My Project
Functions
stairc.h File Reference
#include "polys/monomials/ring.h"
#include "kernel/polys.h"
#include "misc/intvec.h"

Go to the source code of this file.

Functions

void scComputeHC (ideal s, ideal Q, int k, poly &hEdge, ring tailRing=currRing)
 
intvecscIndIntvec (ideal S, ideal Q=NULL)
 
int scDimInt (ideal s, ideal Q=NULL)
 ideal dimension More...
 
int scDimIntRing (ideal s, ideal Q=NULL)
 scDimInt for ring-coefficients More...
 
int scMultInt (ideal s, ideal Q=NULL)
 
int scMult0Int (ideal s, ideal Q=NULL, const ring tailRing=currRing)
 
void scPrintDegree (int co, int mu)
 
void scDegree (ideal s, intvec *modulweight, ideal Q=NULL)
 
ideal scKBase (int deg, ideal s, ideal Q=NULL, intvec *mv=NULL)
 
int lp_gkDim (const ideal G)
 
int lp_kDim (const ideal G)
 
intveclp_ufnarovskiGraph (ideal G, ideal &standardWords)
 

Function Documentation

◆ lp_gkDim()

int lp_gkDim ( const ideal  G)

Definition at line 1840 of file hdegree.cc.

1841{
1842 id_Test(_G, currRing);
1843
1844 if (rField_is_Ring(currRing)) {
1845 WerrorS("GK-Dim not implemented for rings");
1846 return -2;
1847 }
1848
1849 for (int i=IDELEMS(_G)-1;i>=0; i--)
1850 {
1851 if (_G->m[i] != NULL)
1852 {
1853 if (pGetComp(_G->m[i]) != 0)
1854 {
1855 WerrorS("GK-Dim not implemented for modules");
1856 return -2;
1857 }
1858 if (pGetNCGen(_G->m[i]) != 0)
1859 {
1860 WerrorS("GK-Dim not implemented for bi-modules");
1861 return -2;
1862 }
1863 }
1864 }
1865
1866 ideal G = id_Head(_G, currRing); // G = LM(G) (and copy)
1867 idSkipZeroes(G); // remove zeros
1868 id_DelLmEquals(G, currRing); // remove duplicates
1869
1870 // check if G is the zero ideal
1871 if (IDELEMS(G) == 1 && G->m[0] == NULL)
1872 {
1873 // NOTE: this is needed because if the ideal is <0>, then idSkipZeroes keeps this element, and IDELEMS is still 1!
1874 int lV = currRing->isLPring;
1875 int ncGenCount = currRing->LPncGenCount;
1876 if (lV - ncGenCount == 0)
1877 {
1878 idDelete(&G);
1879 return 0;
1880 }
1881 if (lV - ncGenCount == 1)
1882 {
1883 idDelete(&G);
1884 return 1;
1885 }
1886 if (lV - ncGenCount >= 2)
1887 {
1888 idDelete(&G);
1889 return -1;
1890 }
1891 }
1892
1893 // get the max deg
1894 long maxDeg = 0;
1895 for (int i = 0; i < IDELEMS(G); i++)
1896 {
1897 maxDeg = si_max(maxDeg, pTotaldegree(G->m[i]));
1898
1899 // also check whether G = <1>
1900 if (pIsConstantComp(G->m[i]))
1901 {
1902 WerrorS("GK-Dim not defined for 0-ring");
1903 idDelete(&G);
1904 return -2;
1905 }
1906 }
1907
1908 // early termination if G \subset X
1909 if (maxDeg <= 1)
1910 {
1911 int lV = currRing->isLPring;
1912 int ncGenCount = currRing->LPncGenCount;
1913 if (IDELEMS(G) == lV - ncGenCount) // V = {1} no edges
1914 {
1915 idDelete(&G);
1916 return 0;
1917 }
1918 if (IDELEMS(G) == lV - ncGenCount - 1) // V = {1} with loop
1919 {
1920 idDelete(&G);
1921 return 1;
1922 }
1923 if (IDELEMS(G) <= lV - ncGenCount - 2) // V = {1} with more than one loop
1924 {
1925 idDelete(&G);
1926 return -1;
1927 }
1928 }
1929
1930 ideal standardWords;
1931 intvec* UG = lp_ufnarovskiGraph(G, standardWords);
1932 if (UG == NULL)
1933 {
1934 idDelete(&G);
1935 return -2;
1936 }
1937 if (errorreported)
1938 {
1939 delete UG;
1940 idDelete(&G);
1941 return -2;
1942 }
1943 int gkDim = graphGrowth(UG);
1944 delete UG;
1945 idDelete(&G);
1946 return gkDim;
1947}
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
int i
Definition: cfEzgcd.cc:132
Definition: intvec.h:23
VAR short errorreported
Definition: feFopen.cc:23
void WerrorS(const char *s)
Definition: feFopen.cc:24
static int graphGrowth(const intvec *G)
Definition: hdegree.cc:1652
intvec * lp_ufnarovskiGraph(ideal G, ideal &standardWords)
Definition: hdegree.cc:1779
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
STATIC_VAR TreeM * G
Definition: janet.cc:31
#define NULL
Definition: omList.c:12
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
static long pTotaldegree(poly p)
Definition: polys.h:282
#define pGetComp(p)
Component.
Definition: polys.h:37
#define pIsConstantComp(p)
return true if p is either NULL, or if all exponents of p are 0, Comp of p might be !...
Definition: polys.h:236
#define rField_is_Ring(R)
Definition: ring.h:486
#define pGetNCGen(p)
Definition: shiftop.h:65
ideal id_Head(ideal h, const ring r)
returns the ideals of initial terms
void id_DelLmEquals(ideal id, const ring r)
Delete id[j], if Lm(j) == Lm(i) and both LC(j), LC(i) are units and j > i.
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
#define IDELEMS(i)
Definition: simpleideals.h:23
#define id_Test(A, lR)
Definition: simpleideals.h:78

◆ lp_kDim()

int lp_kDim ( const ideal  G)

Definition at line 2090 of file hdegree.cc.

2091{
2092 if (rField_is_Ring(currRing)) {
2093 WerrorS("K-Dim not implemented for rings");
2094 return -2;
2095 }
2096
2097 for (int i=IDELEMS(_G)-1;i>=0; i--)
2098 {
2099 if (_G->m[i] != NULL)
2100 {
2101 if (pGetComp(_G->m[i]) != 0)
2102 {
2103 WerrorS("K-Dim not implemented for modules");
2104 return -2;
2105 }
2106 if (pGetNCGen(_G->m[i]) != 0)
2107 {
2108 WerrorS("K-Dim not implemented for bi-modules");
2109 return -2;
2110 }
2111 }
2112 }
2113
2114 ideal G = id_Head(_G, currRing); // G = LM(G) (and copy)
2115 if (TEST_OPT_PROT)
2116 Print("%d original generators\n", IDELEMS(G));
2117 idSkipZeroes(G); // remove zeros
2118 id_DelLmEquals(G, currRing); // remove duplicates
2119 if (TEST_OPT_PROT)
2120 Print("%d non-zero unique generators\n", IDELEMS(G));
2121
2122 // check if G is the zero ideal
2123 if (IDELEMS(G) == 1 && G->m[0] == NULL)
2124 {
2125 // NOTE: this is needed because if the ideal is <0>, then idSkipZeroes keeps this element, and IDELEMS is still 1!
2126 int lV = currRing->isLPring;
2127 int ncGenCount = currRing->LPncGenCount;
2128 if (lV - ncGenCount == 0)
2129 {
2130 idDelete(&G);
2131 return 1;
2132 }
2133 if (lV - ncGenCount == 1)
2134 {
2135 idDelete(&G);
2136 return -1;
2137 }
2138 if (lV - ncGenCount >= 2)
2139 {
2140 idDelete(&G);
2141 return -1;
2142 }
2143 }
2144
2145 // get the max deg
2146 long maxDeg = 0;
2147 for (int i = 0; i < IDELEMS(G); i++)
2148 {
2149 maxDeg = si_max(maxDeg, pTotaldegree(G->m[i]));
2150
2151 // also check whether G = <1>
2152 if (pIsConstantComp(G->m[i]))
2153 {
2154 WerrorS("K-Dim not defined for 0-ring"); // TODO is it minus infinity ?
2155 idDelete(&G);
2156 return -2;
2157 }
2158 }
2159 if (TEST_OPT_PROT)
2160 Print("max deg: %ld\n", maxDeg);
2161
2162
2163 // for normal words of length minDeg ... maxDeg-1
2164 // brute-force the normal words
2165 if (TEST_OPT_PROT)
2166 PrintS("Computing normal words normally...\n");
2167 long numberOfNormalWords = lp_countNormalWords(maxDeg - 1, G);
2168
2169 if (TEST_OPT_PROT)
2170 Print("%ld normal words up to length %ld\n", numberOfNormalWords, maxDeg - 1);
2171
2172 // early termination if G \subset X
2173 if (maxDeg <= 1)
2174 {
2175 int lV = currRing->isLPring;
2176 int ncGenCount = currRing->LPncGenCount;
2177 if (IDELEMS(G) == lV - ncGenCount) // V = {1} no edges
2178 {
2179 idDelete(&G);
2180 return numberOfNormalWords;
2181 }
2182 if (IDELEMS(G) == lV - ncGenCount - 1) // V = {1} with loop
2183 {
2184 idDelete(&G);
2185 return -1;
2186 }
2187 if (IDELEMS(G) <= lV - ncGenCount - 2) // V = {1} with more than one loop
2188 {
2189 idDelete(&G);
2190 return -1;
2191 }
2192 }
2193
2194 if (TEST_OPT_PROT)
2195 PrintS("Computing Ufnarovski graph...\n");
2196
2197 ideal standardWords;
2198 intvec* UG = lp_ufnarovskiGraph(G, standardWords);
2199 if (UG == NULL)
2200 {
2201 idDelete(&G);
2202 return -2;
2203 }
2204 if (errorreported)
2205 {
2206 delete UG;
2207 idDelete(&G);
2208 return -2;
2209 }
2210
2211 if (TEST_OPT_PROT)
2212 Print("Ufnarovski graph is %dx%d.\n", UG->rows(), UG->cols());
2213
2214 if (TEST_OPT_PROT)
2215 PrintS("Checking whether Ufnarovski graph is acyclic...\n");
2216
2217 if (!isAcyclic(UG))
2218 {
2219 // in this case we have infinitely many normal words
2220 return -1;
2221 }
2222
2223 std::vector<std::vector<int> > vvUG = iv2vv(UG);
2224 for (int i = 0; i < vvUG.size(); i++)
2225 {
2226 if (vvIsRowZero(vvUG, i) && vvIsColumnZero(vvUG, i)) // i is isolated vertex
2227 {
2228 vvDeleteRow(vvUG, i);
2229 vvDeleteColumn(vvUG, i);
2230 i--;
2231 }
2232 }
2233 if (TEST_OPT_PROT)
2234 Print("Simplified Ufnarovski graph to %dx%d.\n", (int)vvUG.size(), (int)vvUG.size());
2235
2236 // for normal words of length >= maxDeg
2237 // use Ufnarovski graph
2238 if (TEST_OPT_PROT)
2239 PrintS("Computing normal words via Ufnarovski graph...\n");
2240 std::vector<std::vector<int> > UGpower = vvUG;
2241 long nUGpower = 1;
2242 while (!vvIsZero(UGpower))
2243 {
2244 if (TEST_OPT_PROT)
2245 PrintS("Start count graph entries.\n");
2246 for (int i = 0; i < UGpower.size(); i++)
2247 {
2248 for (int j = 0; j < UGpower[i].size(); j++)
2249 {
2250 numberOfNormalWords += UGpower[i][j];
2251 }
2252 }
2253
2254 if (TEST_OPT_PROT)
2255 {
2256 PrintS("Done count graph entries.\n");
2257 Print("%ld normal words up to length %ld\n", numberOfNormalWords, maxDeg - 1 + nUGpower);
2258 }
2259
2260 if (TEST_OPT_PROT)
2261 PrintS("Start mat mult.\n");
2262 UGpower = vvMult(UGpower, vvUG); // TODO: avoid creation of new intvec
2263 if (TEST_OPT_PROT)
2264 PrintS("Done mat mult.\n");
2265 nUGpower++;
2266 }
2267
2268 delete UG;
2269 idDelete(&G);
2270 return numberOfNormalWords;
2271}
int cols() const
Definition: intvec.h:95
int rows() const
Definition: intvec.h:96
#define Print
Definition: emacs.cc:80
int j
Definition: facHensel.cc:110
static std::vector< std::vector< int > > vvMult(const std::vector< std::vector< int > > &a, const std::vector< std::vector< int > > &b)
Definition: hdegree.cc:2036
static void vvDeleteRow(std::vector< std::vector< int > > &mat, int row)
Definition: hdegree.cc:1993
static BOOLEAN vvIsColumnZero(const std::vector< std::vector< int > > &mat, int col)
Definition: hdegree.cc:2016
static void vvDeleteColumn(std::vector< std::vector< int > > &mat, int col)
Definition: hdegree.cc:1998
static std::vector< std::vector< int > > iv2vv(intvec *M)
Definition: hdegree.cc:1950
static int lp_countNormalWords(int upToLength, ideal M)
Definition: hdegree.cc:1758
static BOOLEAN isAcyclic(const intvec *G)
Definition: hdegree.cc:2063
static BOOLEAN vvIsZero(const std::vector< std::vector< int > > &mat)
Definition: hdegree.cc:2026
static BOOLEAN vvIsRowZero(const std::vector< std::vector< int > > &mat, int row)
Definition: hdegree.cc:2006
#define TEST_OPT_PROT
Definition: options.h:103
void PrintS(const char *s)
Definition: reporter.cc:284

◆ lp_ufnarovskiGraph()

intvec * lp_ufnarovskiGraph ( ideal  G,
ideal &  standardWords 
)

Definition at line 1779 of file hdegree.cc.

1780{
1781 long l = 0;
1782 for (int i = 0; i < IDELEMS(G); i++)
1783 l = si_max(pTotaldegree(G->m[i]), l);
1784 l--;
1785 if (l <= 0)
1786 {
1787 WerrorS("Ufnarovski graph not implemented for l <= 0");
1788 return NULL;
1789 }
1790 int lV = currRing->isLPring;
1791
1792 standardWords = lp_computeNormalWords(l, G);
1793
1794 int n = IDELEMS(standardWords);
1795 intvec* UG = new intvec(n, n, 0);
1796 for (int i = 0; i < n; i++)
1797 {
1798 for (int j = 0; j < n; j++)
1799 {
1800 poly v = standardWords->m[i];
1801 poly w = standardWords->m[j];
1802
1803 // check whether v*x1 = x2*w (overlap)
1804 bool overlap = true;
1805 for (int k = 1; k <= (l - 1) * lV; k++)
1806 {
1807 if (pGetExp(v, k + lV) != pGetExp(w, k)) {
1808 overlap = false;
1809 break;
1810 }
1811 }
1812
1813 if (overlap)
1814 {
1815 // create the overlap
1816 poly p = pMult(pCopy(v), p_LPVarAt(w, l, currRing));
1817
1818 // check whether the overlap is normal
1819 bool normal = true;
1820 for (int k = 0; k < IDELEMS(G); k++)
1821 {
1822 if (p_LPDivisibleBy(G->m[k], p, currRing))
1823 {
1824 normal = false;
1825 break;
1826 }
1827 }
1828
1829 if (normal)
1830 {
1831 IMATELEM(*UG, i + 1, j + 1) = 1;
1832 }
1833 }
1834 }
1835 }
1836 return UG;
1837}
int l
Definition: cfEzgcd.cc:100
int k
Definition: cfEzgcd.cc:99
int p
Definition: cfModGcd.cc:4078
const CanonicalForm & w
Definition: facAbsFact.cc:51
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
static ideal lp_computeNormalWords(int length, ideal M)
Definition: hdegree.cc:1738
#define IMATELEM(M, I, J)
Definition: intvec.h:85
#define pMult(p, q)
Definition: polys.h:207
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
BOOLEAN p_LPDivisibleBy(poly a, poly b, const ring r)
Definition: shiftop.cc:776
poly p_LPVarAt(poly p, int pos, const ring r)
Definition: shiftop.cc:845

◆ scComputeHC()

void scComputeHC ( ideal  s,
ideal  Q,
int  k,
poly &  hEdge,
ring  tailRing = currRing 
)

Definition at line 1079 of file hdegree.cc.

1080{
1081 id_TestTail(S, currRing, tailRing);
1082 if (Q!=NULL) id_TestTail(Q, currRing, tailRing);
1083
1084 int i;
1085 int k = ak;
1086 #ifdef HAVE_RINGS
1087 if (rField_is_Ring(currRing) && (currRing->OrdSgn == -1))
1088 {
1089 //consider just monic generators (over rings with zero-divisors)
1090 ideal SS=id_Copy(S,tailRing);
1091 for(i=0;i<=idElem(S);i++)
1092 {
1093 if((SS->m[i]!=NULL)
1094 && ((p_IsPurePower(SS->m[i],tailRing)==0)
1095 ||(!n_IsUnit(pGetCoeff(SS->m[i]), tailRing->cf))))
1096 {
1097 p_Delete(&SS->m[i],tailRing);
1098 }
1099 }
1100 S=id_Copy(SS,tailRing);
1101 idSkipZeroes(S);
1102 }
1103 #if 0
1104 printf("\nThis is HC:\n");
1105 for(int ii=0;ii<=idElem(S);ii++)
1106 {
1107 pWrite(S->m[ii]);
1108 }
1109 //getchar();
1110 #endif
1111 #endif
1112 if(idElem(S) == 0)
1113 return;
1114 hNvar = (currRing->N);
1115 hexist = hInit(S, Q, &hNexist, tailRing); // tailRing?
1116 if (k!=0)
1118 else
1119 hNstc = hNexist;
1120 assume(hNexist > 0);
1121 hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
1122 hvar = (varset)omAlloc((hNvar + 1) * sizeof(int));
1123 hpure = (scmon)omAlloc((1 + (hNvar * hNvar)) * sizeof(int));
1124 stcmem = hCreate(hNvar - 1);
1125 for (i = hNvar; i>0; i--)
1126 hvar[i] = i;
1128 if ((hNvar > 2) && (hNstc > 10))
1130 memset(hpure, 0, (hNvar + 1) * sizeof(int));
1131 hPure(hexist, 0, &hNstc, hvar, hNvar, hpure, &hNpure);
1133 if (hEdge!=NULL)
1134 pLmFree(hEdge);
1135 hEdge = pInit();
1136 pWork = pInit();
1138 pSetComp(hEdge,ak);
1139 hKill(stcmem, hNvar - 1);
1140 omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
1141 omFreeSize((ADDRESS)hvar, (hNvar + 1) * sizeof(int));
1142 omFreeSize((ADDRESS)hpure, (1 + (hNvar * hNvar)) * sizeof(int));
1144 pLmFree(pWork);
1145}
void * ADDRESS
Definition: auxiliary.h:119
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:515
static void hHedgeStep(scmon pure, scfmon stc, int Nstc, varset var, int Nvar, poly hEdge)
Definition: hdegree.cc:1019
STATIC_VAR poly pWork
Definition: hdegree.cc:1005
monf hCreate(int Nvar)
Definition: hutil.cc:999
void hComp(scfmon exist, int Nexist, int ak, scfmon stc, int *Nstc)
Definition: hutil.cc:157
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
Definition: hutil.cc:31
VAR varset hvar
Definition: hutil.cc:18
void hKill(monf xmem, int Nvar)
Definition: hutil.cc:1013
VAR int hNexist
Definition: hutil.cc:19
void hLexS(scfmon stc, int Nstc, varset var, int Nvar)
Definition: hutil.cc:509
void hDelete(scfmon ev, int ev_length)
Definition: hutil.cc:143
VAR monf stcmem
Definition: hutil.cc:21
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
Definition: hutil.cc:624
VAR scfmon hwork
Definition: hutil.cc:16
VAR scmon hpure
Definition: hutil.cc:17
void hStaircase(scfmon stc, int *Nstc, varset var, int Nvar)
Definition: hutil.cc:316
void hOrdSupp(scfmon stc, int Nstc, varset var, int Nvar)
Definition: hutil.cc:205
VAR int hNpure
Definition: hutil.cc:19
VAR scfmon hexist
Definition: hutil.cc:16
VAR int hNstc
Definition: hutil.cc:19
VAR int hNvar
Definition: hutil.cc:19
scmon * scfmon
Definition: hutil.h:15
int * varset
Definition: hutil.h:16
int * scmon
Definition: hutil.h:14
ideal id_Copy(ideal h1, const ring r)
copy an ideal
STATIC_VAR jList * Q
Definition: janet.cc:30
#define assume(x)
Definition: mod2.h:387
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc(size)
Definition: omAllocDecl.h:210
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition: p_polys.cc:1226
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
#define pSetComp(p, v)
Definition: polys.h:38
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
Definition: polys.h:70
void pWrite(poly p)
Definition: polys.h:308
#define pInit()
allocates a new monomial and initializes everything to 0
Definition: polys.h:61
int idElem(const ideal F)
count non-zero elements
#define id_TestTail(A, lR, tR)
Definition: simpleideals.h:77

◆ scDegree()

void scDegree ( ideal  s,
intvec modulweight,
ideal  Q = NULL 
)

Definition at line 895 of file hdegree.cc.

896{
897 id_Test(S, currRing);
898 if( Q!=NULL ) id_Test(Q, currRing);
899
900 int co, mu, l;
901 intvec *hseries2;
902 intvec *hseries1 = hFirstSeries(S, modulweight, Q);
903 if (errorreported) return;
904 l = hseries1->length()-1;
905 if (l > 1)
906 hseries2 = hSecondSeries(hseries1);
907 else
908 hseries2 = hseries1;
909 hDegreeSeries(hseries1, hseries2, &co, &mu);
910 if ((l == 1) &&(mu == 0))
911 scPrintDegree((currRing->N)+1, 0);
912 else
913 scPrintDegree(co, mu);
914 if (l>1)
915 delete hseries1;
916 delete hseries2;
917}
void mu(int **points, int sizePoints)
int length() const
Definition: intvec.h:94
void scPrintDegree(int co, int mu)
Definition: hdegree.cc:881
intvec * hSecondSeries(intvec *hseries1)
Definition: hilb.cc:1383
intvec * hFirstSeries(ideal S, intvec *modulweight, ideal Q, intvec *wdegree, ring tailRing)
Definition: hilb.cc:1373
void hDegreeSeries(intvec *s1, intvec *s2, int *co, int *mu)
Definition: hilb.cc:1418

◆ scDimInt()

int scDimInt ( ideal  s,
ideal  Q = NULL 
)

ideal dimension

Definition at line 77 of file hdegree.cc.

78{
79 id_Test(S, currRing);
80 if( Q!=NULL ) id_Test(Q, currRing);
81
82 int mc;
83 hexist = hInit(S, Q, &hNexist, currRing);
84 if (!hNexist)
85 return (currRing->N);
86 hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
87 hvar = (varset)omAlloc(((currRing->N) + 1) * sizeof(int));
88 hpure = (scmon)omAlloc((1 + ((currRing->N) * (currRing->N))) * sizeof(int));
89 mc = hisModule;
90 if (!mc)
91 {
92 hrad = hexist;
93 hNrad = hNexist;
94 }
95 else
96 hrad = (scfmon)omAlloc(hNexist * sizeof(scmon));
97 radmem = hCreate((currRing->N) - 1);
98 hCo = (currRing->N) + 1;
99 loop
100 {
101 if (mc)
102 hComp(hexist, hNexist, mc, hrad, &hNrad);
103 if (hNrad)
104 {
105 hNvar = (currRing->N);
108 if (hNvar)
109 {
110 memset(hpure, 0, ((currRing->N) + 1) * sizeof(int));
111 hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
114 }
115 }
116 else
117 {
118 hCo = 0;
119 break;
120 }
121 mc--;
122 if (mc <= 0)
123 break;
124 }
125 hKill(radmem, (currRing->N) - 1);
126 omFreeSize((ADDRESS)hpure, (1 + ((currRing->N) * (currRing->N))) * sizeof(int));
127 omFreeSize((ADDRESS)hvar, ((currRing->N) + 1) * sizeof(int));
128 omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
130 if (hisModule)
131 omFreeSize((ADDRESS)hrad, hNexist * sizeof(scmon));
132 return (currRing->N) - hCo;
133}
VAR int hCo
Definition: hdegree.cc:27
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:34
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
Definition: hutil.cc:177
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
Definition: hutil.cc:568
VAR scfmon hrad
Definition: hutil.cc:16
VAR int hisModule
Definition: hutil.cc:20
VAR monf radmem
Definition: hutil.cc:21
VAR int hNrad
Definition: hutil.cc:19
void hRadical(scfmon rad, int *Nrad, int Nvar)
Definition: hutil.cc:414
#define loop
Definition: structs.h:75

◆ scDimIntRing()

int scDimIntRing ( ideal  s,
ideal  Q = NULL 
)

scDimInt for ring-coefficients

Definition at line 135 of file hdegree.cc.

136{
137#ifdef HAVE_RINGS
139 {
140 int i = idPosConstant(vid);
141 if ((i != -1) && (n_IsUnit(pGetCoeff(vid->m[i]),currRing->cf)))
142 { /* ideal v contains unit; dim = -1 */
143 return(-1);
144 }
145 ideal vv = id_Head(vid,currRing);
146 idSkipZeroes(vv);
147 i = idPosConstant(vid);
148 int d;
149 if(i == -1)
150 {
151 d = scDimInt(vv, Q);
153 d++;
154 }
155 else
156 {
157 if(n_IsUnit(pGetCoeff(vv->m[i]),currRing->cf))
158 d = -1;
159 else
160 d = scDimInt(vv, Q);
161 }
162 //Anne's Idea for std(4,2x) = 0 bug
163 int dcurr = d;
164 for(unsigned ii=0;ii<(unsigned)IDELEMS(vv);ii++)
165 {
166 if(vv->m[ii] != NULL && !n_IsUnit(pGetCoeff(vv->m[ii]),currRing->cf))
167 {
168 ideal vc = idCopy(vv);
169 poly c = pInit();
170 pSetCoeff0(c,nCopy(pGetCoeff(vv->m[ii])));
171 idInsertPoly(vc,c);
172 idSkipZeroes(vc);
173 for(unsigned jj = 0;jj<(unsigned)IDELEMS(vc)-1;jj++)
174 {
175 if((vc->m[jj]!=NULL)
176 && (n_DivBy(pGetCoeff(vc->m[jj]),pGetCoeff(c),currRing->cf)))
177 {
178 pDelete(&vc->m[jj]);
179 }
180 }
181 idSkipZeroes(vc);
182 i = idPosConstant(vc);
183 if (i != -1) pDelete(&vc->m[i]);
184 dcurr = scDimInt(vc, Q);
185 // the following assumes the ground rings to be either zero- or one-dimensional
186 if((i==-1) && rField_is_Z(currRing))
187 {
188 // should also be activated for other euclidean domains as groundfield
189 dcurr++;
190 }
191 idDelete(&vc);
192 }
193 if(dcurr > d)
194 d = dcurr;
195 }
196 idDelete(&vv);
197 return d;
198 }
199#endif
200 return scDimInt(vid,Q);
201}
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition: coeffs.h:753
int scDimInt(ideal S, ideal Q)
ideal dimension
Definition: hdegree.cc:77
BOOLEAN idInsertPoly(ideal h1, poly h2)
insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted
ideal idCopy(ideal A)
Definition: ideals.h:60
#define idPosConstant(I)
index of generator with leading term in ground ring (if any); otherwise -1
Definition: ideals.h:37
#define pSetCoeff0(p, n)
Definition: monomials.h:59
#define nCopy(n)
Definition: numbers.h:15
#define pDelete(p_ptr)
Definition: polys.h:186
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:510

◆ scIndIntvec()

intvec * scIndIntvec ( ideal  S,
ideal  Q = NULL 
)

Definition at line 285 of file hdegree.cc.

286{
287 id_Test(S, currRing);
288 if( Q!=NULL ) id_Test(Q, currRing);
289
290 intvec *Set=new intvec((currRing->N));
291 int mc,i;
292 hexist = hInit(S, Q, &hNexist, currRing);
293 if (hNexist==0)
294 {
295 for(i=0; i<(currRing->N); i++)
296 (*Set)[i]=1;
297 return Set;
298 }
299 hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
300 hvar = (varset)omAlloc(((currRing->N) + 1) * sizeof(int));
301 hpure = (scmon)omAlloc((1 + ((currRing->N) * (currRing->N))) * sizeof(int));
302 hInd = (scmon)omAlloc0((1 + (currRing->N)) * sizeof(int));
303 mc = hisModule;
304 if (mc==0)
305 {
306 hrad = hexist;
307 hNrad = hNexist;
308 }
309 else
310 hrad = (scfmon)omAlloc(hNexist * sizeof(scmon));
311 radmem = hCreate((currRing->N) - 1);
312 hCo = (currRing->N) + 1;
313 loop
314 {
315 if (mc!=0)
316 hComp(hexist, hNexist, mc, hrad, &hNrad);
317 if (hNrad!=0)
318 {
319 hNvar = (currRing->N);
322 if (hNvar!=0)
323 {
324 memset(hpure, 0, ((currRing->N) + 1) * sizeof(int));
325 hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
328 }
329 }
330 else
331 {
332 hCo = 0;
333 break;
334 }
335 mc--;
336 if (mc <= 0)
337 break;
338 }
339 for(i=0; i<(currRing->N); i++)
340 (*Set)[i] = hInd[i+1];
341 hKill(radmem, (currRing->N) - 1);
342 omFreeSize((ADDRESS)hpure, (1 + ((currRing->N) * (currRing->N))) * sizeof(int));
343 omFreeSize((ADDRESS)hInd, (1 + (currRing->N)) * sizeof(int));
344 omFreeSize((ADDRESS)hvar, ((currRing->N) + 1) * sizeof(int));
345 omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
347 if (hisModule)
348 omFreeSize((ADDRESS)hrad, hNexist * sizeof(scmon));
349 return Set;
350}
STATIC_VAR scmon hInd
Definition: hdegree.cc:204
static void hIndSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:206
#define omAlloc0(size)
Definition: omAllocDecl.h:211

◆ scKBase()

ideal scKBase ( int  deg,
ideal  s,
ideal  Q = NULL,
intvec mv = NULL 
)

Definition at line 1427 of file hdegree.cc.

1428{
1429 if( Q!=NULL) id_Test(Q, currRing);
1430
1431 int i, di;
1432 poly p;
1433
1434 if (deg < 0)
1435 {
1436 di = scDimInt(s, Q);
1437 if (di != 0)
1438 {
1439 //Werror("KBase not finite");
1440 return idInit(1,s->rank);
1441 }
1442 }
1443 stcmem = hCreate((currRing->N) - 1);
1444 hexist = hInit(s, Q, &hNexist, currRing);
1445 p = last = pInit();
1446 /*pNext(p) = NULL;*/
1447 act = (scmon)omAlloc(((currRing->N) + 1) * sizeof(int));
1448 *act = 0;
1449 if (!hNexist)
1450 {
1451 scAll((currRing->N), deg);
1452 goto ende;
1453 }
1454 if (!hisModule)
1455 {
1456 if (deg < 0) scInKbase(hexist, hNexist, (currRing->N));
1457 else scDegKbase(hexist, hNexist, (currRing->N), deg);
1458 }
1459 else
1460 {
1461 hstc = (scfmon)omAlloc(hNexist * sizeof(scmon));
1462 for (i = 1; i <= hisModule; i++)
1463 {
1464 *act = i;
1466 int deg_ei=deg;
1467 if (mv!=NULL) deg_ei -= (*mv)[i-1];
1468 if ((deg < 0) || (deg_ei>=0))
1469 {
1470 if (hNstc)
1471 {
1472 if (deg < 0) scInKbase(hstc, hNstc, (currRing->N));
1473 else scDegKbase(hstc, hNstc, (currRing->N), deg_ei);
1474 }
1475 else
1476 scAll((currRing->N), deg_ei);
1477 }
1478 }
1479 omFreeSize((ADDRESS)hstc, hNexist * sizeof(scmon));
1480 }
1481ende:
1483 omFreeSize((ADDRESS)act, ((currRing->N) + 1) * sizeof(int));
1484 hKill(stcmem, (currRing->N) - 1);
1485 pLmFree(&p);
1486 if (p == NULL)
1487 return idInit(1,s->rank);
1488
1489 last = p;
1490 return scIdKbase(p, s->rank);
1491}
const CanonicalForm int s
Definition: facAbsFact.cc:51
STATIC_VAR poly last
Definition: hdegree.cc:1151
static void scAll(int Nvar, int deg)
Definition: hdegree.cc:1238
static void scDegKbase(scfmon stc, int Nstc, int Nvar, int deg)
Definition: hdegree.cc:1272
STATIC_VAR scmon act
Definition: hdegree.cc:1152
static ideal scIdKbase(poly q, const int rank)
Definition: hdegree.cc:1409
static void scInKbase(scfmon stc, int Nstc, int Nvar)
Definition: hdegree.cc:1353
VAR scfmon hstc
Definition: hutil.cc:16
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35

◆ scMult0Int()

int scMult0Int ( ideal  s,
ideal  Q = NULL,
const ring  tailRing = currRing 
)

Definition at line 993 of file hdegree.cc.

994{
995 id_TestTail(S, currRing, tailRing);
996 if (Q!=NULL) id_TestTail(Q, currRing, tailRing);
997
998 hDegree0(S, Q, tailRing);
999 return hMu;
1000}
VAR int hMu
Definition: hdegree.cc:27
static void hDegree0(ideal S, ideal Q, const ring tailRing)
Definition: hdegree.cc:919

◆ scMultInt()

int scMultInt ( ideal  s,
ideal  Q = NULL 
)

Definition at line 872 of file hdegree.cc.

873{
874 id_Test(S, currRing);
875 if( Q!=NULL ) id_Test(Q, currRing);
876
877 hDegree(S, Q);
878 return hMu;
879}
static void hDegree(ideal S, ideal Q)
Definition: hdegree.cc:771

◆ scPrintDegree()

void scPrintDegree ( int  co,
int  mu 
)

Definition at line 881 of file hdegree.cc.

882{
883 int di = (currRing->N)-co;
884 if (currRing->OrdSgn == 1)
885 {
886 if (di>0)
887 Print("// dimension (proj.) = %d\n// degree (proj.) = %d\n", di-1, mu);
888 else
889 Print("// dimension (affine) = 0\n// degree (affine) = %d\n", mu);
890 }
891 else
892 Print("// dimension (local) = %d\n// multiplicity = %d\n", di, mu);
893}