==NULL)) j--;
2637 result = mpNew(i,j);
2638#else
2639 result = mpNew(i, j);
2640 while ((j>0) && (arg->m[j-1]==NULL)) j--;
2641#endif
2642
2643 tempKbase = idCreateSpecialKbase(kbase,&convert);
2644 for (k=0;k<j;k++)
2645 {
2646 p = arg->m[k];
2647 while (p!=NULL)
2648 {
2649 q = idDecompose(p,how,tempKbase,&pos);
2650 if (pos>=0)
2651 {
2652 MATELEM(result,(*convert)[pos],k+1) =
2653 pAdd(MATELEM(result,(*convert)[pos],k+1),q);
2654 }
2655 else
2656 p_Delete(&q,currRing);
2657 pIter(p);
2658 }
2659 }
2660 idDelete(&tempKbase);
2661 return result;
2662}
int p
Definition: cfModGcd.cc:4078
int j
Definition: facHensel.cc:110
ideal idCreateSpecialKbase(ideal kBase, intvec **convert)
Definition: ideals.cc:2539
poly idDecompose(poly monom, poly how, ideal kbase, int *pos)
Definition: ideals.cc:2593
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:37
#define MATELEM(mat, i, j)
1-based access to matrix
Definition: matpol.h:29
#define pAdd(p, q)
Definition: polys.h:203

◆ idCopy()

ideal idCopy ( ideal  A)
inline

Definition at line 60 of file ideals.h.

61{
62 return id_Copy(A, currRing);
63}
ideal id_Copy(ideal h1, const ring r)
copy an ideal
#define A
Definition: sirandom.c:24

◆ idCopyFirstK()

static ideal idCopyFirstK ( const ideal  ide,
const int  k 
)
inlinestatic

Definition at line 20 of file ideals.h.

21{
22 return id_CopyFirstK(ide, k, currRing);
23}
ideal id_CopyFirstK(const ideal ide, const int k, const ring r)
copies the first k (>= 1) entries of the given ideal/module and returns these as a new ideal/module (...

◆ idDelEquals()

void idDelEquals ( ideal  id)

Definition at line 2960 of file ideals.cc.

2961{
2962 int idsize = IDELEMS(id);
2963 poly_sort *id_sort = (poly_sort *)omAlloc0(idsize*sizeof(poly_sort));
2964 for (int i = 0; i < idsize; i++)
2965 {
2966 id_sort[i].p = id->m[i];
2967 id_sort[i].index = i;
2968 }
2969 idSort_qsort(id_sort, idsize);
2970 int index, index_i, index_j;
2971 int i = 0;
2972 for (int j = 1; j < idsize; j++)
2973 {
2974 if (id_sort[i].p != NULL && pEqualPolys(id_sort[i].p, id_sort[j].p))
2975 {
2976 index_i = id_sort[i].index;
2977 index_j = id_sort[j].index;
2978 if (index_j > index_i)
2979 {
2980 index = index_j;
2981 }
2982 else
2983 {
2984 index = index_i;
2985 i = j;
2986 }
2987 pDelete(&id->m[index]);
2988 }
2989 else
2990 {
2991 i = j;
2992 }
2993 }
2994 omFreeSize((ADDRESS)(id_sort), idsize*sizeof(poly_sort));
2995}
void * ADDRESS
Definition: auxiliary.h:119
int index
Definition: ideals.cc:2943
poly p
Definition: ideals.cc:2942
void idSort_qsort(poly_sort *id_sort, int idsize)
Definition: ideals.cc:2951
static int index(p_Length length, p_Ord ord)
Definition: p_Procs_Impl.h:592
#define pDelete(p_ptr)
Definition: polys.h:186
#define pEqualPolys(p1, p2)
Definition: polys.h:400

◆ idDiff()

matrix idDiff ( matrix  i,
int  k 
)

Definition at line 2142 of file ideals.cc.

2143{
2144 int e=MATCOLS(i)*MATROWS(i);
2146 r->rank=i->rank;
2147 int j;
2148 for(j=0; j<e; j++)
2149 {
2150 r->m[j]=pDiff(i->m[j],k);
2151 }
2152 return r;
2153}
long rank
Definition: matpol.h:19
poly * m
Definition: matpol.h:18
#define MATROWS(i)
Definition: matpol.h:26
#define MATCOLS(i)
Definition: matpol.h:27
#define pDiff(a, b)
Definition: polys.h:296

◆ idDiffOp()

matrix idDiffOp ( ideal  I,
ideal  J,
BOOLEAN  multiply = TRUE 
)

Definition at line 2155 of file ideals.cc.

2156{
2157 matrix r=mpNew(IDELEMS(I),IDELEMS(J));
2158 int i,j;
2159 for(i=0; i<IDELEMS(I); i++)
2160 {
2161 for(j=0; j<IDELEMS(J); j++)
2162 {
2163 MATELEM(r,i+1,j+1)=pDiffOp(I->m[i],J->m[j],multiply);
2164 }
2165 }
2166 return r;
2167}
#define pDiffOp(a, b, m)
Definition: polys.h:297

◆ idElimination()

ideal idElimination ( ideal  h1,
poly  delVar,
intvec hilb = NULL,
GbVariant  a = GbDefault 
)

Definition at line 1593 of file ideals.cc.

1594{
1595 int i,j=0,k,l;
1596 ideal h,hh, h3;
1597 rRingOrder_t *ord;
1598 int *block0,*block1;
1599 int ordersize=2;
1600 int **wv;
1601 tHomog hom;
1602 intvec * w;
1603 ring tmpR;
1604 ring origR = currRing;
1605
1606 if (delVar==NULL)
1607 {
1608 return idCopy(h1);
1609 }
1610 if ((currRing->qideal!=NULL) && rIsPluralRing(origR))
1611 {
1612 WerrorS("cannot eliminate in a qring");
1613 return NULL;
1614 }
1615 if (idIs0(h1)) return idInit(1,h1->rank);
1616#ifdef HAVE_PLURAL
1617 if (rIsPluralRing(origR))
1618 /* in the NC case, we have to check the admissibility of */
1619 /* the subalgebra to be intersected with */
1620 {
1621 if ((ncRingType(origR) != nc_skew) && (ncRingType(origR) != nc_exterior)) /* in (quasi)-commutative algebras every subalgebra is admissible */
1622 {
1623 if (nc_CheckSubalgebra(delVar,origR))
1624 {
1625 WerrorS("no elimination is possible: subalgebra is not admissible");
1626 return NULL;
1627 }
1628 }
1629 }
1630#endif
1631 hom=(tHomog)idHomModule(h1,NULL,&w); //sets w to weight vector or NULL
1632 h3=idInit(16,h1->rank);
1633 for (k=0;; k++)
1634 {
1635 if (origR->order[k]!=0) ordersize++;
1636 else break;
1637 }
1638#if 0
1639 if (rIsPluralRing(origR)) // we have too keep the odering: it may be needed
1640 // for G-algebra
1641 {
1642 for (k=0;k<ordersize-1; k++)
1643 {
1644 block0[k+1] = origR->block0[k];
1645 block1[k+1] = origR->block1[k];
1646 ord[k+1] = origR->order[k];
1647 if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]);
1648 }
1649 }
1650 else
1651 {
1652 block0[1] = 1;
1653 block1[1] = (currRing->N);
1654 if (origR->OrdSgn==1) ord[1] = ringorder_wp;
1655 else ord[1] = ringorder_ws;
1656 wv[1]=(int*)omAlloc0((currRing->N)*sizeof(int));
1657 double wNsqr = (double)2.0 / (double)(currRing->N);
1659 int *x= (int * )omAlloc(2 * ((currRing->N) + 1) * sizeof(int));
1660 int sl=IDELEMS(h1) - 1;
1661 wCall(h1->m, sl, x, wNsqr);
1662 for (sl = (currRing->N); sl!=0; sl--)
1663 wv[1][sl-1] = x[sl + (currRing->N) + 1];
1664 omFreeSize((ADDRESS)x, 2 * ((currRing->N) + 1) * sizeof(int));
1665
1666 ord[2]=ringorder_C;
1667 ord[3]=0;
1668 }
1669#else
1670#endif
1671 if ((hom==TRUE) && (origR->OrdSgn==1) && (!rIsPluralRing(origR)))
1672 {
1673 #if 1
1674 // we change to an ordering:
1675 // aa(1,1,1,...,0,0,0),wp(...),C
1676 // this seems to be better than version 2 below,
1677 // according to Tst/../elimiate_[3568].tat (- 17 %)
1678 ord=(rRingOrder_t*)omAlloc0(4*sizeof(rRingOrder_t));
1679 block0=(int*)omAlloc0(4*sizeof(int));
1680 block1=(int*)omAlloc0(4*sizeof(int));
1681 wv=(int**) omAlloc0(4*sizeof(int**));
1682 block0[0] = block0[1] = 1;
1683 block1[0] = block1[1] = rVar(origR);
1684 wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1685 // use this special ordering: like ringorder_a, except that pFDeg, pWeights
1686 // ignore it
1687 ord[0] = ringorder_aa;
1688 for (j=0;j<rVar(origR);j++)
1689 if (pGetExp(delVar,j+1)!=0) wv[0][j]=1;
1690 BOOLEAN wp=FALSE;
1691 for (j=0;j<rVar(origR);j++)
1692 if (p_Weight(j+1,origR)!=1) { wp=TRUE;break; }
1693 if (wp)
1694 {
1695 wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1696 for (j=0;j<rVar(origR);j++)
1697 wv[1][j]=p_Weight(j+1,origR);
1698 ord[1] = ringorder_wp;
1699 }
1700 else
1701 ord[1] = ringorder_dp;
1702 #else
1703 // we change to an ordering:
1704 // a(w1,...wn),wp(1,...0.....),C
1705 ord=(int*)omAlloc0(4*sizeof(int));
1706 block0=(int*)omAlloc0(4*sizeof(int));
1707 block1=(int*)omAlloc0(4*sizeof(int));
1708 wv=(int**) omAlloc0(4*sizeof(int**));
1709 block0[0] = block0[1] = 1;
1710 block1[0] = block1[1] = rVar(origR);
1711 wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1712 wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1713 ord[0] = ringorder_a;
1714 for (j=0;j<rVar(origR);j++)
1715 wv[0][j]=pWeight(j+1,origR);
1716 ord[1] = ringorder_wp;
1717 for (j=0;j<rVar(origR);j++)
1718 if (pGetExp(delVar,j+1)!=0) wv[1][j]=1;
1719 #endif
1720 ord[2] = ringorder_C;
1721 ord[3] = (rRingOrder_t)0;
1722 }
1723 else
1724 {
1725 // we change to an ordering:
1726 // aa(....),orig_ordering
1727 ord=(rRingOrder_t*)omAlloc0(ordersize*sizeof(rRingOrder_t));
1728 block0=(int*)omAlloc0(ordersize*sizeof(int));
1729 block1=(int*)omAlloc0(ordersize*sizeof(int));
1730 wv=(int**) omAlloc0(ordersize*sizeof(int**));
1731 for (k=0;k<ordersize-1; k++)
1732 {
1733 block0[k+1] = origR->block0[k];
1734 block1[k+1] = origR->block1[k];
1735 ord[k+1] = origR->order[k];
1736 if (origR->wvhdl[k]!=NULL)
1737 #ifdef HAVE_OMALLOC
1738 wv[k+1] = (int*) omMemDup(origR->wvhdl[k]);
1739 #else
1740 {
1741 int l=(origR->block1[k]-origR->block0[k]+1)*sizeof(int);
1742 if (origR->order[k]==ringorder_a64) l*=2;
1743 wv[k+1]=(int*)omalloc(l);
1744 memcpy(wv[k+1],origR->wvhdl[k],l);
1745 }
1746 #endif
1747 }
1748 block0[0] = 1;
1749 block1[0] = rVar(origR);
1750 wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1751 for (j=0;j<rVar(origR);j++)
1752 if (pGetExp(delVar,j+1)!=0) wv[0][j]=1;
1753 // use this special ordering: like ringorder_a, except that pFDeg, pWeights
1754 // ignore it
1755 ord[0] = ringorder_aa;
1756 }
1757 // fill in tmp ring to get back the data later on
1758 tmpR = rCopy0(origR,FALSE,FALSE); // qring==NULL
1759 //rUnComplete(tmpR);
1760 tmpR->p_Procs=NULL;
1761 tmpR->order = ord;
1762 tmpR->block0 = block0;
1763 tmpR->block1 = block1;
1764 tmpR->wvhdl = wv;
1765 rComplete(tmpR, 1);
1766
1767#ifdef HAVE_PLURAL
1768 /* update nc structure on tmpR */
1769 if (rIsPluralRing(origR))
1770 {
1771 if ( nc_rComplete(origR, tmpR, false) ) // no quotient ideal!
1772 {
1773 WerrorS("no elimination is possible: ordering condition is violated");
1774 // cleanup
1775 rDelete(tmpR);
1776 if (w!=NULL)
1777 delete w;
1778 return NULL;
1779 }
1780 }
1781#endif
1782 // change into the new ring
1783 //pChangeRing((currRing->N),currRing->OrdSgn,ord,block0,block1,wv);
1784 rChangeCurrRing(tmpR);
1785
1786 //h = idInit(IDELEMS(h1),h1->rank);
1787 // fetch data from the old ring
1788 //for (k=0;k<IDELEMS(h1);k++) h->m[k] = prCopyR( h1->m[k], origR);
1789 h=idrCopyR(h1,origR,currRing);
1790 if (origR->qideal!=NULL)
1791 {
1792 WarnS("eliminate in q-ring: experimental");
1793 ideal q=idrCopyR(origR->qideal,origR,currRing);
1794 ideal s=idSimpleAdd(h,q);
1795 idDelete(&h);
1796 idDelete(&q);
1797 h=s;
1798 }
1799 // compute GB
1800 if ((alg!=GbDefault)
1801 && (alg!=GbGroebner)
1802 && (alg!=GbModstd)
1803 && (alg!=GbSlimgb)
1804 && (alg!=GbSba)
1805 && (alg!=GbStd))
1806 {
1807 WarnS("wrong algorithm for GB");
1808 alg=GbDefault;
1809 }
1810 BITSET save2;
1811 SI_SAVE_OPT2(save2);
1813 hh=idGroebner(h,0,alg,hilb);
1814 SI_RESTORE_OPT2(save2);
1815 // go back to the original ring
1816 rChangeCurrRing(origR);
1817 i = IDELEMS(hh)-1;
1818 while ((i >= 0) && (hh->m[i] == NULL)) i--;
1819 j = -1;
1820 // fetch data from temp ring
1821 for (k=0; k<=i; k++)
1822 {
1823 l=(currRing->N);
1824 while ((l>0) && (p_GetExp( hh->m[k],l,tmpR)*pGetExp(delVar,l)==0)) l--;
1825 if (l==0)
1826 {
1827 j++;
1828 if (j >= IDELEMS(h3))
1829 {
1830 pEnlargeSet(&(h3->m),IDELEMS(h3),16);
1831 IDELEMS(h3) += 16;
1832 }
1833 h3->m[j] = prMoveR( hh->m[k], tmpR,origR);
1834 hh->m[k] = NULL;
1835 }
1836 }
1837 id_Delete(&hh, tmpR);
1838 idSkipZeroes(h3);
1839 rDelete(tmpR);
1840 if (w!=NULL)
1841 delete w;
1842 return h3;
1843}
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
int l
Definition: cfEzgcd.cc:100
const CanonicalForm int s
Definition: facAbsFact.cc:51
static ideal idGroebner(ideal temp, int syzComp, GbVariant alg, intvec *hilb=NULL, intvec *w=NULL, tHomog hom=testHomog)
Definition: ideals.cc:201
#define idSimpleAdd(A, B)
Definition: ideals.h:42
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
Definition: ideals.h:96
ideal idCopy(ideal A)
Definition: ideals.h:60
@ nc_skew
Definition: nc.h:16
@ nc_exterior
Definition: nc.h:21
static nc_type & ncRingType(nc_struct *p)
Definition: nc.h:159
BOOLEAN nc_CheckSubalgebra(poly PolyVar, ring r)
Definition: old.gring.cc:2568
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omalloc(size)
Definition: omAllocDecl.h:228
#define omMemDup(s)
Definition: omAllocDecl.h:264
VAR unsigned si_opt_2
Definition: options.c:6
#define SI_SAVE_OPT2(A)
Definition: options.h:22
#define SI_RESTORE_OPT2(A)
Definition: options.h:25
#define TEST_OPT_RETURN_SB
Definition: options.h:112
#define V_IDELIM
Definition: options.h:70
int p_Weight(int i, const ring r)
Definition: p_polys.cc:705
void pEnlargeSet(poly **p, int l, int increment)
Definition: p_polys.cc:3774
#define pWeight(i)
Definition: polys.h:280
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
poly prMoveR(poly &p, ring src_r, ring dest_r)
Definition: prCopy.cc:90
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:192
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3492
BOOLEAN nc_rComplete(const ring src, ring dest, bool bSetupQuotient)
Definition: ring.cc:5786
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1421
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:450
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
rRingOrder_t
order stuff
Definition: ring.h:68
@ ringorder_a
Definition: ring.h:70
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_C
Definition: ring.h:73
@ ringorder_dp
Definition: ring.h:78
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_ws
Definition: ring.h:86
@ ringorder_wp
Definition: ring.h:81
tHomog
Definition: structs.h:35
#define BITSET
Definition: structs.h:16
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:20
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:108
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.cc:78

◆ idFreeModule()

ideal idFreeModule ( int  i)
inline

Definition at line 111 of file ideals.h.

112{
113 return id_FreeModule (i, currRing);
114}
ideal id_FreeModule(int i, const ring r)
the free module of rank i

◆ idGetNextChoise()

void idGetNextChoise ( int  r,
int  end,
BOOLEAN endch,
int *  choise 
)

Definition at line 864 of file simpleideals.cc.

865{
866 int i = r-1,j;
867 while ((i >= 0) && (choise[i] == end))
868 {
869 i--;
870 end--;
871 }
872 if (i == -1)
873 *endch = TRUE;
874 else
875 {
876 choise[i]++;
877 for (j=i+1; j<r; j++)
878 {
879 choise[j] = choise[i]+j-i;
880 }
881 *endch = FALSE;
882 }
883}

◆ idGetNumberOfChoise()

int idGetNumberOfChoise ( int  t,
int  d,
int  begin,
int  end,
int *  choise 
)

Definition at line 890 of file simpleideals.cc.

891{
892 int * localchoise,i,result=0;
894
895 if (d<=1) return 1;
896 localchoise=(int*)omAlloc((d-1)*sizeof(int));
897 idInitChoise(d-1,begin,end,&b,localchoise);
898 while (!b)
899 {
900 result++;
901 i = 0;
902 while ((i<t) && (localchoise[i]==choise[i])) i++;
903 if (i>=t)
904 {
905 i = t+1;
906 while ((i<d) && (localchoise[i-1]==choise[i])) i++;
907 if (i>=d)
908 {
909 omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int));
910 return result;
911 }
912 }
913 idGetNextChoise(d-1,end,&b,localchoise);
914 }
915 omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int));
916 return 0;
917}
CanonicalForm b
Definition: cfModGcd.cc:4103
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)

◆ idHead()

ideal idHead ( ideal  h)

◆ idHomIdeal()

static BOOLEAN idHomIdeal ( ideal  id,
ideal  Q = NULL 
)
inlinestatic

Definition at line 91 of file ideals.h.

92{
93 return id_HomIdeal(id, Q, currRing);
94}
STATIC_VAR jList * Q
Definition: janet.cc:30
BOOLEAN id_HomIdeal(ideal id, ideal Q, const ring r)

◆ idHomModule()

static BOOLEAN idHomModule ( ideal  m,
ideal  Q,
intvec **  w 
)
inlinestatic

Definition at line 96 of file ideals.h.

97{
98 return id_HomModule(m, Q, w, currRing);
99}
BOOLEAN id_HomModule(ideal m, ideal Q, intvec **w, const ring R)

◆ idInitChoise()

void idInitChoise ( int  r,
int  beg,
int  end,
BOOLEAN endch,
int *  choise 
)

Definition at line 842 of file simpleideals.cc.

843{
844 /*returns the first choise of r numbers between beg and end*/
845 int i;
846 for (i=0; i<r; i++)
847 {
848 choise[i] = 0;
849 }
850 if (r <= end-beg+1)
851 for (i=0; i<r; i++)
852 {
853 choise[i] = beg+i;
854 }
855 if (r > end-beg+1)
856 *endch = TRUE;
857 else
858 *endch = FALSE;
859}

◆ idInsertPoly()

BOOLEAN idInsertPoly ( ideal  h1,
poly  h2 
)

insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted

Definition at line 649 of file simpleideals.cc.

650{
651 if (h2==NULL) return FALSE;
652 assume (h1 != NULL);
653
654 int j = IDELEMS(h1) - 1;
655
656 while ((j >= 0) && (h1->m[j] == NULL)) j--;
657 j++;
658 if (j==IDELEMS(h1))
659 {
660 pEnlargeSet(&(h1->m),IDELEMS(h1),16);
661 IDELEMS(h1)+=16;
662 }
663 h1->m[j]=h2;
664 return TRUE;
665}

◆ idInsertPolyOnPos()

BOOLEAN idInsertPolyOnPos ( ideal  I,
poly  p,
int  pos 
)

insert p into I on position pos

Definition at line 668 of file simpleideals.cc.

669{
670 if (p==NULL) return FALSE;
671 assume (I != NULL);
672
673 int j = IDELEMS(I) - 1;
674
675 while ((j >= 0) && (I->m[j] == NULL)) j--;
676 j++;
677 if (j==IDELEMS(I))
678 {
679 pEnlargeSet(&(I->m),IDELEMS(I),IDELEMS(I)+1);
680 IDELEMS(I)+=1;
681 }
682 for(j = IDELEMS(I)-1;j>pos;j--)
683 I->m[j] = I->m[j-1];
684 I->m[pos]=p;
685 return TRUE;
686}

◆ idInsertPolyWithTests()

BOOLEAN idInsertPolyWithTests ( ideal  h1,
const int  validEntries,
const poly  h2,
const bool  zeroOk,
const bool  duplicateOk 
)
inline

Definition at line 75 of file ideals.h.

76{
77 return id_InsertPolyWithTests (h1, validEntries, h2, zeroOk, duplicateOk, currRing);
78}
BOOLEAN id_InsertPolyWithTests(ideal h1, const int validEntries, const poly h2, const bool zeroOk, const bool duplicateOk, const ring r)
insert h2 into h1 depending on the two boolean parameters:

◆ idIs0()

BOOLEAN idIs0 ( ideal  h)

returns true if h is the zero ideal

Definition at line 777 of file simpleideals.cc.

778{
779 assume (h != NULL); // will fail :(
780// if (h == NULL) return TRUE;
781
782 for( int i = IDELEMS(h)-1; i >= 0; i-- )
783 if(h->m[i] != NULL)
784 return FALSE;
785
786 return TRUE;
787
788}

◆ idIsSubModule()

BOOLEAN idIsSubModule ( ideal  id1,
ideal  id2 
)

Definition at line 2052 of file ideals.cc.

2053{
2054 int i;
2055 poly p;
2056
2057 if (idIs0(id1)) return TRUE;
2058 for (i=0;i<IDELEMS(id1);i++)
2059 {
2060 if (id1->m[i] != NULL)
2061 {
2062 p = kNF(id2,currRing->qideal,id1->m[i]);
2063 if (p != NULL)
2064 {
2066 return FALSE;
2067 }
2068 }
2069 }
2070 return TRUE;
2071}
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition: kstd1.cc:3167

◆ idIsZeroDim()

static BOOLEAN idIsZeroDim ( ideal  i)
inlinestatic

Definition at line 176 of file ideals.h.

177{
178 return id_IsZeroDim(i, currRing);
179}
BOOLEAN id_IsZeroDim(ideal I, const ring r)

◆ idKeepFirstK()

void idKeepFirstK ( ideal  ide,
const int  k 
)

keeps the first k (>= 1) entries of the given ideal (Note that the kept polynomials may be zero.)

Definition at line 2928 of file ideals.cc.

2929{
2930 for (int i = IDELEMS(id)-1; i >= k; i--)
2931 {
2932 if (id->m[i] != NULL) pDelete(&id->m[i]);
2933 }
2934 int kk=k;
2935 if (k==0) kk=1; /* ideals must have at least one element(0)*/
2936 pEnlargeSet(&(id->m), IDELEMS(id), kk-IDELEMS(id));
2937 IDELEMS(id) = kk;
2938}

◆ idLift()

ideal idLift ( ideal  mod,
ideal  submod,
ideal *  rest = NULL,
BOOLEAN  goodShape = FALSE,
BOOLEAN  isSB = TRUE,
BOOLEAN  divide = FALSE,
matrix unit = NULL,
GbVariant  a = GbDefault 
)

represents the generators of submod in terms of the generators of mod (Matrix(SM)*U-Matrix(rest)) = Matrix(M)*Matrix(result) goodShape: maximal non-zero index in generators of SM <= that of M isSB: generators of M form a Groebner basis divide: allow SM not to be a submodule of M U is an diagonal matrix of units (non-constant only in local rings) rest is: 0 if SM in M, SM if not divide, NF(SM,std(M)) if divide

Definition at line 1105 of file ideals.cc.

1107{
1108 int lsmod =id_RankFreeModule(submod,currRing), j, k;
1109 int comps_to_add=0;
1110 int idelems_mod=IDELEMS(mod);
1111 int idelems_submod=IDELEMS(submod);
1112 poly p;
1113
1114 if (idIs0(submod))
1115 {
1116 if (rest!=NULL)
1117 {
1118 *rest=idInit(1,mod->rank);
1119 }
1120 idLift_setUnit(idelems_submod,unit);
1121 return idInit(1,idelems_mod);
1122 }
1123 if (idIs0(mod)) /* and not idIs0(submod) */
1124 {
1125 if (rest!=NULL)
1126 {
1127 *rest=idCopy(submod);
1128 idLift_setUnit(idelems_submod,unit);
1129 return idInit(1,idelems_mod);
1130 }
1131 else
1132 {
1133 WerrorS("2nd module does not lie in the first");
1134 return NULL;
1135 }
1136 }
1137 if (unit!=NULL)
1138 {
1139 comps_to_add = idelems_submod;
1140 while ((comps_to_add>0) && (submod->m[comps_to_add-1]==NULL))
1141 comps_to_add--;
1142 }
1144 if ((k!=0) && (lsmod==0)) lsmod=1;
1145 k=si_max(k,(int)mod->rank);
1146 if (k<submod->rank) { WarnS("rk(submod) > rk(mod) ?");k=submod->rank; }
1147
1148 ring orig_ring=currRing;
1149 ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
1150 rSetSyzComp(k,syz_ring);
1151 rChangeCurrRing(syz_ring);
1152
1153 ideal s_mod, s_temp;
1154 if (orig_ring != syz_ring)
1155 {
1156 s_mod = idrCopyR_NoSort(mod,orig_ring,syz_ring);
1157 s_temp = idrCopyR_NoSort(submod,orig_ring,syz_ring);
1158 }
1159 else
1160 {
1161 s_mod = mod;
1162 s_temp = idCopy(submod);
1163 }
1164 ideal s_h3;
1165 if (isSB)
1166 {
1167 s_h3 = idCopy(s_mod);
1168 idPrepareStd(s_h3, k+comps_to_add);
1169 }
1170 else
1171 {
1172 s_h3 = idPrepare(s_mod,NULL,(tHomog)FALSE,k+comps_to_add,NULL,alg);
1173 }
1174 if (!goodShape)
1175 {
1176 for (j=0;j<IDELEMS(s_h3);j++)
1177 {
1178 if ((s_h3->m[j] != NULL) && (pMinComp(s_h3->m[j]) > k))
1179 p_Delete(&(s_h3->m[j]),currRing);
1180 }
1181 }
1182 idSkipZeroes(s_h3);
1183 if (lsmod==0)
1184 {
1185 id_Shift(s_temp,1,currRing);
1186 }
1187 if (unit!=NULL)
1188 {
1189 for(j = 0;j<comps_to_add;j++)
1190 {
1191 p = s_temp->m[j];
1192 if (p!=NULL)
1193 {
1194 while (pNext(p)!=NULL) pIter(p);
1195 pNext(p) = pOne();
1196 pIter(p);
1197 pSetComp(p,1+j+k);
1198 pSetmComp(p);
1199 p = pNeg(p);
1200 }
1201 }
1202 s_temp->rank += (k+comps_to_add);
1203 }
1204 ideal s_result = kNF(s_h3,currRing->qideal,s_temp,k);
1205 s_result->rank = s_h3->rank;
1206 ideal s_rest = idInit(IDELEMS(s_result),k);
1207 idDelete(&s_h3);
1208 idDelete(&s_temp);
1209
1210 for (j=0;j<IDELEMS(s_result);j++)
1211 {
1212 if (s_result->m[j]!=NULL)
1213 {
1214 if (pGetComp(s_result->m[j])<=k)
1215 {
1216 if (!divide)
1217 {
1218 if (rest==NULL)
1219 {
1220 if (isSB)
1221 {
1222 WarnS("first module not a standardbasis\n"
1223 "// ** or second not a proper submodule");
1224 }
1225 else
1226 WerrorS("2nd module does not lie in the first");
1227 }
1228 idDelete(&s_result);
1229 idDelete(&s_rest);
1230 if(syz_ring!=orig_ring)
1231 {
1232 idDelete(&s_mod);
1233 rChangeCurrRing(orig_ring);
1234 rDelete(syz_ring);
1235 }
1236 if (unit!=NULL)
1237 {
1238 idLift_setUnit(idelems_submod,unit);
1239 }
1240 if (rest!=NULL) *rest=idCopy(submod);
1241 s_result=idInit(idelems_submod,idelems_mod);
1242 return s_result;
1243 }
1244 else
1245 {
1246 p = s_rest->m[j] = s_result->m[j];
1247 while ((pNext(p)!=NULL) && (pGetComp(pNext(p))<=k)) pIter(p);
1248 s_result->m[j] = pNext(p);
1249 pNext(p) = NULL;
1250 }
1251 }
1252 p_Shift(&(s_result->m[j]),-k,currRing);
1253 pNeg(s_result->m[j]);
1254 }
1255 }
1256 if ((lsmod==0) && (s_rest!=NULL))
1257 {
1258 for (j=IDELEMS(s_rest);j>0;j--)
1259 {
1260 if (s_rest->m[j-1]!=NULL)
1261 {
1262 p_Shift(&(s_rest->m[j-1]),-1,currRing);
1263 }
1264 }
1265 }
1266 if(syz_ring!=orig_ring)
1267 {
1268 idDelete(&s_mod);
1269 rChangeCurrRing(orig_ring);
1270 s_result = idrMoveR_NoSort(s_result, syz_ring, orig_ring);
1271 s_rest = idrMoveR_NoSort(s_rest, syz_ring, orig_ring);
1272 rDelete(syz_ring);
1273 }
1274 if (rest!=NULL)
1275 {
1276 s_rest->rank=mod->rank;
1277 *rest = s_rest;
1278 }
1279 else
1280 idDelete(&s_rest);
1281 if (unit!=NULL)
1282 {
1283 *unit=mpNew(idelems_submod,idelems_submod);
1284 int i;
1285 for(i=0;i<IDELEMS(s_result);i++)
1286 {
1287 poly p=s_result->m[i];
1288 poly q=NULL;
1289 while(p!=NULL)
1290 {
1291 if(pGetComp(p)<=comps_to_add)
1292 {
1293 pSetComp(p,0);
1294 if (q!=NULL)
1295 {
1296 pNext(q)=pNext(p);
1297 }
1298 else
1299 {
1300 pIter(s_result->m[i]);
1301 }
1302 pNext(p)=NULL;
1303 MATELEM(*unit,i+1,i+1)=pAdd(MATELEM(*unit,i+1,i+1),p);
1304 if(q!=NULL) p=pNext(q);
1305 else p=s_result->m[i];
1306 }
1307 else
1308 {
1309 q=p;
1310 pIter(p);
1311 }
1312 }
1313 p_Shift(&s_result->m[i],-comps_to_add,currRing);
1314 }
1315 }
1316 s_result->rank=idelems_mod;
1317 return s_result;
1318}
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
CF_NO_INLINE FACTORY_PUBLIC CanonicalForm mod(const CanonicalForm &, const CanonicalForm &)
Definition: cf_inline.cc:571
CanonicalForm divide(const CanonicalForm &ff, const CanonicalForm &f, const CFList &as)
static void idPrepareStd(ideal s_temp, int k)
Definition: ideals.cc:1041
static void idLift_setUnit(int e_mod, matrix *unit)
Definition: ideals.cc:1082
static ideal idPrepare(ideal h1, ideal h11, tHomog hom, int syzcomp, intvec **w, GbVariant alg)
Definition: ideals.cc:607
#define pNext(p)
Definition: monomials.h:36
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
Definition: p_polys.cc:4771
#define pNeg(p)
Definition: polys.h:198
#define pGetComp(p)
Component.
Definition: polys.h:37
#define pSetComp(p, v)
Definition: polys.h:38
#define pSetmComp(p)
TODO:
Definition: polys.h:273
#define pOne()
Definition: polys.h:315
#define pMinComp(p)
Definition: polys.h:300
ideal idrMoveR_NoSort(ideal &id, ring src_r, ring dest_r)
Definition: prCopy.cc:261
ideal idrCopyR_NoSort(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:205
ring rAssure_SyzOrder(const ring r, BOOLEAN complete)
Definition: ring.cc:4510
void rSetSyzComp(int k, const ring r)
Definition: ring.cc:5166
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void id_Shift(ideal M, int s, const ring r)

◆ idLiftStd()

ideal idLiftStd ( ideal  h1,
matrix m,
tHomog  h = testHomog,
ideal *  syz = NULL,
GbVariant  a = GbDefault,
ideal  h11 = NULL 
)

Definition at line 976 of file ideals.cc.

978{
979 int inputIsIdeal=id_RankFreeModule(h1,currRing);
980 long k;
981 intvec *w=NULL;
982
983 idDelete((ideal*)T);
984 BOOLEAN lift3=FALSE;
985 if (S!=NULL) { lift3=TRUE; idDelete(S); }
986 if (idIs0(h1))
987 {
988 *T=mpNew(1,IDELEMS(h1));
989 if (lift3)
990 {
991 *S=idFreeModule(IDELEMS(h1));
992 }
993 return idInit(1,h1->rank);
994 }
995
996 BITSET save2;
997 SI_SAVE_OPT2(save2);
998
999 k=si_max(1,inputIsIdeal);
1000
1001 if ((!lift3)&&(!TEST_OPT_RETURN_SB)) si_opt_2 |=Sy_bit(V_IDLIFT);
1002
1003 ring orig_ring = currRing;
1004 ring syz_ring = rAssure_SyzOrder(orig_ring,TRUE);
1005 rSetSyzComp(k,syz_ring);
1006 rChangeCurrRing(syz_ring);
1007
1008 ideal s_h1;
1009
1010 if (orig_ring != syz_ring)
1011 s_h1 = idrCopyR_NoSort(h1,orig_ring,syz_ring);
1012 else
1013 s_h1 = h1;
1014 ideal s_h11=NULL;
1015 if (h11!=NULL)
1016 {
1017 s_h11=idrCopyR_NoSort(h11,orig_ring,syz_ring);
1018 }
1019
1020
1021 ideal s_h3=idPrepare(s_h1,s_h11,hi,k,&w,alg); // main (syz) GB computation
1022
1023
1024 if (w!=NULL) delete w;
1025 if (syz_ring!=orig_ring)
1026 {
1027 idDelete(&s_h1);
1028 if (s_h11!=NULL) idDelete(&s_h11);
1029 }
1030
1031 if (S!=NULL) (*S)=idInit(IDELEMS(s_h3),IDELEMS(h1));
1032
1033 s_h3=idExtractG_T_S(s_h3,T,S,k,IDELEMS(h1),inputIsIdeal,orig_ring,syz_ring);
1034
1035 if (syz_ring!=orig_ring) rDelete(syz_ring);
1036 s_h3->rank=h1->rank;
1037 SI_RESTORE_OPT2(save2);
1038 return s_h3;
1039}
ideal idExtractG_T_S(ideal s_h3, matrix *T, ideal *S, long syzComp, int h1_size, BOOLEAN inputIsIdeal, const ring oring, const ring sring)
Definition: ideals.cc:709
ideal idFreeModule(int i)
Definition: ideals.h:111
STATIC_VAR jList * T
Definition: janet.cc:30
#define Sy_bit(x)
Definition: options.h:31
#define V_IDLIFT
Definition: options.h:62

◆ idLiftW()

void idLiftW ( ideal  P,
ideal  Q,
int  n,
matrix T,
ideal &  R,
int *  w = NULL 
)

Definition at line 1324 of file ideals.cc.

1325{
1326 long N=0;
1327 int i;
1328 for(i=IDELEMS(Q)-1;i>=0;i--)
1329 if(w==NULL)
1330 N=si_max(N,p_Deg(Q->m[i],currRing));
1331 else
1332 N=si_max(N,p_DegW(Q->m[i],w,currRing));
1333 N+=n;
1334
1335 T=mpNew(IDELEMS(Q),IDELEMS(P));
1336 R=idInit(IDELEMS(P),P->rank);
1337
1338 for(i=IDELEMS(P)-1;i>=0;i--)
1339 {
1340 poly p;
1341 if(w==NULL)
1342 p=ppJet(P->m[i],N);
1343 else
1344 p=ppJetW(P->m[i],N,w);
1345
1346 int j=IDELEMS(Q)-1;
1347 while(p!=NULL)
1348 {
1349 if(pDivisibleBy(Q->m[j],p))
1350 {
1351 poly p0=p_DivideM(pHead(p),pHead(Q->m[j]),currRing);
1352 if(w==NULL)
1353 p=pJet(pSub(p,ppMult_mm(Q->m[j],p0)),N);
1354 else
1355 p=pJetW(pSub(p,ppMult_mm(Q->m[j],p0)),N,w);
1356 pNormalize(p);
1357 if(((w==NULL)&&(p_Deg(p0,currRing)>n))||((w!=NULL)&&(p_DegW(p0,w,currRing)>n)))
1358 p_Delete(&p0,currRing);
1359 else
1360 MATELEM(T,j+1,i+1)=pAdd(MATELEM(T,j+1,i+1),p0);
1361 j=IDELEMS(Q)-1;
1362 }
1363 else
1364 {
1365 if(j==0)
1366 {
1367 poly p0=p;
1368 pIter(p);
1369 pNext(p0)=NULL;
1370 if(((w==NULL)&&(p_Deg(p0,currRing)>n))
1371 ||((w!=NULL)&&(p_DegW(p0,w,currRing)>n)))
1372 p_Delete(&p0,currRing);
1373 else
1374 R->m[i]=pAdd(R->m[i],p0);
1375 j=IDELEMS(Q)-1;
1376 }
1377 else
1378 j--;
1379 }
1380 }
1381 }
1382}
poly p_DivideM(poly a, poly b, const ring r)
Definition: p_polys.cc:1574
long p_DegW(poly p, const int *w, const ring R)
Definition: p_polys.cc:690
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:587
#define ppJet(p, m)
Definition: polys.h:367
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition: polys.h:67
#define ppMult_mm(p, m)
Definition: polys.h:201
#define pJet(p, m)
Definition: polys.h:368
#define pSub(a, b)
Definition: polys.h:287
#define ppJetW(p, m, iv)
Definition: polys.h:369
#define pJetW(p, m, iv)
Definition: polys.h:370
#define pNormalize(p)
Definition: polys.h:317
#define pDivisibleBy(a, b)
returns TRUE, if leading monom of a divides leading monom of b i.e., if there exists a expvector c > ...
Definition: polys.h:138
#define R
Definition: sirandom.c:27

◆ idMinBase()

ideal idMinBase ( ideal  h1)

Definition at line 51 of file ideals.cc.

52{
53 ideal h2, h3,h4,e;
54 int j,k;
55 int i,l,ll;
56 intvec * wth;
57 BOOLEAN homog;
59 {
60 WarnS("minbase applies only to the local or homogeneous case over coefficient fields");
61 e=idCopy(h1);
62 return e;
63 }
64 homog = idHomModule(h1,currRing->qideal,&wth);
66 {
67 if(!homog)
68 {
69 WarnS("minbase applies only to the local or homogeneous case over coefficient fields");
70 e=idCopy(h1);
71 return e;
72 }
73 else
74 {
75 ideal re=kMin_std(h1,currRing->qideal,(tHomog)homog,&wth,h2,NULL,0,3);
76 idDelete(&re);
77 return h2;
78 }
79 }
80 e=idInit(1,h1->rank);
81 if (idIs0(h1))
82 {
83 return e;
84 }
85 pEnlargeSet(&(e->m),IDELEMS(e),15);
86 IDELEMS(e) = 16;
87 h2 = kStd(h1,currRing->qideal,isNotHomog,NULL);
88 h3 = idMaxIdeal(1);
89 h4=idMult(h2,h3);
90 idDelete(&h3);
91 h3=kStd(h4,currRing->qideal,isNotHomog,NULL);
92 k = IDELEMS(h3);
93 while ((k > 0) && (h3->m[k-1] == NULL)) k--;
94 j = -1;
95 l = IDELEMS(h2);
96 while ((l > 0) && (h2->m[l-1] == NULL)) l--;
97 for (i=l-1; i>=0; i--)
98 {
99 if (h2->m[i] != NULL)
100 {
101 ll = 0;
102 while ((ll < k) && ((h3->m[ll] == NULL)
103 || !pDivisibleBy(h3->m[ll],h2->m[i])))
104 ll++;
105 if (ll >= k)
106 {
107 j++;
108 if (j > IDELEMS(e)-1)
109 {
110 pEnlargeSet(&(e->m),IDELEMS(e),16);
111 IDELEMS(e) += 16;
112 }
113 e->m[j] = pCopy(h2->m[i]);
114 }
115 }
116 }
117 idDelete(&h2);
118 idDelete(&h3);
119 idDelete(&h4);
120 if (currRing->qideal!=NULL)
121 {
122 h3=idInit(1,e->rank);
123 h2=kNF(h3,currRing->qideal,e);
124 idDelete(&h3);
125 idDelete(&e);
126 e=h2;
127 }
128 idSkipZeroes(e);
129 return e;
130}
static ideal idMult(ideal h1, ideal h2)
hh := h1 * h2
Definition: ideals.h:84
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:33
ideal kMin_std(ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
Definition: kstd1.cc:3019
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
BOOLEAN rHasGlobalOrdering(const ring r)
Definition: ring.h:760
#define rField_is_Ring(R)
Definition: ring.h:486
@ isNotHomog
Definition: structs.h:36

◆ idMinEmbedding()

ideal idMinEmbedding ( ideal  arg,
BOOLEAN  inPlace = FALSE,
intvec **  w = NULL 
)

Definition at line 2691 of file ideals.cc.

2692{
2693 if (idIs0(arg)) return idInit(1,arg->rank);
2694 int i,next_gen,next_comp;
2695 ideal res=arg;
2696 if (!inPlace) res = idCopy(arg);
2698 int *red_comp=(int*)omAlloc((res->rank+1)*sizeof(int));
2699 for (i=res->rank;i>=0;i--) red_comp[i]=i;
2700
2701 int del=0;
2702 loop
2703 {
2704 next_gen = id_ReadOutPivot(res, &next_comp, currRing);
2705 if (next_gen<0) break;
2706 del++;
2707 syGaussForOne(res,next_gen,next_comp,0,IDELEMS(res));
2708 for(i=next_comp+1;i<=arg->rank;i++) red_comp[i]--;
2709 if ((w !=NULL)&&(*w!=NULL))
2710 {
2711 for(i=next_comp;i<(*w)->length();i++) (**w)[i-1]=(**w)[i];
2712 }
2713 }
2714
2715 idDeleteComps(res,red_comp,del);
2717 omFree(red_comp);
2718
2719 if ((w !=NULL)&&(*w!=NULL) &&(del>0))
2720 {
2721 int nl=si_max((*w)->length()-del,1);
2722 intvec *wtmp=new intvec(nl);
2723 for(i=0;i<res->rank;i++) (*wtmp)[i]=(**w)[i];
2724 delete *w;
2725 *w=wtmp;
2726 }
2727 return res;
2728}
static void idDeleteComps(ideal arg, int *red_comp, int del)
Definition: ideals.cc:2664
#define omFree(addr)
Definition: omAllocDecl.h:261
int id_ReadOutPivot(ideal arg, int *comp, const ring r)
#define loop
Definition: structs.h:75
void syGaussForOne(ideal syz, int elnum, int ModComp, int from, int till)
Definition: syz.cc:218

◆ idMinors()

ideal idMinors ( matrix  a,
int  ar,
ideal  R = NULL 
)

compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R (if R!=NULL)

Definition at line 1984 of file ideals.cc.

1985{
1986
1987 const ring origR=currRing;
1988 id_Test((ideal)a, origR);
1989
1990 const int r = a->nrows;
1991 const int c = a->ncols;
1992
1993 if((ar<=0) || (ar>r) || (ar>c))
1994 {
1995 Werror("%d-th minor, matrix is %dx%d",ar,r,c);
1996 return NULL;
1997 }
1998
1999 ideal h = id_Matrix2Module(mp_Copy(a,origR),origR);
2000 long bound = sm_ExpBound(h,c,r,ar,origR);
2001 id_Delete(&h, origR);
2002
2003 ring tmpR = sm_RingChange(origR,bound);
2004
2005 matrix b = mpNew(r,c);
2006
2007 for (int i=r*c-1;i>=0;i--)
2008 if (a->m[i] != NULL)
2009 b->m[i] = prCopyR(a->m[i],origR,tmpR);
2010
2011 id_Test( (ideal)b, tmpR);
2012
2013 if (R!=NULL)
2014 {
2015 R = idrCopyR(R,origR,tmpR); // TODO: overwrites R? memory leak?
2016 //if (ar>1) // otherwise done in mpMinorToResult
2017 //{
2018 // matrix bb=(matrix)kNF(R,currRing->qideal,(ideal)b);
2019 // bb->rank=b->rank; bb->nrows=b->nrows; bb->ncols=b->ncols;
2020 // idDelete((ideal*)&b); b=bb;
2021 //}
2022 id_Test( R, tmpR);
2023 }
2024
2025 int size=binom(r,ar)*binom(c,ar);
2026 ideal result = idInit(size,1);
2027
2028 int elems = 0;
2029
2030 if(ar>1)
2031 mp_RecMin(ar-1,result,elems,b,r,c,NULL,R,tmpR);
2032 else
2033 mp_MinorToResult(result,elems,b,r,c,R,tmpR);
2034
2035 id_Test( (ideal)b, tmpR);
2036
2037 id_Delete((ideal *)&b, tmpR);
2038
2039 if (R!=NULL) id_Delete(&R,tmpR);
2040
2041 rChangeCurrRing(origR);
2042 result = idrMoveR(result,tmpR,origR);
2043 sm_KillModifiedRing(tmpR);
2044 idTest(result);
2045 return result;
2046}
int size(const CanonicalForm &f, const Variable &v)
int size ( const CanonicalForm & f, const Variable & v )
Definition: cf_ops.cc:600
static CanonicalForm bound(const CFMatrix &M)
Definition: cf_linsys.cc:460
int nrows
Definition: matpol.h:20
int ncols
Definition: matpol.h:21
int binom(int n, int r)
#define idTest(id)
Definition: ideals.h:47
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:64
void mp_MinorToResult(ideal result, int &elems, matrix a, int r, int c, ideal R, const ring)
entries of a are minors and go to result (only if not in R)
Definition: matpol.cc:1507
void mp_RecMin(int ar, ideal result, int &elems, matrix a, int lr, int lc, poly barDiv, ideal R, const ring r)
produces recursively the ideal of all arxar-minors of a
Definition: matpol.cc:1603
ideal idrMoveR(ideal &id, ring src_r, ring dest_r)
Definition: prCopy.cc:248
poly prCopyR(poly p, ring src_r, ring dest_r)
Definition: prCopy.cc:34
ideal id_Matrix2Module(matrix mat, const ring R)
converts mat to module, destroys mat
long sm_ExpBound(ideal m, int di, int ra, int t, const ring currRing)
Definition: sparsmat.cc:188
ring sm_RingChange(const ring origR, long bound)
Definition: sparsmat.cc:258
void sm_KillModifiedRing(ring r)
Definition: sparsmat.cc:289

◆ idModulo()

ideal idModulo ( ideal  h1,
ideal  h2,
tHomog  h = testHomog,
intvec **  w = NULL,
matrix T = NULL,
GbVariant  a = GbDefault 
)

Definition at line 2418 of file ideals.cc.

2419{
2420#ifdef HAVE_SHIFTBBA
2421 if (rIsLPRing(currRing))
2422 return idModuloLP(h2,h1,hom,w,T,alg);
2423#endif
2424 intvec *wtmp=NULL;
2425 if (T!=NULL) idDelete((ideal*)T);
2426
2427 int i,flength=0,slength,length;
2428
2429 if (idIs0(h2))
2430 return idFreeModule(si_max(1,h2->ncols));
2431 if (!idIs0(h1))
2432 flength = id_RankFreeModule(h1,currRing);
2433 slength = id_RankFreeModule(h2,currRing);
2434 length = si_max(flength,slength);
2435 BOOLEAN inputIsIdeal=FALSE;
2436 if (length==0)
2437 {
2438 length = 1;
2439 inputIsIdeal=TRUE;
2440 }
2441 if ((w!=NULL)&&((*w)!=NULL))
2442 {
2443 //Print("input weights:");(*w)->show(1);PrintLn();
2444 int d;
2445 int k;
2446 wtmp=new intvec(length+IDELEMS(h2));
2447 for (i=0;i<length;i++)
2448 ((*wtmp)[i])=(**w)[i];
2449 for (i=0;i<IDELEMS(h2);i++)
2450 {
2451 poly p=h2->m[i];
2452 if (p!=NULL)
2453 {
2454 d = p_Deg(p,currRing);
2455 k= pGetComp(p);
2456 if (slength>0) k--;
2457 d +=((**w)[k]);
2458 ((*wtmp)[i+length]) = d;
2459 }
2460 }
2461 //Print("weights:");wtmp->show(1);PrintLn();
2462 }
2463 ideal s_temp1;
2464 ring orig_ring=currRing;
2465 ring syz_ring=rAssure_SyzOrder(orig_ring, TRUE);
2466 rSetSyzComp(length,syz_ring);
2467 {
2468 rChangeCurrRing(syz_ring);
2469 ideal s1,s2;
2470
2471 if (syz_ring != orig_ring)
2472 {
2473 s1 = idrCopyR_NoSort(h1, orig_ring, syz_ring);
2474 s2 = idrCopyR_NoSort(h2, orig_ring, syz_ring);
2475 }
2476 else
2477 {
2478 s1=idCopy(h1);
2479 s2=idCopy(h2);
2480 }
2481
2482 unsigned save_opt,save_opt2;
2483 SI_SAVE_OPT1(save_opt);
2484 SI_SAVE_OPT2(save_opt2);
2485 if (T==NULL) si_opt_1 |= Sy_bit(OPT_REDTAIL);
2487 s_temp1 = idPrepare(s2,s1,testHomog,length,w,alg);
2488 SI_RESTORE_OPT1(save_opt);
2489 SI_RESTORE_OPT2(save_opt2);
2490 }
2491
2492 //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn();
2493 if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL))
2494 {
2495 delete *w;
2496 *w=new intvec(IDELEMS(h2));
2497 for (i=0;i<IDELEMS(h2);i++)
2498 ((**w)[i])=(*wtmp)[i+length];
2499 }
2500 if (wtmp!=NULL) delete wtmp;
2501
2502 ideal result=idInit(IDELEMS(s_temp1),IDELEMS(h2));
2503 s_temp1=idExtractG_T_S(s_temp1,T,&result,length,IDELEMS(h2),inputIsIdeal,orig_ring,syz_ring);
2504
2505 idDelete(&s_temp1);
2506 if (syz_ring!=orig_ring)
2507 {
2508 rDelete(syz_ring);
2509 }
2510 idTest(h2);
2511 idTest(h1);
2512 idTest(result);
2513 if (T!=NULL) idTest((ideal)*T);
2514 return result;
2515}
ideal idModuloLP(ideal h2, ideal h1, tHomog, intvec **w, matrix *T, GbVariant alg)
Definition: ideals.cc:2225
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
VAR unsigned si_opt_1
Definition: options.c:5
#define OPT_REDTAIL_SYZ
Definition: options.h:87
#define OPT_REDTAIL
Definition: options.h:91
#define SI_SAVE_OPT1(A)
Definition: options.h:21
#define SI_RESTORE_OPT1(A)
Definition: options.h:24
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411

◆ idMult()

static ideal idMult ( ideal  h1,
ideal  h2 
)
inlinestatic

hh := h1 * h2

Definition at line 84 of file ideals.h.

85{
86 return id_Mult(h1, h2, currRing);
87}
ideal id_Mult(ideal h1, ideal h2, const ring R)
h1 * h2 one h_i must be an ideal (with at least one column) the other h_i may be a module (with no co...

◆ idMultSect()

ideal idMultSect ( resolvente  arg,
int  length,
GbVariant  a = GbDefault 
)

Definition at line 472 of file ideals.cc.

473{
474 int i,j=0,k=0,l,maxrk=-1,realrki;
475 unsigned syzComp;
476 ideal bigmat,tempstd,result;
477 poly p;
478 int isIdeal=0;
479
480 /* find 0-ideals and max rank -----------------------------------*/
481 for (i=0;i<length;i++)
482 {
483 if (!idIs0(arg[i]))
484 {
485 realrki=id_RankFreeModule(arg[i],currRing);
486 k++;
487 j += IDELEMS(arg[i]);
488 if (realrki>maxrk) maxrk = realrki;
489 }
490 else
491 {
492 if (arg[i]!=NULL)
493 {
494 return idInit(1,arg[i]->rank);
495 }
496 }
497 }
498 if (maxrk == 0)
499 {
500 isIdeal = 1;
501 maxrk = 1;
502 }
503 /* init -----------------------------------------------------------*/
504 j += maxrk;
505 syzComp = k*maxrk;
506
507 ring orig_ring=currRing;
508 ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
509 rSetSyzComp(syzComp,syz_ring);
510 rChangeCurrRing(syz_ring);
511
512 bigmat = idInit(j,(k+1)*maxrk);
513 /* create unit matrices ------------------------------------------*/
514 for (i=0;i<maxrk;i++)
515 {
516 for (j=0;j<=k;j++)
517 {
518 p = pOne();
519 pSetComp(p,i+1+j*maxrk);
520 pSetmComp(p);
521 bigmat->m[i] = pAdd(bigmat->m[i],p);
522 }
523 }
524 /* enter given ideals ------------------------------------------*/
525 i = maxrk;
526 k = 0;
527 for (j=0;j<length;j++)
528 {
529 if (arg[j]!=NULL)
530 {
531 for (l=0;l<IDELEMS(arg[j]);l++)
532 {
533 if (arg[j]->m[l]!=NULL)
534 {
535 if (syz_ring==orig_ring)
536 bigmat->m[i] = pCopy(arg[j]->m[l]);
537 else
538 bigmat->m[i] = prCopyR(arg[j]->m[l], orig_ring,currRing);
539 p_Shift(&(bigmat->m[i]),k*maxrk+isIdeal,currRing);
540 i++;
541 }
542 }
543 k++;
544 }
545 }
546 /* std computation --------------------------------------------*/
547 if ((alg!=GbDefault)
548 && (alg!=GbGroebner)
549 && (alg!=GbModstd)
550 && (alg!=GbSlimgb)
551 && (alg!=GbStd))
552 {
553 WarnS("wrong algorithm for GB");
554 alg=GbDefault;
555 }
556 tempstd=idGroebner(bigmat,syzComp,alg);
557
558 if(syz_ring!=orig_ring)
559 rChangeCurrRing(orig_ring);
560
561 /* interprete result ----------------------------------------*/
562 result = idInit(IDELEMS(tempstd),maxrk);
563 k = 0;
564 for (j=0;j<IDELEMS(tempstd);j++)
565 {
566 if ((tempstd->m[j]!=NULL) && (__p_GetComp(tempstd->m[j],syz_ring)>syzComp))
567 {
568 if (syz_ring==orig_ring)
569 p = pCopy(tempstd->m[j]);
570 else
571 p = prCopyR(tempstd->m[j], syz_ring,currRing);
572 p_Shift(&p,-syzComp-isIdeal,currRing);
573 result->m[k] = p;
574 k++;
575 }
576 }
577 /* clean up ----------------------------------------------------*/
578 if(syz_ring!=orig_ring)
579 rChangeCurrRing(syz_ring);
580 idDelete(&tempstd);
581 if(syz_ring!=orig_ring)
582 {
583 rChangeCurrRing(orig_ring);
584 rDelete(syz_ring);
585 }
587 return result;
588}

◆ idQuot()

ideal idQuot ( ideal  h1,
ideal  h2,
BOOLEAN  h1IsStb = FALSE,
BOOLEAN  resultIsIdeal = FALSE 
)

Definition at line 1494 of file ideals.cc.

1495{
1496 // first check for special case h1:(0)
1497 if (idIs0(h2))
1498 {
1499 ideal res;
1500 if (resultIsIdeal)
1501 {
1502 res = idInit(1,1);
1503 res->m[0] = pOne();
1504 }
1505 else
1506 res = idFreeModule(h1->rank);
1507 return res;
1508 }
1509 int i, kmax;
1510 BOOLEAN addOnlyOne=TRUE;
1511 tHomog hom=isNotHomog;
1512 intvec * weights1;
1513
1514 ideal s_h4 = idInitializeQuot (h1,h2,h1IsStb,&addOnlyOne,&kmax);
1515
1516 hom = (tHomog)idHomModule(s_h4,currRing->qideal,&weights1);
1517
1518 ring orig_ring=currRing;
1519 ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
1520 rSetSyzComp(kmax-1,syz_ring);
1521 rChangeCurrRing(syz_ring);
1522 if (orig_ring!=syz_ring)
1523 // s_h4 = idrMoveR_NoSort(s_h4,orig_ring, syz_ring);
1524 s_h4 = idrMoveR(s_h4,orig_ring, syz_ring);
1525 idTest(s_h4);
1526
1527 #if 0
1528 matrix m=idModule2Matrix(idCopy(s_h4));
1529 PrintS("start:\n");
1530 ipPrint_MA0(m,"Q");
1531 idDelete((ideal *)&m);
1532 PrintS("last elem:");wrp(s_h4->m[IDELEMS(s_h4)-1]);PrintLn();
1533 #endif
1534
1535 ideal s_h3;
1536 BITSET old_test1;
1537 SI_SAVE_OPT1(old_test1);
1539 if (addOnlyOne)
1540 {
1542 s_h3 = kStd(s_h4,currRing->qideal,hom,&weights1,NULL,0/*kmax-1*/,IDELEMS(s_h4)-1);
1543 }
1544 else
1545 {
1546 s_h3 = kStd(s_h4,currRing->qideal,hom,&weights1,NULL,kmax-1);
1547 }
1548 SI_RESTORE_OPT1(old_test1);
1549
1550 #if 0
1551 // only together with the above debug stuff
1552 idSkipZeroes(s_h3);
1553 m=idModule2Matrix(idCopy(s_h3));
1554 Print("result, kmax=%d:\n",kmax);
1555 ipPrint_MA0(m,"S");
1556 idDelete((ideal *)&m);
1557 #endif
1558
1559 idTest(s_h3);
1560 if (weights1!=NULL) delete weights1;
1561 idDelete(&s_h4);
1562
1563 for (i=0;i<IDELEMS(s_h3);i++)
1564 {
1565 if ((s_h3->m[i]!=NULL) && (pGetComp(s_h3->m[i])>=kmax))
1566 {
1567 if (resultIsIdeal)
1568 p_Shift(&s_h3->m[i],-kmax,currRing);
1569 else
1570 p_Shift(&s_h3->m[i],-kmax+1,currRing);
1571 }
1572 else
1573 p_Delete(&s_h3->m[i],currRing);
1574 }
1575 if (resultIsIdeal)
1576 s_h3->rank = 1;
1577 else
1578 s_h3->rank = h1->rank;
1579 if(syz_ring!=orig_ring)
1580 {
1581 rChangeCurrRing(orig_ring);
1582 s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring);
1583 rDelete(syz_ring);
1584 }
1585 idSkipZeroes(s_h3);
1586 idTest(s_h3);
1587 return s_h3;
1588}
#define Print
Definition: emacs.cc:80
static ideal idInitializeQuot(ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN *addOnlyOne, int *kkmax)
Definition: ideals.cc:1389
void ipPrint_MA0(matrix m, const char *name)
Definition: ipprint.cc:57
#define OPT_SB_1
Definition: options.h:95
void wrp(poly p)
Definition: polys.h:310
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310

◆ idSect()

ideal idSect ( ideal  h1,
ideal  h2,
GbVariant  a = GbDefault 
)

Definition at line 316 of file ideals.cc.

317{
318 int i,j,k;
319 unsigned length;
320 int flength = id_RankFreeModule(h1,currRing);
321 int slength = id_RankFreeModule(h2,currRing);
322 int rank=si_max(h1->rank,h2->rank);
323 if ((idIs0(h1)) || (idIs0(h2))) return idInit(1,rank);
324
325 BITSET save_opt;
326 SI_SAVE_OPT1(save_opt);
328
329 ideal first,second,temp,temp1,result;
330 poly p,q;
331
332 if (IDELEMS(h1)<IDELEMS(h2))
333 {
334 first = h1;
335 second = h2;
336 }
337 else
338 {
339 first = h2;
340 second = h1;
341 int t=flength; flength=slength; slength=t;
342 }
343 length = si_max(flength,slength);
344 if (length==0)
345 {
346 if ((currRing->qideal==NULL)
347 && (currRing->OrdSgn==1)
350 return idSectWithElim(first,second,alg);
351 else length = 1;
352 }
353 if (TEST_OPT_PROT) PrintS("intersect by syzygy methods\n");
354 j = IDELEMS(first);
355
356 ring orig_ring=currRing;
357 ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
358 rSetSyzComp(length,syz_ring);
359 rChangeCurrRing(syz_ring);
360
361 while ((j>0) && (first->m[j-1]==NULL)) j--;
362 temp = idInit(j /*IDELEMS(first)*/+IDELEMS(second),length+j);
363 k = 0;
364 for (i=0;i<j;i++)
365 {
366 if (first->m[i]!=NULL)
367 {
368 if (syz_ring==orig_ring)
369 temp->m[k] = pCopy(first->m[i]);
370 else
371 temp->m[k] = prCopyR(first->m[i], orig_ring, syz_ring);
372 q = pOne();
373 pSetComp(q,i+1+length);
374 pSetmComp(q);
375 if (flength==0) p_Shift(&(temp->m[k]),1,currRing);
376 p = temp->m[k];
377 while (pNext(p)!=NULL) pIter(p);
378 pNext(p) = q;
379 k++;
380 }
381 }
382 for (i=0;i<IDELEMS(second);i++)
383 {
384 if (second->m[i]!=NULL)
385 {
386 if (syz_ring==orig_ring)
387 temp->m[k] = pCopy(second->m[i]);
388 else
389 temp->m[k] = prCopyR(second->m[i], orig_ring,currRing);
390 if (slength==0) p_Shift(&(temp->m[k]),1,currRing);
391 k++;
392 }
393 }
394 intvec *w=NULL;
395
396 if ((alg!=GbDefault)
397 && (alg!=GbGroebner)
398 && (alg!=GbModstd)
399 && (alg!=GbSlimgb)
400 && (alg!=GbStd))
401 {
402 WarnS("wrong algorithm for GB");
403 alg=GbDefault;
404 }
405 temp1=idGroebner(temp,length,alg);
406
407 if(syz_ring!=orig_ring)
408 rChangeCurrRing(orig_ring);
409
410 result = idInit(IDELEMS(temp1),rank);
411 j = 0;
412 for (i=0;i<IDELEMS(temp1);i++)
413 {
414 if ((temp1->m[i]!=NULL)
415 && (__p_GetComp(temp1->m[i],syz_ring)>length))
416 {
417 if(syz_ring==orig_ring)
418 {
419 p = temp1->m[i];
420 }
421 else
422 {
423 p = prMoveR(temp1->m[i], syz_ring,orig_ring);
424 }
425 temp1->m[i]=NULL;
426 while (p!=NULL)
427 {
428 q = pNext(p);
429 pNext(p) = NULL;
430 k = pGetComp(p)-1-length;
431 pSetComp(p,0);
432 pSetmComp(p);
433 /* Warning! multiply only from the left! it's very important for Plural */
434 result->m[j] = pAdd(result->m[j],pMult(p,pCopy(first->m[k])));
435 p = q;
436 }
437 j++;
438 }
439 }
440 if(syz_ring!=orig_ring)
441 {
442 rChangeCurrRing(syz_ring);
443 idDelete(&temp1);
444 rChangeCurrRing(orig_ring);
445 rDelete(syz_ring);
446 }
447 else
448 {
449 idDelete(&temp1);
450 }
451
453 SI_RESTORE_OPT1(save_opt);
455 {
456 w=NULL;
457 temp1=kStd(result,currRing->qideal,testHomog,&w);
458 if (w!=NULL) delete w;
460 idSkipZeroes(temp1);
461 return temp1;
462 }
463 //else
464 // temp1=kInterRed(result,currRing->qideal);
465 return result;
466}
static ideal idSectWithElim(ideal h1, ideal h2, GbVariant alg)
Definition: ideals.cc:133
#define TEST_V_INTERSECT_ELIM
Definition: options.h:144
#define TEST_V_INTERSECT_SYZ
Definition: options.h:145
#define TEST_OPT_PROT
Definition: options.h:103
#define pMult(p, q)
Definition: polys.h:207

◆ idSeries()

ideal idSeries ( int  n,
ideal  M,
matrix  U = NULL,
intvec w = NULL 
)

Definition at line 2125 of file ideals.cc.

2126{
2127 for(int i=IDELEMS(M)-1;i>=0;i--)
2128 {
2129 if(U==NULL)
2130 M->m[i]=pSeries(n,M->m[i],NULL,w);
2131 else
2132 {
2133 M->m[i]=pSeries(n,M->m[i],MATELEM(U,i+1,i+1),w);
2134 MATELEM(U,i+1,i+1)=NULL;
2135 }
2136 }
2137 if(U!=NULL)
2138 idDelete((ideal*)&U);
2139 return M;
2140}
#define pSeries(n, p, u, w)
Definition: polys.h:372

◆ idSort()

static intvec * idSort ( ideal  id,
BOOLEAN  nolex = TRUE 
)
inlinestatic

Definition at line 184 of file ideals.h.

185{
186 return id_Sort(id, nolex, currRing);
187}
intvec * id_Sort(const ideal id, const BOOLEAN nolex, const ring r)
sorts the ideal w.r.t. the actual ringordering uses lex-ordering when nolex = FALSE

◆ idSyzygies()

ideal idSyzygies ( ideal  h1,
tHomog  h,
intvec **  w,
BOOLEAN  setSyzComp = TRUE,
BOOLEAN  setRegularity = FALSE,
int *  deg = NULL,
GbVariant  a = GbDefault 
)

Definition at line 830 of file ideals.cc.

832{
833 ideal s_h1;
834 int j, k, length=0,reg;
835 BOOLEAN isMonomial=TRUE;
836 int ii, idElemens_h1;
837
838 assume(h1 != NULL);
839
840 idElemens_h1=IDELEMS(h1);
841#ifdef PDEBUG
842 for(ii=0;ii<idElemens_h1 /*IDELEMS(h1)*/;ii++) pTest(h1->m[ii]);
843#endif
844 if (idIs0(h1))
845 {
846 ideal result=idFreeModule(idElemens_h1/*IDELEMS(h1)*/);
847 return result;
848 }
849 int slength=(int)id_RankFreeModule(h1,currRing);
850 k=si_max(1,slength /*id_RankFreeModule(h1)*/);
851
852 assume(currRing != NULL);
853 ring orig_ring=currRing;
854 ring syz_ring=rAssure_SyzComp(orig_ring,TRUE);
855 if (setSyzComp) rSetSyzComp(k,syz_ring);
856
857 if (orig_ring != syz_ring)
858 {
859 rChangeCurrRing(syz_ring);
860 s_h1=idrCopyR_NoSort(h1,orig_ring,syz_ring);
861 }
862 else
863 {
864 s_h1 = h1;
865 }
866
867 idTest(s_h1);
868
869 BITSET save_opt;
870 SI_SAVE_OPT1(save_opt);
872
873 ideal s_h3=idPrepare(s_h1,NULL,h,k,w,alg); // main (syz) GB computation
874
875 SI_RESTORE_OPT1(save_opt);
876
877 if (orig_ring != syz_ring)
878 {
879 idDelete(&s_h1);
880 for (j=0; j<IDELEMS(s_h3); j++)
881 {
882 if (s_h3->m[j] != NULL)
883 {
884 if (p_MinComp(s_h3->m[j],syz_ring) > k)
885 p_Shift(&s_h3->m[j], -k,syz_ring);
886 else
887 p_Delete(&s_h3->m[j],syz_ring);
888 }
889 }
890 idSkipZeroes(s_h3);
891 s_h3->rank -= k;
892 rChangeCurrRing(orig_ring);
893 s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring);
894 rDelete(syz_ring);
895 #ifdef HAVE_PLURAL
896 if (rIsPluralRing(orig_ring))
897 {
898 id_DelMultiples(s_h3,orig_ring);
899 idSkipZeroes(s_h3);
900 }
901 #endif
902 idTest(s_h3);
903 return s_h3;
904 }
905
906 ideal e = idInit(IDELEMS(s_h3), s_h3->rank);
907
908 for (j=IDELEMS(s_h3)-1; j>=0; j--)
909 {
910 if (s_h3->m[j] != NULL)
911 {
912 if (p_MinComp(s_h3->m[j],syz_ring) <= k)
913 {
914 e->m[j] = s_h3->m[j];
915 isMonomial=isMonomial && (pNext(s_h3->m[j])==NULL);
916 p_Delete(&pNext(s_h3->m[j]),syz_ring);
917 s_h3->m[j] = NULL;
918 }
919 }
920 }
921
922 idSkipZeroes(s_h3);
923 idSkipZeroes(e);
924
925 if ((deg != NULL)
926 && (!isMonomial)
928 && (setRegularity)
929 && (h==isHomog)
932 )
933 {
934 assume(orig_ring==syz_ring);
935 ring dp_C_ring = rAssure_dp_C(syz_ring); // will do rChangeCurrRing later
936 if (dp_C_ring != syz_ring)
937 {
938 rChangeCurrRing(dp_C_ring);
939 e = idrMoveR_NoSort(e, syz_ring, dp_C_ring);
940 }
942 intvec * dummy = syBetti(res,length,&reg, *w);
943 *deg = reg+2;
944 delete dummy;
945 for (j=0;j<length;j++)
946 {
947 if (res[j]!=NULL) idDelete(&(res[j]));
948 }
949 omFreeSize((ADDRESS)res,length*sizeof(ideal));
950 idDelete(&e);
951 if (dp_C_ring != orig_ring)
952 {
953 rChangeCurrRing(orig_ring);
954 rDelete(dp_C_ring);
955 }
956 }
957 else
958 {
959 idDelete(&e);
960 }
961 assume(orig_ring==currRing);
962 idTest(s_h3);
963 if (currRing->qideal != NULL)
964 {
965 ideal ts_h3=kStd(s_h3,currRing->qideal,h,w);
966 idDelete(&s_h3);
967 s_h3 = ts_h3;
968 }
969 return s_h3;
970}
ideal * resolvente
Definition: ideals.h:18
#define TEST_OPT_NOTREGULARITY
Definition: options.h:120
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:313
#define pTest(p)
Definition: polys.h:415
ring rAssure_SyzComp(const ring r, BOOLEAN complete)
Definition: ring.cc:4515
ring rAssure_dp_C(const ring r)
Definition: ring.cc:5060
void id_DelMultiples(ideal id, const ring r)
ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
@ isHomog
Definition: structs.h:37
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:770
resolvente sySchreyerResolvente(ideal arg, int maxlength, int *length, BOOLEAN isMonomial=FALSE, BOOLEAN notReplace=FALSE)
Definition: syz0.cc:855

◆ idTestHomModule()

BOOLEAN idTestHomModule ( ideal  m,
ideal  Q,
intvec w 
)

Definition at line 2073 of file ideals.cc.

2074{
2075 if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) { PrintS(" Q not hom\n"); return FALSE;}
2076 if (idIs0(m)) return TRUE;
2077
2078 int cmax=-1;
2079 int i;
2080 poly p=NULL;
2081 int length=IDELEMS(m);
2082 polyset P=m->m;
2083 for (i=length-1;i>=0;i--)
2084 {
2085 p=P[i];
2086 if (p!=NULL) cmax=si_max(cmax,(int)pMaxComp(p)+1);
2087 }
2088 if (w != NULL)
2089 if (w->length()+1 < cmax)
2090 {
2091 // Print("length: %d - %d \n", w->length(),cmax);
2092 return FALSE;
2093 }
2094
2095 if(w!=NULL)
2097
2098 for (i=length-1;i>=0;i--)
2099 {
2100 p=P[i];
2101 if (p!=NULL)
2102 {
2103 int d=currRing->pFDeg(p,currRing);
2104 loop
2105 {
2106 pIter(p);
2107 if (p==NULL) break;
2108 if (d!=currRing->pFDeg(p,currRing))
2109 {
2110 //pWrite(q); wrp(p); Print(" -> %d - %d\n",d,pFDeg(p,currRing));
2111 if(w!=NULL)
2113 return FALSE;
2114 }
2115 }
2116 }
2117 }
2118
2119 if(w!=NULL)
2121
2122 return TRUE;
2123}
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
Definition: ideals.h:91
void p_SetModDeg(intvec *w, ring r)
Definition: p_polys.cc:3751
#define pMaxComp(p)
Definition: polys.h:299
poly * polyset
Definition: polys.h:259

◆ idVec2Ideal()

static ideal idVec2Ideal ( poly  vec)
inlinestatic

Definition at line 169 of file ideals.h.

170{
171 return id_Vec2Ideal(vec, currRing);
172}
fq_nmod_poly_t * vec
Definition: facHensel.cc:108
ideal id_Vec2Ideal(poly vec, const ring R)

◆ syGetAlgorithm()

GbVariant syGetAlgorithm ( char *  n,
const ring  r,
const ideal  M 
)

Definition at line 3158 of file ideals.cc.

3159{
3160 GbVariant alg=GbDefault;
3161 if (strcmp(n,"default")==0) alg=GbDefault;
3162 else if (strcmp(n,"slimgb")==0) alg=GbSlimgb;
3163 else if (strcmp(n,"std")==0) alg=GbStd;
3164 else if (strcmp(n,"sba")==0) alg=GbSba;
3165 else if (strcmp(n,"singmatic")==0) alg=GbSingmatic;
3166 else if (strcmp(n,"groebner")==0) alg=GbGroebner;
3167 else if (strcmp(n,"modstd")==0) alg=GbModstd;
3168 else if (strcmp(n,"ffmod")==0) alg=GbFfmod;
3169 else if (strcmp(n,"nfmod")==0) alg=GbNfmod;
3170 else if (strcmp(n,"std:sat")==0) alg=GbStdSat;
3171 else Warn(">>%s<< is an unknown algorithm",n);
3172
3173 if (alg==GbSlimgb) // test conditions for slimgb
3174 {
3175 if(rHasGlobalOrdering(r)
3176 &&(!rIsNCRing(r))
3177 &&(r->qideal==NULL)
3178 &&(!rField_is_Ring(r)))
3179 {
3180 return GbSlimgb;
3181 }
3182 if (TEST_OPT_PROT)
3183 WarnS("requires: coef:field, commutative, global ordering, not qring");
3184 }
3185 else if (alg==GbSba) // cond. for sba
3186 {
3187 if(rField_is_Domain(r)
3188 &&(!rIsNCRing(r))
3189 &&(rHasGlobalOrdering(r)))
3190 {
3191 return GbSba;
3192 }
3193 if (TEST_OPT_PROT)
3194 WarnS("requires: coef:domain, commutative, global ordering");
3195 }
3196 else if (alg==GbGroebner) // cond. for groebner
3197 {
3198 return GbGroebner;
3199 }
3200 else if(alg==GbModstd) // cond for modstd: Q or Q(a)
3201 {
3202 if(ggetid("modStd")==NULL)
3203 {
3204 WarnS(">>modStd<< not found");
3205 }
3206 else if(rField_is_Q(r)
3207 &&(!rIsNCRing(r))
3208 &&(rHasGlobalOrdering(r)))
3209 {
3210 return GbModstd;
3211 }
3212 if (TEST_OPT_PROT)
3213 WarnS("requires: coef:QQ, commutative, global ordering");
3214 }
3215 else if(alg==GbStdSat) // cond for std:sat: 2 blocks of variables
3216 {
3217 if(ggetid("satstd")==NULL)
3218 {
3219 WarnS(">>satstd<< not found");
3220 }
3221 else
3222 {
3223 return GbStdSat;
3224 }
3225 }
3226
3227 return GbStd; // no conditions for std
3228}
#define Warn
Definition: emacs.cc:77
GbVariant
Definition: ideals.h:119
idhdl ggetid(const char *n)
Definition: ipid.cc:572
static BOOLEAN rField_is_Domain(const ring r)
Definition: ring.h:488
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:507
static BOOLEAN rIsNCRing(const ring r)
Definition: ring.h:421