My Project
ipshell.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT:
6*/
7
8#include "kernel/mod2.h"
9
10#include "factory/factory.h"
11
12#include "misc/options.h"
13#include "misc/mylimits.h"
14#include "misc/intvec.h"
15#include "misc/prime.h"
16
17#include "coeffs/numbers.h"
18#include "coeffs/coeffs.h"
19
20#include "coeffs/rmodulon.h"
21#include "coeffs/longrat.h"
22
26
27#include "polys/prCopy.h"
28#include "polys/matpol.h"
29
30#include "polys/shiftop.h"
31#include "polys/weight.h"
32#include "polys/clapsing.h"
33
34
37
38#include "kernel/polys.h"
39#include "kernel/ideals.h"
40
43
44#include "kernel/GBEngine/syz.h"
46#include "kernel/GBEngine/kutil.h" // denominator_list
47
50
54
56
57#include "Singular/lists.h"
58#include "Singular/attrib.h"
59#include "Singular/ipconv.h"
61#include "Singular/ipshell.h"
62#include "Singular/maps_ip.h"
63#include "Singular/tok.h"
64#include "Singular/ipid.h"
65#include "Singular/subexpr.h"
66#include "Singular/fevoices.h"
67#include "Singular/sdb.h"
68
69#include <cmath>
70#include <ctype.h>
71
73
74#include "polys/clapsing.h"
75
76#ifdef SINGULAR_4_2
77#include "Singular/number2.h"
78#include "coeffs/bigintmat.h"
79#endif
82const char *lastreserved=NULL;
83
85
86/*0 implementation*/
87
88const char * iiTwoOps(int t)
89{
90 if (t<127)
91 {
92 STATIC_VAR char ch[2];
93 switch (t)
94 {
95 case '&':
96 return "and";
97 case '|':
98 return "or";
99 default:
100 ch[0]=t;
101 ch[1]='\0';
102 return ch;
103 }
104 }
105 switch (t)
106 {
107 case COLONCOLON: return "::";
108 case DOTDOT: return "..";
109 //case PLUSEQUAL: return "+=";
110 //case MINUSEQUAL: return "-=";
111 case MINUSMINUS: return "--";
112 case PLUSPLUS: return "++";
113 case EQUAL_EQUAL: return "==";
114 case LE: return "<=";
115 case GE: return ">=";
116 case NOTEQUAL: return "<>";
117 default: return Tok2Cmdname(t);
118 }
119}
120
121int iiOpsTwoChar(const char *s)
122{
123/* not handling: &&, ||, ** */
124 if (s[1]=='\0') return s[0];
125 else if (s[2]!='\0') return 0;
126 switch(s[0])
127 {
128 case '.': if (s[1]=='.') return DOTDOT;
129 else return 0;
130 case ':': if (s[1]==':') return COLONCOLON;
131 else return 0;
132 case '-': if (s[1]=='-') return MINUSMINUS;
133 else return 0;
134 case '+': if (s[1]=='+') return PLUSPLUS;
135 else return 0;
136 case '=': if (s[1]=='=') return EQUAL_EQUAL;
137 else return 0;
138 case '<': if (s[1]=='=') return LE;
139 else if (s[1]=='>') return NOTEQUAL;
140 else return 0;
141 case '>': if (s[1]=='=') return GE;
142 else return 0;
143 case '!': if (s[1]=='=') return NOTEQUAL;
144 else return 0;
145 }
146 return 0;
147}
148
149static void list1(const char* s, idhdl h,BOOLEAN c, BOOLEAN fullname)
150{
151 char buffer[22];
152 int l;
153 char buf2[128];
154
155 if(fullname) sprintf(buf2, "%s::%s", "", IDID(h));
156 else sprintf(buf2, "%s", IDID(h));
157
158 Print("%s%-30.30s [%d] ",s,buf2,IDLEV(h));
159 if (h == currRingHdl) PrintS("*");
160 PrintS(Tok2Cmdname((int)IDTYP(h)));
161
162 ipListFlag(h);
163 switch(IDTYP(h))
164 {
165 case ALIAS_CMD: Print(" for %s",IDID((idhdl)IDDATA(h))); break;
166 case INT_CMD: Print(" %d",IDINT(h)); break;
167 case INTVEC_CMD:Print(" (%d)",IDINTVEC(h)->length()); break;
168 case INTMAT_CMD:Print(" %d x %d",IDINTVEC(h)->rows(),IDINTVEC(h)->cols());
169 break;
170 case POLY_CMD:
171 case VECTOR_CMD:if (c)
172 {
173 PrintS(" ");wrp(IDPOLY(h));
174 if(IDPOLY(h) != NULL)
175 {
176 Print(", %d monomial(s)",pLength(IDPOLY(h)));
177 }
178 }
179 break;
180 case MODUL_CMD: Print(", rk %d", (int)(IDIDEAL(h)->rank));// and continue
181 case IDEAL_CMD: Print(", %u generator(s)",
182 IDELEMS(IDIDEAL(h))); break;
183 case MAP_CMD:
184 Print(" from %s",IDMAP(h)->preimage); break;
185 case MATRIX_CMD:Print(" %u x %u"
188 );
189 break;
190 case SMATRIX_CMD:Print(" %u x %u"
191 ,(int)(IDIDEAL(h)->rank)
192 ,IDELEMS(IDIDEAL(h))
193 );
194 break;
195 case PACKAGE_CMD:
197 break;
198 case PROC_CMD: if((IDPROC(h)->libname!=NULL)
199 && (strlen(IDPROC(h)->libname)>0))
200 Print(" from %s",IDPROC(h)->libname);
201 if(IDPROC(h)->language==LANG_C)
202 PrintS(" (C)");
203 if(IDPROC(h)->is_static)
204 PrintS(" (static)");
205 break;
206 case STRING_CMD:
207 {
208 char *s;
209 l=strlen(IDSTRING(h));
210 memset(buffer,0,sizeof(buffer));
211 strncpy(buffer,IDSTRING(h),si_min(l,20));
212 if ((s=strchr(buffer,'\n'))!=NULL)
213 {
214 *s='\0';
215 }
216 PrintS(" ");
217 PrintS(buffer);
218 if((s!=NULL) ||(l>20))
219 {
220 Print("..., %d char(s)",l);
221 }
222 break;
223 }
224 case LIST_CMD: Print(", size: %d",IDLIST(h)->nr+1);
225 break;
226 case RING_CMD:
227 if ((IDRING(h)==currRing) && (currRingHdl!=h))
228 PrintS("(*)"); /* this is an alias to currRing */
229 //Print(" ref:%d",IDRING(h)->ref);
230#ifdef RDEBUG
232 Print(" <%lx>",(long)(IDRING(h)));
233#endif
234 break;
235#ifdef SINGULAR_4_2
236 case CNUMBER_CMD:
237 { number2 n=(number2)IDDATA(h);
238 Print(" (%s)",nCoeffName(n->cf));
239 break;
240 }
241 case CMATRIX_CMD:
243 Print(" %d x %d (%s)",
244 b->rows(),b->cols(),
245 nCoeffName(b->basecoeffs()));
246 break;
247 }
248#endif
249 /*default: break;*/
250 }
251 PrintLn();
252}
253
255{
256 BOOLEAN oldShortOut = FALSE;
257
258 if (currRing != NULL)
259 {
260 oldShortOut = currRing->ShortOut;
261 currRing->ShortOut = 1;
262 }
263 int t=v->Typ();
264 Print("// %s %s ",v->Name(),Tok2Cmdname(t));
265 switch (t)
266 {
267 case MAP_CMD:Print(" from %s\n",((map)(v->Data()))->preimage); break;
268 case INTMAT_CMD: Print(" %d x %d\n",((intvec*)(v->Data()))->rows(),
269 ((intvec*)(v->Data()))->cols()); break;
270 case MATRIX_CMD:Print(" %u x %u\n" ,
271 MATROWS((matrix)(v->Data())),
272 MATCOLS((matrix)(v->Data())));break;
273 case MODUL_CMD: Print(", rk %d\n", (int)(((ideal)(v->Data()))->rank));break;
274 case LIST_CMD: Print(", size %d\n",((lists)(v->Data()))->nr+1); break;
275
276 case PROC_CMD:
277 case RING_CMD:
278 case IDEAL_CMD: PrintLn(); break;
279
280 //case INT_CMD:
281 //case STRING_CMD:
282 //case INTVEC_CMD:
283 //case POLY_CMD:
284 //case VECTOR_CMD:
285 //case PACKAGE_CMD:
286
287 default:
288 break;
289 }
290 v->Print();
291 if (currRing != NULL)
292 currRing->ShortOut = oldShortOut;
293}
294
295static void killlocals0(int v, idhdl * localhdl, const ring r)
296{
297 idhdl h = *localhdl;
298 while (h!=NULL)
299 {
300 int vv;
301 //Print("consider %s, lev: %d:",IDID(h),IDLEV(h));
302 if ((vv=IDLEV(h))>0)
303 {
304 if (vv < v)
305 {
306 if (iiNoKeepRing)
307 {
308 //PrintS(" break\n");
309 return;
310 }
311 h = IDNEXT(h);
312 //PrintLn();
313 }
314 else //if (vv >= v)
315 {
316 idhdl nexth = IDNEXT(h);
317 killhdl2(h,localhdl,r);
318 h = nexth;
319 //PrintS("kill\n");
320 }
321 }
322 else
323 {
324 h = IDNEXT(h);
325 //PrintLn();
326 }
327 }
328}
329
330void killlocals_rec(idhdl *root,int v, ring r)
331{
332 idhdl h=*root;
333 while (h!=NULL)
334 {
335 if (IDLEV(h)>=v)
336 {
337// Print("kill %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
338 idhdl n=IDNEXT(h);
339 killhdl2(h,root,r);
340 h=n;
341 }
342 else if (IDTYP(h)==PACKAGE_CMD)
343 {
344 // Print("into pack %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
345 if (IDPACKAGE(h)!=basePack)
346 killlocals_rec(&(IDRING(h)->idroot),v,r);
347 h=IDNEXT(h);
348 }
349 else if (IDTYP(h)==RING_CMD)
350 {
351 if ((IDRING(h)!=NULL) && (IDRING(h)->idroot!=NULL))
352 // we have to test IDRING(h)!=NULL: qring Q=groebner(...): killlocals
353 {
354 // Print("into ring %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
355 killlocals_rec(&(IDRING(h)->idroot),v,IDRING(h));
356 }
357 h=IDNEXT(h);
358 }
359 else
360 {
361// Print("skip %s lev %d for lev %d\n",IDID(h),IDLEV(h),v);
362 h=IDNEXT(h);
363 }
364 }
365}
367{
368 if (L==NULL) return FALSE;
369 BOOLEAN changed=FALSE;
370 int n=L->nr;
371 for(;n>=0;n--)
372 {
373 leftv h=&(L->m[n]);
374 void *d=h->data;
375 if ((h->rtyp==RING_CMD)
376 && (((ring)d)->idroot!=NULL))
377 {
378 if (d!=currRing) {changed=TRUE;rChangeCurrRing((ring)d);}
379 killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
380 }
381 else if (h->rtyp==LIST_CMD)
382 changed|=killlocals_list(v,(lists)d);
383 }
384 return changed;
385}
386void killlocals(int v)
387{
388 BOOLEAN changed=FALSE;
390 ring cr=currRing;
391 if (sh!=NULL) changed=((IDLEV(sh)<v) || (IDRING(sh)->ref>0));
392 //if (changed) Print("currRing=%s(%x), lev=%d,ref=%d\n",IDID(sh),IDRING(sh),IDLEV(sh),IDRING(sh)->ref);
393
394 killlocals_rec(&(basePack->idroot),v,currRing);
395
397 {
398 int t=iiRETURNEXPR.Typ();
399 if (/*iiRETURNEXPR.Typ()*/ t==RING_CMD)
400 {
402 if (((ring)h->data)->idroot!=NULL)
403 killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
404 }
405 else if (/*iiRETURNEXPR.Typ()*/ t==LIST_CMD)
406 {
408 changed |=killlocals_list(v,(lists)h->data);
409 }
410 }
411 if (changed)
412 {
414 if (currRingHdl==NULL)
416 else if(cr!=currRing)
417 rChangeCurrRing(cr);
418 }
419
420 if (myynest<=1) iiNoKeepRing=TRUE;
421 //Print("end killlocals >= %d\n",v);
422 //listall();
423}
424
425void list_cmd(int typ, const char* what, const char *prefix,BOOLEAN iterate, BOOLEAN fullname)
426{
427 package savePack=currPack;
428 idhdl h,start;
429 BOOLEAN all = typ<0;
430 BOOLEAN really_all=FALSE;
431
432 if ( typ==0 )
433 {
434 if (strcmp(what,"all")==0)
435 {
436 if (currPack!=basePack)
437 list_cmd(-1,NULL,prefix,iterate,fullname); // list current package
438 really_all=TRUE;
439 h=basePack->idroot;
440 }
441 else
442 {
443 h = ggetid(what);
444 if (h!=NULL)
445 {
446 if (iterate) list1(prefix,h,TRUE,fullname);
447 if (IDTYP(h)==ALIAS_CMD) PrintS("A");
448 if ((IDTYP(h)==RING_CMD)
449 //|| (IDTYP(h)==PACKAGE_CMD)
450 )
451 {
452 h=IDRING(h)->idroot;
453 }
454 else if(IDTYP(h)==PACKAGE_CMD)
455 {
457 //Print("list_cmd:package\n");
458 all=TRUE;typ=PROC_CMD;fullname=TRUE;really_all=TRUE;
459 h=IDPACKAGE(h)->idroot;
460 }
461 else
462 {
463 currPack=savePack;
464 return;
465 }
466 }
467 else
468 {
469 Werror("%s is undefined",what);
470 currPack=savePack;
471 return;
472 }
473 }
474 all=TRUE;
475 }
476 else if (RingDependend(typ))
477 {
478 h = currRing->idroot;
479 }
480 else
481 h = IDROOT;
482 start=h;
483 while (h!=NULL)
484 {
485 if ((all
486 && (IDTYP(h)!=PROC_CMD)
487 &&(IDTYP(h)!=PACKAGE_CMD)
488 &&(IDTYP(h)!=CRING_CMD)
489 )
490 || (typ == IDTYP(h))
491 || ((IDTYP(h)==CRING_CMD) && (typ==RING_CMD))
492 )
493 {
494 list1(prefix,h,start==currRingHdl, fullname);
495 if ((IDTYP(h)==RING_CMD)
496 && (really_all || (all && (h==currRingHdl)))
497 && ((IDLEV(h)==0)||(IDLEV(h)==myynest)))
498 {
499 list_cmd(0,IDID(h),"// ",FALSE);
500 }
501 if (IDTYP(h)==PACKAGE_CMD && really_all)
502 {
503 package save_p=currPack;
505 list_cmd(0,IDID(h),"// ",FALSE);
506 currPack=save_p;
507 }
508 }
509 h = IDNEXT(h);
510 }
511 currPack=savePack;
512}
513
514void test_cmd(int i)
515{
516 int ii;
517
518 if (i<0)
519 {
520 ii= -i;
521 if (ii < 32)
522 {
523 si_opt_1 &= ~Sy_bit(ii);
524 }
525 else if (ii < 64)
526 {
527 si_opt_2 &= ~Sy_bit(ii-32);
528 }
529 else
530 WerrorS("out of bounds\n");
531 }
532 else if (i<32)
533 {
534 ii=i;
535 if (Sy_bit(ii) & kOptions)
536 {
537 WarnS("Gerhard, use the option command");
538 si_opt_1 |= Sy_bit(ii);
539 }
540 else if (Sy_bit(ii) & validOpts)
541 si_opt_1 |= Sy_bit(ii);
542 }
543 else if (i<64)
544 {
545 ii=i-32;
546 si_opt_2 |= Sy_bit(ii);
547 }
548 else
549 WerrorS("out of bounds\n");
550}
551
553{
554 int rc = 0;
555 while (v!=NULL)
556 {
557 switch (v->Typ())
558 {
559 case INT_CMD:
560 case POLY_CMD:
561 case VECTOR_CMD:
562 case NUMBER_CMD:
563 rc++;
564 break;
565 case INTVEC_CMD:
566 case INTMAT_CMD:
567 rc += ((intvec *)(v->Data()))->length();
568 break;
569 case MATRIX_CMD:
570 case IDEAL_CMD:
571 case MODUL_CMD:
572 {
573 matrix mm = (matrix)(v->Data());
574 rc += mm->rows() * mm->cols();
575 }
576 break;
577 case LIST_CMD:
578 rc+=((lists)v->Data())->nr+1;
579 break;
580 default:
581 rc++;
582 }
583 v = v->next;
584 }
585 return rc;
586}
587
589{
590 sleftv vf;
591 if (iiConvert(v->Typ(),LINK_CMD,iiTestConvert(v->Typ(),LINK_CMD),v,&vf))
592 {
593 WerrorS("link expected");
594 return TRUE;
595 }
596 si_link l=(si_link)vf.Data();
597 if (vf.next == NULL)
598 {
599 WerrorS("write: need at least two arguments");
600 return TRUE;
601 }
602
603 BOOLEAN b=slWrite(l,vf.next); /* iiConvert preserves next */
604 if (b)
605 {
606 const char *s;
607 if ((l!=NULL)&&(l->name!=NULL)) s=l->name;
608 else s=sNoName_fe;
609 Werror("cannot write to %s",s);
610 }
611 vf.CleanUp();
612 return b;
613}
614
615leftv iiMap(map theMap, const char * what)
616{
617 idhdl w,r;
618 leftv v;
619 int i;
620 nMapFunc nMap;
621
622 r=IDROOT->get(theMap->preimage,myynest);
623 if ((currPack!=basePack)
624 &&((r==NULL) || ((r->typ != RING_CMD) )))
625 r=basePack->idroot->get(theMap->preimage,myynest);
626 if ((r==NULL) && (currRingHdl!=NULL)
627 && (strcmp(theMap->preimage,IDID(currRingHdl))==0))
628 {
629 r=currRingHdl;
630 }
631 if ((r!=NULL) && (r->typ == RING_CMD))
632 {
633 ring src_ring=IDRING(r);
634 if ((nMap=n_SetMap(src_ring->cf, currRing->cf))==NULL)
635 {
636 Werror("can not map from ground field of %s to current ground field",
637 theMap->preimage);
638 return NULL;
639 }
640 if (IDELEMS(theMap)<src_ring->N)
641 {
642 theMap->m=(polyset)omReallocSize((ADDRESS)theMap->m,
643 IDELEMS(theMap)*sizeof(poly),
644 (src_ring->N)*sizeof(poly));
645#ifdef HAVE_SHIFTBBA
646 if (rIsLPRing(src_ring))
647 {
648 // src_ring [x,y,z,...]
649 // curr_ring [a,b,c,...]
650 //
651 // map=[a,b,c,d] -> [a,b,c,...]
652 // map=[a,b] -> [a,b,0,...]
653
654 short src_lV = src_ring->isLPring;
655 short src_ncGenCount = src_ring->LPncGenCount;
656 short src_nVars = src_lV - src_ncGenCount;
657 int src_nblocks = src_ring->N / src_lV;
658
659 short dest_nVars = currRing->isLPring - currRing->LPncGenCount;
660 short dest_ncGenCount = currRing->LPncGenCount;
661
662 // add missing NULL generators
663 for(i=IDELEMS(theMap); i < src_lV - src_ncGenCount; i++)
664 {
665 theMap->m[i]=NULL;
666 }
667
668 // remove superfluous generators
669 for(i = src_nVars; i < IDELEMS(theMap); i++)
670 {
671 if (theMap->m[i] != NULL)
672 {
673 p_Delete(&(theMap->m[i]), currRing);
674 theMap->m[i] = NULL;
675 }
676 }
677
678 // add ncgen mappings
679 for(i = src_nVars; i < src_lV; i++)
680 {
681 short ncGenIndex = i - src_nVars;
682 if (ncGenIndex < dest_ncGenCount)
683 {
684 poly p = p_One(currRing);
685 p_SetExp(p, dest_nVars + ncGenIndex + 1, 1, currRing);
686 p_Setm(p, currRing);
687 theMap->m[i] = p;
688 }
689 else
690 {
691 theMap->m[i] = NULL;
692 }
693 }
694
695 // copy the first block to all other blocks
696 for(i = 1; i < src_nblocks; i++)
697 {
698 for(int j = 0; j < src_lV; j++)
699 {
700 theMap->m[(i * src_lV) + j] = p_Copy(theMap->m[j], currRing);
701 }
702 }
703 }
704 else
705 {
706#endif
707 for(i=IDELEMS(theMap);i<src_ring->N;i++)
708 theMap->m[i]=NULL;
709#ifdef HAVE_SHIFTBBA
710 }
711#endif
712 IDELEMS(theMap)=src_ring->N;
713 }
714 if (what==NULL)
715 {
716 WerrorS("argument of a map must have a name");
717 }
718 else if ((w=src_ring->idroot->get(what,myynest))!=NULL)
719 {
720 char *save_r=NULL;
722 sleftv tmpW;
723 tmpW.Init();
724 tmpW.rtyp=IDTYP(w);
725 if (tmpW.rtyp==MAP_CMD)
726 {
727 tmpW.rtyp=IDEAL_CMD;
728 save_r=IDMAP(w)->preimage;
729 IDMAP(w)->preimage=0;
730 }
731 tmpW.data=IDDATA(w);
732 // check overflow
733 BOOLEAN overflow=FALSE;
734 if ((tmpW.rtyp==IDEAL_CMD)
735 || (tmpW.rtyp==MODUL_CMD)
736 || (tmpW.rtyp==MAP_CMD))
737 {
738 ideal id=(ideal)tmpW.data;
739 long *degs=(long*)omAlloc(IDELEMS(id)*sizeof(long));
740 for(int i=IDELEMS(id)-1;i>=0;i--)
741 {
742 poly p=id->m[i];
743 if (p!=NULL) degs[i]=p_Totaldegree(p,src_ring);
744 else degs[i]=0;
745 }
746 for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
747 {
748 if (theMap->m[j]!=NULL)
749 {
750 long deg_monexp=pTotaldegree(theMap->m[j]);
751
752 for(int i=IDELEMS(id)-1;i>=0;i--)
753 {
754 poly p=id->m[i];
755 if ((p!=NULL) && (degs[i]!=0) &&
756 ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)degs[i])/2)))
757 {
758 overflow=TRUE;
759 break;
760 }
761 }
762 }
763 }
764 omFreeSize(degs,IDELEMS(id)*sizeof(long));
765 }
766 else if (tmpW.rtyp==POLY_CMD)
767 {
768 for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
769 {
770 if (theMap->m[j]!=NULL)
771 {
772 long deg_monexp=pTotaldegree(theMap->m[j]);
773 poly p=(poly)tmpW.data;
774 long deg=0;
775 if ((p!=NULL) && ((deg=p_Totaldegree(p,src_ring))!=0) &&
776 ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)deg)/2)))
777 {
778 overflow=TRUE;
779 break;
780 }
781 }
782 }
783 }
784 if (overflow)
785#ifdef HAVE_SHIFTBBA
786 // in Letterplace rings the exponent is always 0 or 1! ignore this warning.
787 if (!rIsLPRing(currRing))
788 {
789#endif
790 Warn("possible OVERFLOW in map, max exponent is %ld",currRing->bitmask/2);
791#ifdef HAVE_SHIFTBBA
792 }
793#endif
794#if 0
795 if (((tmpW.rtyp==IDEAL_CMD)||(tmpW.rtyp==MODUL_CMD)) && idIs0(IDIDEAL(w)))
796 {
797 v->rtyp=tmpW.rtyp;
798 v->data=idInit(IDELEMS(IDIDEAL(w)),IDIDEAL(w)->rank);
799 }
800 else
801#endif
802 {
803 if ((tmpW.rtyp==IDEAL_CMD)
804 ||(tmpW.rtyp==MODUL_CMD)
805 ||(tmpW.rtyp==MATRIX_CMD)
806 ||(tmpW.rtyp==MAP_CMD))
807 {
808 v->rtyp=tmpW.rtyp;
809 char *tmp = theMap->preimage;
810 theMap->preimage=(char*)1L;
811 // map gets 1 as its rank (as an ideal)
812 v->data=maMapIdeal(IDIDEAL(w), src_ring, (ideal)theMap, currRing,nMap);
813 theMap->preimage=tmp; // map gets its preimage back
814 }
815 if (v->data==NULL) /*i.e. not IDEAL_CMD/MODUL_CMD/MATRIX_CMD/MAP */
816 {
817 if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,src_ring,NULL,NULL,0,nMap))
818 {
819 Werror("cannot map %s(%d)",Tok2Cmdname(w->typ),w->typ);
821 if (save_r!=NULL) IDMAP(w)->preimage=save_r;
822 return NULL;
823 }
824 }
825 }
826 if (save_r!=NULL)
827 {
828 IDMAP(w)->preimage=save_r;
829 IDMAP((idhdl)v)->preimage=omStrDup(save_r);
830 v->rtyp=MAP_CMD;
831 }
832 return v;
833 }
834 else
835 {
836 Werror("%s undefined in %s",what,theMap->preimage);
837 }
838 }
839 else
840 {
841 Werror("cannot find preimage %s",theMap->preimage);
842 }
843 return NULL;
844}
845
846#ifdef OLD_RES
847void iiMakeResolv(resolvente r, int length, int rlen, char * name, int typ0,
848 intvec ** weights)
849{
850 lists L=liMakeResolv(r,length,rlen,typ0,weights);
851 int i=0;
852 idhdl h;
853 char * s=(char *)omAlloc(strlen(name)+5);
854
855 while (i<=L->nr)
856 {
857 sprintf(s,"%s(%d)",name,i+1);
858 if (i==0)
859 h=enterid(s,myynest,typ0,&(currRing->idroot), FALSE);
860 else
862 if (h!=NULL)
863 {
864 h->data.uideal=(ideal)L->m[i].data;
865 h->attribute=L->m[i].attribute;
867 Print("//defining: %s as %d-th syzygy module\n",s,i+1);
868 }
869 else
870 {
871 idDelete((ideal *)&(L->m[i].data));
872 Warn("cannot define %s",s);
873 }
874 //L->m[i].data=NULL;
875 //L->m[i].rtyp=0;
876 //L->m[i].attribute=NULL;
877 i++;
878 }
879 omFreeSize((ADDRESS)L->m,(L->nr+1)*sizeof(sleftv));
881 omFreeSize((ADDRESS)s,strlen(name)+5);
882}
883#endif
884
885//resolvente iiFindRes(char * name, int * len, int *typ0)
886//{
887// char *s=(char *)omAlloc(strlen(name)+5);
888// int i=-1;
889// resolvente r;
890// idhdl h;
891//
892// do
893// {
894// i++;
895// sprintf(s,"%s(%d)",name,i+1);
896// h=currRing->idroot->get(s,myynest);
897// } while (h!=NULL);
898// *len=i-1;
899// if (*len<=0)
900// {
901// Werror("no objects %s(1),.. found",name);
902// omFreeSize((ADDRESS)s,strlen(name)+5);
903// return NULL;
904// }
905// r=(ideal *)omAlloc(/*(len+1)*/ i*sizeof(ideal));
906// memset(r,0,(*len)*sizeof(ideal));
907// i=-1;
908// *typ0=MODUL_CMD;
909// while (i<(*len))
910// {
911// i++;
912// sprintf(s,"%s(%d)",name,i+1);
913// h=currRing->idroot->get(s,myynest);
914// if (h->typ != MODUL_CMD)
915// {
916// if ((i!=0) || (h->typ!=IDEAL_CMD))
917// {
918// Werror("%s is not of type module",s);
919// omFreeSize((ADDRESS)r,(*len)*sizeof(ideal));
920// omFreeSize((ADDRESS)s,strlen(name)+5);
921// return NULL;
922// }
923// *typ0=IDEAL_CMD;
924// }
925// if ((i>0) && (idIs0(r[i-1])))
926// {
927// *len=i-1;
928// break;
929// }
930// r[i]=IDIDEAL(h);
931// }
932// omFreeSize((ADDRESS)s,strlen(name)+5);
933// return r;
934//}
935
937{
938 int i;
939 resolvente res=(ideal *)omAlloc0((l+1)*sizeof(ideal));
940
941 for (i=0; i<l; i++)
942 if (r[i]!=NULL) res[i]=idCopy(r[i]);
943 return res;
944}
945
947{
948 int len=0;
949 int typ0;
950 lists L=(lists)v->Data();
951 intvec *weights=(intvec*)atGet(v,"isHomog",INTVEC_CMD);
952 int add_row_shift = 0;
953 if (weights==NULL)
954 weights=(intvec*)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
955 if (weights!=NULL) add_row_shift=weights->min_in();
956 resolvente rr=liFindRes(L,&len,&typ0);
957 if (rr==NULL) return TRUE;
958 resolvente r=iiCopyRes(rr,len);
959
960 syMinimizeResolvente(r,len,0);
961 omFreeSize((ADDRESS)rr,len*sizeof(ideal));
962 len++;
963 res->data=(char *)liMakeResolv(r,len,-1,typ0,NULL,add_row_shift);
964 return FALSE;
965}
966
968{
969 sleftv tmp;
970 tmp.Init();
971 tmp.rtyp=INT_CMD;
972 tmp.data=(void *)1;
973 if ((u->Typ()==IDEAL_CMD)
974 || (u->Typ()==MODUL_CMD))
975 return jjBETTI2_ID(res,u,&tmp);
976 else
977 return jjBETTI2(res,u,&tmp);
978}
979
981{
983 l->Init(1);
984 l->m[0].rtyp=u->Typ();
985 l->m[0].data=u->Data();
986 attr *a=u->Attribute();
987 if (a!=NULL)
988 l->m[0].attribute=*a;
989 sleftv tmp2;
990 tmp2.Init();
991 tmp2.rtyp=LIST_CMD;
992 tmp2.data=(void *)l;
994 l->m[0].data=NULL;
995 l->m[0].attribute=NULL;
996 l->m[0].rtyp=DEF_CMD;
997 l->Clean();
998 return r;
999}
1000
1002{
1003 resolvente r;
1004 int len;
1005 int reg,typ0;
1006 lists l=(lists)u->Data();
1007
1008 intvec *weights=NULL;
1009 int add_row_shift=0;
1010 intvec *ww=NULL;
1011 if (l->nr>=0) ww=(intvec *)atGet(&(l->m[0]),"isHomog",INTVEC_CMD);
1012 if (ww!=NULL)
1013 {
1014 weights=ivCopy(ww);
1015 add_row_shift = ww->min_in();
1016 (*weights) -= add_row_shift;
1017 }
1018 //Print("attr:%x\n",weights);
1019
1020 r=liFindRes(l,&len,&typ0);
1021 if (r==NULL) return TRUE;
1022 intvec* res_im=syBetti(r,len,&reg,weights,(int)(long)v->Data());
1023 res->data=(void*)res_im;
1024 omFreeSize((ADDRESS)r,(len)*sizeof(ideal));
1025 //Print("rowShift: %d ",add_row_shift);
1026 for(int i=1;i<=res_im->rows();i++)
1027 {
1028 if (IMATELEM(*res_im,1,i)==0) { add_row_shift--; }
1029 else break;
1030 }
1031 //Print(" %d\n",add_row_shift);
1032 atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
1033 if (weights!=NULL) delete weights;
1034 return FALSE;
1035}
1036
1038{
1039 int len,reg,typ0;
1040
1041 resolvente r=liFindRes(L,&len,&typ0);
1042
1043 if (r==NULL)
1044 return -2;
1045 intvec *weights=NULL;
1046 int add_row_shift=0;
1047 intvec *ww=(intvec *)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
1048 if (ww!=NULL)
1049 {
1050 weights=ivCopy(ww);
1051 add_row_shift = ww->min_in();
1052 (*weights) -= add_row_shift;
1053 }
1054 //Print("attr:%x\n",weights);
1055
1056 intvec *dummy=syBetti(r,len,&reg,weights);
1057 if (weights!=NULL) delete weights;
1058 delete dummy;
1059 omFreeSize((ADDRESS)r,len*sizeof(ideal));
1060 return reg+1+add_row_shift;
1061}
1062
1064#define BREAK_LINE_LENGTH 80
1066{
1067#ifdef HAVE_SDB
1068 sdb_flags=1;
1069#endif
1070 Print("\n-- break point in %s --\n",VoiceName());
1072 char * s;
1074 s = (char *)omAlloc(BREAK_LINE_LENGTH+4);
1075 loop
1076 {
1077 memset(s,0,BREAK_LINE_LENGTH+4);
1079 if (s[BREAK_LINE_LENGTH-1]!='\0')
1080 {
1081 Print("line too long, max is %d chars\n",BREAK_LINE_LENGTH);
1082 }
1083 else
1084 break;
1085 }
1086 if (*s=='\n')
1087 {
1089 }
1090#if MDEBUG
1091 else if(strncmp(s,"cont;",5)==0)
1092 {
1094 }
1095#endif /* MDEBUG */
1096 else
1097 {
1098 strcat( s, "\n;~\n");
1100 }
1101}
1102
1103lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
1104{
1105 int i;
1106 indset save;
1108
1109 hexist = hInit(S, Q, &hNexist, currRing);
1110 if (hNexist == 0)
1111 {
1112 intvec *iv=new intvec(rVar(currRing));
1113 for(i=0; i<rVar(currRing); i++) (*iv)[i]=1;
1114 res->Init(1);
1115 res->m[0].rtyp=INTVEC_CMD;
1116 res->m[0].data=(intvec*)iv;
1117 return res;
1118 }
1119 else if (hisModule!=0)
1120 {
1121 res->Init(0);
1122 return res;
1123 }
1125 hMu = 0;
1126 hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
1127 hvar = (varset)omAlloc((rVar(currRing) + 1) * sizeof(int));
1128 hpure = (scmon)omAlloc0((1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1129 hrad = hexist;
1130 hNrad = hNexist;
1131 radmem = hCreate(rVar(currRing) - 1);
1132 hCo = rVar(currRing) + 1;
1133 hNvar = rVar(currRing);
1135 hSupp(hrad, hNrad, hvar, &hNvar);
1136 if (hNvar)
1137 {
1138 hCo = hNvar;
1139 hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
1142 }
1143 if (hCo && (hCo < rVar(currRing)))
1144 {
1146 }
1147 if (hMu!=0)
1148 {
1149 ISet = save;
1150 hMu2 = 0;
1151 if (all && (hCo+1 < rVar(currRing)))
1152 {
1155 i=hMu+hMu2;
1156 res->Init(i);
1157 if (hMu2 == 0)
1158 {
1160 }
1161 }
1162 else
1163 {
1164 res->Init(hMu);
1165 }
1166 for (i=0;i<hMu;i++)
1167 {
1168 res->m[i].data = (void *)save->set;
1169 res->m[i].rtyp = INTVEC_CMD;
1170 ISet = save;
1171 save = save->nx;
1173 }
1175 if (hMu2 != 0)
1176 {
1177 save = JSet;
1178 for (i=hMu;i<hMu+hMu2;i++)
1179 {
1180 res->m[i].data = (void *)save->set;
1181 res->m[i].rtyp = INTVEC_CMD;
1182 JSet = save;
1183 save = save->nx;
1185 }
1187 }
1188 }
1189 else
1190 {
1191 res->Init(0);
1193 }
1194 hKill(radmem, rVar(currRing) - 1);
1195 omFreeSize((ADDRESS)hpure, (1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1196 omFreeSize((ADDRESS)hvar, (rVar(currRing) + 1) * sizeof(int));
1197 omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
1199 return res;
1200}
1201
1202int iiDeclCommand(leftv sy, leftv name, int lev,int t, idhdl* root,BOOLEAN isring, BOOLEAN init_b)
1203{
1205 BOOLEAN is_qring=FALSE;
1206 const char *id = name->name;
1207
1208 sy->Init();
1209 if ((name->name==NULL)||(isdigit(name->name[0])))
1210 {
1211 WerrorS("object to declare is not a name");
1212 res=TRUE;
1213 }
1214 else
1215 {
1216 if (root==NULL) return TRUE;
1217 if (*root!=IDROOT)
1218 {
1219 if ((currRing==NULL) || (*root!=currRing->idroot))
1220 {
1221 Werror("can not define `%s` in other package",name->name);
1222 return TRUE;
1223 }
1224 }
1225 if (t==QRING_CMD)
1226 {
1227 t=RING_CMD; // qring is always RING_CMD
1228 is_qring=TRUE;
1229 }
1230
1231 if (TEST_V_ALLWARN
1232 && (name->rtyp!=0)
1233 && (name->rtyp!=IDHDL)
1235 {
1236 Warn("`%s` is %s in %s:%d:%s",name->name,Tok2Cmdname(name->rtyp),
1238 }
1239 {
1240 sy->data = (char *)enterid(id,lev,t,root,init_b);
1241 }
1242 if (sy->data!=NULL)
1243 {
1244 sy->rtyp=IDHDL;
1245 currid=sy->name=IDID((idhdl)sy->data);
1246 if (is_qring)
1247 {
1249 }
1250 // name->name=NULL; /* used in enterid */
1251 //sy->e = NULL;
1252 if (name->next!=NULL)
1253 {
1255 res=iiDeclCommand(sy->next,name->next,lev,t,root, isring);
1256 }
1257 }
1258 else res=TRUE;
1259 }
1260 name->CleanUp();
1261 return res;
1262}
1263
1265{
1266 attr at=NULL;
1267 if (iiCurrProc!=NULL)
1268 at=iiCurrProc->attribute->get("default_arg");
1269 if (at==NULL)
1270 return FALSE;
1271 sleftv tmp;
1272 tmp.Init();
1273 tmp.rtyp=at->atyp;
1274 tmp.data=at->CopyA();
1275 return iiAssign(p,&tmp);
1276}
1278{
1279 // must be inside a proc, as we simultae an proc_end at the end
1280 if (myynest==0)
1281 {
1282 WerrorS("branchTo can only occur in a proc");
1283 return TRUE;
1284 }
1285 // <string1...stringN>,<proc>
1286 // known: args!=NULL, l>=1
1287 int l=args->listLength();
1288 int ll=0;
1290 if (ll!=(l-1)) return FALSE;
1291 leftv h=args;
1292 // set up the table for type test:
1293 short *t=(short*)omAlloc(l*sizeof(short));
1294 t[0]=l-1;
1295 int b;
1296 int i;
1297 for(i=1;i<l;i++,h=h->next)
1298 {
1299 if (h->Typ()!=STRING_CMD)
1300 {
1301 omFreeBinAddr(t);
1302 Werror("arg %d is not a string",i);
1303 return TRUE;
1304 }
1305 int tt;
1306 b=IsCmd((char *)h->Data(),tt);
1307 if(b) t[i]=tt;
1308 else
1309 {
1310 omFreeBinAddr(t);
1311 Werror("arg %d is not a type name",i);
1312 return TRUE;
1313 }
1314 }
1315 if (h->Typ()!=PROC_CMD)
1316 {
1317 omFreeBinAddr(t);
1318 Werror("last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1319 i,h->name,Tok2Cmdname(h->Typ()),h->Typ(),myynest);
1320 return TRUE;
1321 }
1323 omFreeBinAddr(t);
1324 if (b && (h->rtyp==IDHDL) && (h->e==NULL))
1325 {
1326 // get the proc:
1327 iiCurrProc=(idhdl)h->data;
1328 idhdl currProc=iiCurrProc; /*iiCurrProc may be changed after yyparse*/
1329 procinfo * pi=IDPROC(currProc);
1330 // already loaded ?
1331 if( pi->data.s.body==NULL )
1332 {
1334 if (pi->data.s.body==NULL) return TRUE;
1335 }
1336 // set currPackHdl/currPack
1337 if ((pi->pack!=NULL)&&(currPack!=pi->pack))
1338 {
1339 currPack=pi->pack;
1342 //Print("set pack=%s\n",IDID(currPackHdl));
1343 }
1344 // see iiAllStart:
1345 BITSET save1=si_opt_1;
1346 BITSET save2=si_opt_2;
1347 newBuffer( omStrDup(pi->data.s.body), BT_proc,
1348 pi, pi->data.s.body_lineno-(iiCurrArgs==NULL) );
1349 BOOLEAN err=yyparse();
1351 si_opt_1=save1;
1352 si_opt_2=save2;
1353 // now save the return-expr.
1355 memcpy(&sLastPrinted,&iiRETURNEXPR,sizeof(sleftv));
1357 // warning about args.:
1358 if (iiCurrArgs!=NULL)
1359 {
1360 if (err==0) Warn("too many arguments for %s",IDID(currProc));
1364 }
1365 // similate proc_end:
1366 // - leave input
1367 void myychangebuffer();
1369 // - set the current buffer to its end (this is a pointer in a buffer,
1370 // not a file ptr) "branchTo" is only valid in proc)
1372 // - kill local vars
1374 // - return
1375 newBuffer(omStrDup("\n;return(_);\n"),BT_execute);
1376 return (err!=0);
1377 }
1378 return FALSE;
1379}
1381{
1382 if (iiCurrArgs==NULL)
1383 {
1384 if (strcmp(p->name,"#")==0)
1385 return iiDefaultParameter(p);
1386 Werror("not enough arguments for proc %s",VoiceName());
1387 p->CleanUp();
1388 return TRUE;
1389 }
1391 leftv rest=h->next; /*iiCurrArgs is not NULL here*/
1392 BOOLEAN is_default_list=FALSE;
1393 if (strcmp(p->name,"#")==0)
1394 {
1395 is_default_list=TRUE;
1396 rest=NULL;
1397 }
1398 else
1399 {
1400 h->next=NULL;
1401 }
1403 if (is_default_list)
1404 {
1406 }
1407 else
1408 {
1409 iiCurrArgs=rest;
1410 }
1411 h->CleanUp();
1413 return res;
1414}
1415
1416static BOOLEAN iiInternalExport (leftv v, int toLev)
1417{
1418 idhdl h=(idhdl)v->data;
1419 //Print("iiInternalExport('%s',%d)%s\n", v->name, toLev,"");
1420 if (IDLEV(h)==0)
1421 {
1422 if ((myynest>0) && (BVERBOSE(V_REDEFINE))) Warn("`%s` is already global",IDID(h));
1423 }
1424 else
1425 {
1426 h=IDROOT->get(v->name,toLev);
1427 idhdl *root=&IDROOT;
1428 if ((h==NULL)&&(currRing!=NULL))
1429 {
1430 h=currRing->idroot->get(v->name,toLev);
1431 root=&currRing->idroot;
1432 }
1433 BOOLEAN keepring=FALSE;
1434 if ((h!=NULL)&&(IDLEV(h)==toLev))
1435 {
1436 if (IDTYP(h)==v->Typ())
1437 {
1438 if ((IDTYP(h)==RING_CMD)
1439 && (v->Data()==IDDATA(h)))
1440 {
1442 keepring=TRUE;
1443 IDLEV(h)=toLev;
1444 //WarnS("keepring");
1445 return FALSE;
1446 }
1447 if (BVERBOSE(V_REDEFINE))
1448 {
1449 Warn("redefining %s (%s)",IDID(h),my_yylinebuf);
1450 }
1451 if (iiLocalRing[0]==IDRING(h) && (!keepring)) iiLocalRing[0]=NULL;
1452 killhdl2(h,root,currRing);
1453 }
1454 else
1455 {
1456 WerrorS("object with a different type exists");
1457 return TRUE;
1458 }
1459 }
1460 h=(idhdl)v->data;
1461 IDLEV(h)=toLev;
1462 if (keepring) rDecRefCnt(IDRING(h));
1464 //Print("export %s\n",IDID(h));
1465 }
1466 return FALSE;
1467}
1468
1470{
1471 idhdl h=(idhdl)v->data;
1472 if(h==NULL)
1473 {
1474 Warn("'%s': no such identifier\n", v->name);
1475 return FALSE;
1476 }
1477 package frompack=v->req_packhdl;
1478 if (frompack==NULL) frompack=currPack;
1479 if ((RingDependend(IDTYP(h)))
1480 || ((IDTYP(h)==LIST_CMD)
1481 && (lRingDependend(IDLIST(h)))
1482 )
1483 )
1484 {
1485 //Print("// ==> Ringdependent set nesting to 0\n");
1486 return (iiInternalExport(v, toLev));
1487 }
1488 else
1489 {
1490 IDLEV(h)=toLev;
1491 v->req_packhdl=rootpack;
1492 if (h==frompack->idroot)
1493 {
1494 frompack->idroot=h->next;
1495 }
1496 else
1497 {
1498 idhdl hh=frompack->idroot;
1499 while ((hh!=NULL) && (hh->next!=h))
1500 hh=hh->next;
1501 if ((hh!=NULL) && (hh->next==h))
1502 hh->next=h->next;
1503 else
1504 {
1505 Werror("`%s` not found",v->Name());
1506 return TRUE;
1507 }
1508 }
1509 h->next=rootpack->idroot;
1510 rootpack->idroot=h;
1511 }
1512 return FALSE;
1513}
1514
1516{
1517 BOOLEAN nok=FALSE;
1518 leftv r=v;
1519 while (v!=NULL)
1520 {
1521 if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL))
1522 {
1523 Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1524 nok=TRUE;
1525 }
1526 else
1527 {
1528 if(iiInternalExport(v, toLev))
1529 nok=TRUE;
1530 }
1531 v=v->next;
1532 }
1533 r->CleanUp();
1534 return nok;
1535}
1536
1537/*assume root!=idroot*/
1538BOOLEAN iiExport (leftv v, int toLev, package pack)
1539{
1540// if ((pack==basePack)&&(pack!=currPack))
1541// { Warn("'exportto' to Top is depreciated in >>%s<<",my_yylinebuf);}
1542 BOOLEAN nok=FALSE;
1543 leftv rv=v;
1544 while (v!=NULL)
1545 {
1546 if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL)
1547 )
1548 {
1549 Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1550 nok=TRUE;
1551 }
1552 else
1553 {
1554 idhdl old=pack->idroot->get( v->name,toLev);
1555 if (old!=NULL)
1556 {
1557 if ((pack==currPack) && (old==(idhdl)v->data))
1558 {
1559 if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(old));
1560 break;
1561 }
1562 else if (IDTYP(old)==v->Typ())
1563 {
1564 if (BVERBOSE(V_REDEFINE))
1565 {
1566 Warn("redefining %s (%s)",IDID(old),my_yylinebuf);
1567 }
1568 v->name=omStrDup(v->name);
1569 killhdl2(old,&(pack->idroot),currRing);
1570 }
1571 else
1572 {
1573 rv->CleanUp();
1574 return TRUE;
1575 }
1576 }
1577 //Print("iiExport: pack=%s\n",IDID(root));
1578 if(iiInternalExport(v, toLev, pack))
1579 {
1580 rv->CleanUp();
1581 return TRUE;
1582 }
1583 }
1584 v=v->next;
1585 }
1586 rv->CleanUp();
1587 return nok;
1588}
1589
1591{
1592 if (currRing==NULL)
1593 {
1594 #ifdef SIQ
1595 if (siq<=0)
1596 {
1597 #endif
1598 if (RingDependend(i))
1599 {
1600 WerrorS("no ring active (9)");
1601 return TRUE;
1602 }
1603 #ifdef SIQ
1604 }
1605 #endif
1606 }
1607 return FALSE;
1608}
1609
1610poly iiHighCorner(ideal I, int ak)
1611{
1612 int i;
1613 if(!idIsZeroDim(I)) return NULL; // not zero-dim.
1614 poly po=NULL;
1616 {
1617 scComputeHC(I,currRing->qideal,ak,po);
1618 if (po!=NULL)
1619 {
1620 pGetCoeff(po)=nInit(1);
1621 for (i=rVar(currRing); i>0; i--)
1622 {
1623 if (pGetExp(po, i) > 0) pDecrExp(po,i);
1624 }
1625 pSetComp(po,ak);
1626 pSetm(po);
1627 }
1628 }
1629 else
1630 po=pOne();
1631 return po;
1632}
1633
1635{
1636 if (p!=basePack)
1637 {
1638 idhdl t=basePack->idroot;
1639 while ((t!=NULL) && (IDTYP(t)!=PACKAGE_CMD) && (IDPACKAGE(t)!=p)) t=t->next;
1640 if (t==NULL)
1641 {
1642 WarnS("package not found\n");
1643 p=basePack;
1644 }
1645 }
1646}
1647
1648idhdl rDefault(const char *s)
1649{
1650 idhdl tmp=NULL;
1651
1652 if (s!=NULL) tmp = enterid(s, myynest, RING_CMD, &IDROOT);
1653 if (tmp==NULL) return NULL;
1654
1655// if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
1657 {
1659 }
1660
1661 ring r = IDRING(tmp) = (ring) omAlloc0Bin(sip_sring_bin);
1662
1663 #ifndef TEST_ZN_AS_ZP
1664 r->cf = nInitChar(n_Zp, (void*)32003); // r->cf->ch = 32003;
1665 #else
1666 mpz_t modBase;
1667 mpz_init_set_ui(modBase, (long)32003);
1668 ZnmInfo info;
1669 info.base= modBase;
1670 info.exp= 1;
1671 r->cf=nInitChar(n_Zn,(void*) &info);
1672 r->cf->is_field=1;
1673 r->cf->is_domain=1;
1674 r->cf->has_simple_Inverse=1;
1675 #endif
1676 r->N = 3;
1677 /*r->P = 0; Alloc0 in idhdl::set, ipid.cc*/
1678 /*names*/
1679 r->names = (char **) omAlloc0(3 * sizeof(char_ptr));
1680 r->names[0] = omStrDup("x");
1681 r->names[1] = omStrDup("y");
1682 r->names[2] = omStrDup("z");
1683 /*weights: entries for 3 blocks: NULL*/
1684 r->wvhdl = (int **)omAlloc0(3 * sizeof(int_ptr));
1685 /*order: dp,C,0*/
1686 r->order = (rRingOrder_t *) omAlloc(3 * sizeof(rRingOrder_t *));
1687 r->block0 = (int *)omAlloc0(3 * sizeof(int *));
1688 r->block1 = (int *)omAlloc0(3 * sizeof(int *));
1689 /* ringorder dp for the first block: var 1..3 */
1690 r->order[0] = ringorder_dp;
1691 r->block0[0] = 1;
1692 r->block1[0] = 3;
1693 /* ringorder C for the second block: no vars */
1694 r->order[1] = ringorder_C;
1695 /* the last block: everything is 0 */
1696 r->order[2] = (rRingOrder_t)0;
1697
1698 /* complete ring intializations */
1699 rComplete(r);
1700 rSetHdl(tmp);
1701 return currRingHdl;
1702}
1703
1704static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n);
1706{
1707 if ((r==NULL)||(r->VarOffset==NULL))
1708 return NULL;
1710 if (h!=NULL) return h;
1711 if (IDROOT!=basePack->idroot) h=rSimpleFindHdl(r,basePack->idroot,n);
1712 if (h!=NULL) return h;
1714 while(p!=NULL)
1715 {
1716 if ((p->cPack!=basePack)
1717 && (p->cPack!=currPack))
1718 h=rSimpleFindHdl(r,p->cPack->idroot,n);
1719 if (h!=NULL) return h;
1720 p=p->next;
1721 }
1722 idhdl tmp=basePack->idroot;
1723 while (tmp!=NULL)
1724 {
1725 if (IDTYP(tmp)==PACKAGE_CMD)
1726 h=rSimpleFindHdl(r,IDPACKAGE(tmp)->idroot,n);
1727 if (h!=NULL) return h;
1728 tmp=IDNEXT(tmp);
1729 }
1730 return NULL;
1731}
1732
1733void rDecomposeCF(leftv h,const ring r,const ring R)
1734{
1736 L->Init(4);
1737 h->rtyp=LIST_CMD;
1738 h->data=(void *)L;
1739 // 0: char/ cf - ring
1740 // 1: list (var)
1741 // 2: list (ord)
1742 // 3: qideal
1743 // ----------------------------------------
1744 // 0: char/ cf - ring
1745 L->m[0].rtyp=INT_CMD;
1746 L->m[0].data=(void *)(long)r->cf->ch;
1747 // ----------------------------------------
1748 // 1: list (var)
1750 LL->Init(r->N);
1751 int i;
1752 for(i=0; i<r->N; i++)
1753 {
1754 LL->m[i].rtyp=STRING_CMD;
1755 LL->m[i].data=(void *)omStrDup(r->names[i]);
1756 }
1757 L->m[1].rtyp=LIST_CMD;
1758 L->m[1].data=(void *)LL;
1759 // ----------------------------------------
1760 // 2: list (ord)
1762 i=rBlocks(r)-1;
1763 LL->Init(i);
1764 i--;
1765 lists LLL;
1766 for(; i>=0; i--)
1767 {
1768 intvec *iv;
1769 int j;
1770 LL->m[i].rtyp=LIST_CMD;
1772 LLL->Init(2);
1773 LLL->m[0].rtyp=STRING_CMD;
1774 LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1775 if (r->block1[i]-r->block0[i] >=0 )
1776 {
1777 j=r->block1[i]-r->block0[i];
1778 if(r->order[i]==ringorder_M) j=(j+1)*(j+1)-1;
1779 iv=new intvec(j+1);
1780 if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1781 {
1782 for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j];
1783 }
1784 else switch (r->order[i])
1785 {
1786 case ringorder_dp:
1787 case ringorder_Dp:
1788 case ringorder_ds:
1789 case ringorder_Ds:
1790 case ringorder_lp:
1791 case ringorder_rp:
1792 case ringorder_ls:
1793 for(;j>=0; j--) (*iv)[j]=1;
1794 break;
1795 default: /* do nothing */;
1796 }
1797 }
1798 else
1799 {
1800 iv=new intvec(1);
1801 }
1802 LLL->m[1].rtyp=INTVEC_CMD;
1803 LLL->m[1].data=(void *)iv;
1804 LL->m[i].data=(void *)LLL;
1805 }
1806 L->m[2].rtyp=LIST_CMD;
1807 L->m[2].data=(void *)LL;
1808 // ----------------------------------------
1809 // 3: qideal
1810 L->m[3].rtyp=IDEAL_CMD;
1811 if (nCoeff_is_transExt(R->cf))
1812 L->m[3].data=(void *)idInit(1,1);
1813 else
1814 {
1815 ideal q=idInit(IDELEMS(r->qideal));
1816 q->m[0]=p_Init(R);
1817 pSetCoeff0(q->m[0],(number)(r->qideal->m[0]));
1818 L->m[3].data=(void *)q;
1819// I->m[0] = pNSet(R->minpoly);
1820 }
1821 // ----------------------------------------
1822}
1823static void rDecomposeC_41(leftv h,const coeffs C)
1824/* field is R or C */
1825{
1827 if (nCoeff_is_long_C(C)) L->Init(3);
1828 else L->Init(2);
1829 h->rtyp=LIST_CMD;
1830 h->data=(void *)L;
1831 // 0: char/ cf - ring
1832 // 1: list (var)
1833 // 2: list (ord)
1834 // ----------------------------------------
1835 // 0: char/ cf - ring
1836 L->m[0].rtyp=INT_CMD;
1837 L->m[0].data=(void *)0;
1838 // ----------------------------------------
1839 // 1:
1841 LL->Init(2);
1842 LL->m[0].rtyp=INT_CMD;
1843 LL->m[0].data=(void *)(long)si_max(C->float_len,SHORT_REAL_LENGTH/2);
1844 LL->m[1].rtyp=INT_CMD;
1845 LL->m[1].data=(void *)(long)si_max(C->float_len2,SHORT_REAL_LENGTH);
1846 L->m[1].rtyp=LIST_CMD;
1847 L->m[1].data=(void *)LL;
1848 // ----------------------------------------
1849 // 2: list (par)
1850 if (nCoeff_is_long_C(C))
1851 {
1852 L->m[2].rtyp=STRING_CMD;
1853 L->m[2].data=(void *)omStrDup(*n_ParameterNames(C));
1854 }
1855 // ----------------------------------------
1856}
1857static void rDecomposeC(leftv h,const ring R)
1858/* field is R or C */
1859{
1861 if (rField_is_long_C(R)) L->Init(3);
1862 else L->Init(2);
1863 h->rtyp=LIST_CMD;
1864 h->data=(void *)L;
1865 // 0: char/ cf - ring
1866 // 1: list (var)
1867 // 2: list (ord)
1868 // ----------------------------------------
1869 // 0: char/ cf - ring
1870 L->m[0].rtyp=INT_CMD;
1871 L->m[0].data=(void *)0;
1872 // ----------------------------------------
1873 // 1:
1875 LL->Init(2);
1876 LL->m[0].rtyp=INT_CMD;
1877 LL->m[0].data=(void *)(long)si_max(R->cf->float_len,SHORT_REAL_LENGTH/2);
1878 LL->m[1].rtyp=INT_CMD;
1879 LL->m[1].data=(void *)(long)si_max(R->cf->float_len2,SHORT_REAL_LENGTH);
1880 L->m[1].rtyp=LIST_CMD;
1881 L->m[1].data=(void *)LL;
1882 // ----------------------------------------
1883 // 2: list (par)
1884 if (rField_is_long_C(R))
1885 {
1886 L->m[2].rtyp=STRING_CMD;
1887 L->m[2].data=(void *)omStrDup(*rParameter(R));
1888 }
1889 // ----------------------------------------
1890}
1891
1892#ifdef HAVE_RINGS
1894/* field is R or C */
1895{
1897 if (nCoeff_is_Ring(C)) L->Init(1);
1898 else L->Init(2);
1899 h->rtyp=LIST_CMD;
1900 h->data=(void *)L;
1901 // 0: char/ cf - ring
1902 // 1: list (module)
1903 // ----------------------------------------
1904 // 0: char/ cf - ring
1905 L->m[0].rtyp=STRING_CMD;
1906 L->m[0].data=(void *)omStrDup("integer");
1907 // ----------------------------------------
1908 // 1: modulo
1909 if (nCoeff_is_Z(C)) return;
1911 LL->Init(2);
1912 LL->m[0].rtyp=BIGINT_CMD;
1913 LL->m[0].data=n_InitMPZ( C->modBase, coeffs_BIGINT);
1914 LL->m[1].rtyp=INT_CMD;
1915 LL->m[1].data=(void *) C->modExponent;
1916 L->m[1].rtyp=LIST_CMD;
1917 L->m[1].data=(void *)LL;
1918}
1919#endif
1920
1921void rDecomposeRing(leftv h,const ring R)
1922/* field is R or C */
1923{
1924#ifdef HAVE_RINGS
1926 if (rField_is_Z(R)) L->Init(1);
1927 else L->Init(2);
1928 h->rtyp=LIST_CMD;
1929 h->data=(void *)L;
1930 // 0: char/ cf - ring
1931 // 1: list (module)
1932 // ----------------------------------------
1933 // 0: char/ cf - ring
1934 L->m[0].rtyp=STRING_CMD;
1935 L->m[0].data=(void *)omStrDup("integer");
1936 // ----------------------------------------
1937 // 1: module
1938 if (rField_is_Z(R)) return;
1940 LL->Init(2);
1941 LL->m[0].rtyp=BIGINT_CMD;
1942 LL->m[0].data=n_InitMPZ( R->cf->modBase, coeffs_BIGINT);
1943 LL->m[1].rtyp=INT_CMD;
1944 LL->m[1].data=(void *) R->cf->modExponent;
1945 L->m[1].rtyp=LIST_CMD;
1946 L->m[1].data=(void *)LL;
1947#else
1948 WerrorS("rDecomposeRing");
1949#endif
1950}
1951
1952
1954{
1955 assume( C != NULL );
1956
1957 // sanity check: require currRing==r for rings with polynomial data
1958 if ( nCoeff_is_algExt(C) && (C != currRing->cf))
1959 {
1960 WerrorS("ring with polynomial data must be the base ring or compatible");
1961 return TRUE;
1962 }
1963 if (nCoeff_is_numeric(C))
1964 {
1966 }
1967#ifdef HAVE_RINGS
1968 else if (nCoeff_is_Ring(C))
1969 {
1971 }
1972#endif
1973 else if ( C->extRing!=NULL )// nCoeff_is_algExt(r->cf))
1974 {
1975 rDecomposeCF(res, C->extRing, currRing);
1976 }
1977 else if(nCoeff_is_GF(C))
1978 {
1980 Lc->Init(4);
1981 // char:
1982 Lc->m[0].rtyp=INT_CMD;
1983 Lc->m[0].data=(void*)(long)C->m_nfCharQ;
1984 // var:
1986 Lv->Init(1);
1987 Lv->m[0].rtyp=STRING_CMD;
1988 Lv->m[0].data=(void *)omStrDup(*n_ParameterNames(C));
1989 Lc->m[1].rtyp=LIST_CMD;
1990 Lc->m[1].data=(void*)Lv;
1991 // ord:
1993 Lo->Init(1);
1995 Loo->Init(2);
1996 Loo->m[0].rtyp=STRING_CMD;
1997 Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
1998
1999 intvec *iv=new intvec(1); (*iv)[0]=1;
2000 Loo->m[1].rtyp=INTVEC_CMD;
2001 Loo->m[1].data=(void *)iv;
2002
2003 Lo->m[0].rtyp=LIST_CMD;
2004 Lo->m[0].data=(void*)Loo;
2005
2006 Lc->m[2].rtyp=LIST_CMD;
2007 Lc->m[2].data=(void*)Lo;
2008 // q-ideal:
2009 Lc->m[3].rtyp=IDEAL_CMD;
2010 Lc->m[3].data=(void *)idInit(1,1);
2011 // ----------------------
2012 res->rtyp=LIST_CMD;
2013 res->data=(void*)Lc;
2014 }
2015 else
2016 {
2017 res->rtyp=INT_CMD;
2018 res->data=(void *)(long)C->ch;
2019 }
2020 // ----------------------------------------
2021 return FALSE;
2022}
2023
2024// common part of rDecompse and rDecompose_list_cf:
2025static void rDecompose_23456(const ring r, lists L)
2026{
2027 // ----------------------------------------
2028 // 1: list (var)
2030 LL->Init(r->N);
2031 int i;
2032 for(i=0; i<r->N; i++)
2033 {
2034 LL->m[i].rtyp=STRING_CMD;
2035 LL->m[i].data=(void *)omStrDup(r->names[i]);
2036 }
2037 L->m[1].rtyp=LIST_CMD;
2038 L->m[1].data=(void *)LL;
2039 // ----------------------------------------
2040 // 2: list (ord)
2042 i=rBlocks(r)-1;
2043 LL->Init(i);
2044 i--;
2045 lists LLL;
2046 for(; i>=0; i--)
2047 {
2048 intvec *iv;
2049 int j;
2050 LL->m[i].rtyp=LIST_CMD;
2052 LLL->Init(2);
2053 LLL->m[0].rtyp=STRING_CMD;
2054 LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2055
2056 if((r->order[i] == ringorder_IS)
2057 || (r->order[i] == ringorder_s)) //|| r->order[i] == ringorder_S)
2058 {
2059 assume( r->block0[i] == r->block1[i] );
2060 const int s = r->block0[i];
2061 assume( (-2 < s && s < 2)||(r->order[i] != ringorder_IS));
2062
2063 iv=new intvec(1);
2064 (*iv)[0] = s;
2065 }
2066 else if (r->block1[i]-r->block0[i] >=0 )
2067 {
2068 int bl=j=r->block1[i]-r->block0[i];
2069 if (r->order[i]==ringorder_M)
2070 {
2071 j=(j+1)*(j+1)-1;
2072 bl=j+1;
2073 }
2074 else if (r->order[i]==ringorder_am)
2075 {
2076 j+=r->wvhdl[i][bl+1];
2077 }
2078 iv=new intvec(j+1);
2079 if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2080 {
2081 for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2082 }
2083 else switch (r->order[i])
2084 {
2085 case ringorder_dp:
2086 case ringorder_Dp:
2087 case ringorder_ds:
2088 case ringorder_Ds:
2089 case ringorder_lp:
2090 case ringorder_ls:
2091 case ringorder_rp:
2092 for(;j>=0; j--) (*iv)[j]=1;
2093 break;
2094 default: /* do nothing */;
2095 }
2096 }
2097 else
2098 {
2099 iv=new intvec(1);
2100 }
2101 LLL->m[1].rtyp=INTVEC_CMD;
2102 LLL->m[1].data=(void *)iv;
2103 LL->m[i].data=(void *)LLL;
2104 }
2105 L->m[2].rtyp=LIST_CMD;
2106 L->m[2].data=(void *)LL;
2107 // ----------------------------------------
2108 // 3: qideal
2109 L->m[3].rtyp=IDEAL_CMD;
2110 if (r->qideal==NULL)
2111 L->m[3].data=(void *)idInit(1,1);
2112 else
2113 L->m[3].data=(void *)idCopy(r->qideal);
2114 // ----------------------------------------
2115#ifdef HAVE_PLURAL // NC! in rDecompose
2116 if (rIsPluralRing(r))
2117 {
2118 L->m[4].rtyp=MATRIX_CMD;
2119 L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2120 L->m[5].rtyp=MATRIX_CMD;
2121 L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2122 }
2123#endif
2124}
2125
2127{
2128 assume( r != NULL );
2129 const coeffs C = r->cf;
2130 assume( C != NULL );
2131
2132 // sanity check: require currRing==r for rings with polynomial data
2133 if ( (r!=currRing) && (
2134 (r->qideal != NULL)
2135#ifdef HAVE_PLURAL
2136 || (rIsPluralRing(r))
2137#endif
2138 )
2139 )
2140 {
2141 WerrorS("ring with polynomial data must be the base ring or compatible");
2142 return NULL;
2143 }
2144 // 0: char/ cf - ring
2145 // 1: list (var)
2146 // 2: list (ord)
2147 // 3: qideal
2148 // possibly:
2149 // 4: C
2150 // 5: D
2152 if (rIsPluralRing(r))
2153 L->Init(6);
2154 else
2155 L->Init(4);
2156 // ----------------------------------------
2157 // 0: char/ cf - ring
2158 L->m[0].rtyp=CRING_CMD;
2159 L->m[0].data=(char*)r->cf; r->cf->ref++;
2160 // ----------------------------------------
2161 rDecompose_23456(r,L);
2162 return L;
2163}
2164
2165lists rDecompose(const ring r)
2166{
2167 assume( r != NULL );
2168 const coeffs C = r->cf;
2169 assume( C != NULL );
2170
2171 // sanity check: require currRing==r for rings with polynomial data
2172 if ( (r!=currRing) && (
2173 (nCoeff_is_algExt(C) && (C != currRing->cf))
2174 || (r->qideal != NULL)
2175#ifdef HAVE_PLURAL
2176 || (rIsPluralRing(r))
2177#endif
2178 )
2179 )
2180 {
2181 WerrorS("ring with polynomial data must be the base ring or compatible");
2182 return NULL;
2183 }
2184 // 0: char/ cf - ring
2185 // 1: list (var)
2186 // 2: list (ord)
2187 // 3: qideal
2188 // possibly:
2189 // 4: C
2190 // 5: D
2192 if (rIsPluralRing(r))
2193 L->Init(6);
2194 else
2195 L->Init(4);
2196 // ----------------------------------------
2197 // 0: char/ cf - ring
2198 if (rField_is_numeric(r))
2199 {
2200 rDecomposeC(&(L->m[0]),r);
2201 }
2202 else if (rField_is_Ring(r))
2203 {
2204 rDecomposeRing(&(L->m[0]),r);
2205 }
2206 else if ( r->cf->extRing!=NULL )// nCoeff_is_algExt(r->cf))
2207 {
2208 rDecomposeCF(&(L->m[0]), r->cf->extRing, r);
2209 }
2210 else if(rField_is_GF(r))
2211 {
2213 Lc->Init(4);
2214 // char:
2215 Lc->m[0].rtyp=INT_CMD;
2216 Lc->m[0].data=(void*)(long)r->cf->m_nfCharQ;
2217 // var:
2219 Lv->Init(1);
2220 Lv->m[0].rtyp=STRING_CMD;
2221 Lv->m[0].data=(void *)omStrDup(*rParameter(r));
2222 Lc->m[1].rtyp=LIST_CMD;
2223 Lc->m[1].data=(void*)Lv;
2224 // ord:
2226 Lo->Init(1);
2228 Loo->Init(2);
2229 Loo->m[0].rtyp=STRING_CMD;
2230 Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2231
2232 intvec *iv=new intvec(1); (*iv)[0]=1;
2233 Loo->m[1].rtyp=INTVEC_CMD;
2234 Loo->m[1].data=(void *)iv;
2235
2236 Lo->m[0].rtyp=LIST_CMD;
2237 Lo->m[0].data=(void*)Loo;
2238
2239 Lc->m[2].rtyp=LIST_CMD;
2240 Lc->m[2].data=(void*)Lo;
2241 // q-ideal:
2242 Lc->m[3].rtyp=IDEAL_CMD;
2243 Lc->m[3].data=(void *)idInit(1,1);
2244 // ----------------------
2245 L->m[0].rtyp=LIST_CMD;
2246 L->m[0].data=(void*)Lc;
2247 }
2248 else if (rField_is_Zp(r) || rField_is_Q(r))
2249 {
2250 L->m[0].rtyp=INT_CMD;
2251 L->m[0].data=(void *)(long)r->cf->ch;
2252 }
2253 else
2254 {
2255 L->m[0].rtyp=CRING_CMD;
2256 L->m[0].data=(void *)r->cf;
2257 r->cf->ref++;
2258 }
2259 // ----------------------------------------
2260 rDecompose_23456(r,L);
2261 return L;
2262}
2263
2264void rComposeC(lists L, ring R)
2265/* field is R or C */
2266{
2267 // ----------------------------------------
2268 // 0: char/ cf - ring
2269 if ((L->m[0].rtyp!=INT_CMD) || (L->m[0].data!=(char *)0))
2270 {
2271 WerrorS("invalid coeff. field description, expecting 0");
2272 return;
2273 }
2274// R->cf->ch=0;
2275 // ----------------------------------------
2276 // 0, (r1,r2) [, "i" ]
2277 if (L->m[1].rtyp!=LIST_CMD)
2278 {
2279 WerrorS("invalid coeff. field description, expecting precision list");
2280 return;
2281 }
2282 lists LL=(lists)L->m[1].data;
2283 if ((LL->nr!=1)
2284 || (LL->m[0].rtyp!=INT_CMD)
2285 || (LL->m[1].rtyp!=INT_CMD))
2286 {
2287 WerrorS("invalid coeff. field description list, expected list(`int`,`int`)");
2288 return;
2289 }
2290 int r1=(int)(long)LL->m[0].data;
2291 int r2=(int)(long)LL->m[1].data;
2292 r1=si_min(r1,32767);
2293 r2=si_min(r2,32767);
2294 LongComplexInfo par; memset(&par, 0, sizeof(par));
2295 par.float_len=r1;
2296 par.float_len2=r2;
2297 if (L->nr==2) // complex
2298 {
2299 if (L->m[2].rtyp!=STRING_CMD)
2300 {
2301 WerrorS("invalid coeff. field description, expecting parameter name");
2302 return;
2303 }
2304 par.par_name=(char*)L->m[2].data;
2305 R->cf = nInitChar(n_long_C, &par);
2306 }
2307 else if ((r1<=SHORT_REAL_LENGTH) && (r2<=SHORT_REAL_LENGTH)) /* && L->nr==1*/
2308 R->cf = nInitChar(n_R, NULL);
2309 else /* && L->nr==1*/
2310 {
2311 R->cf = nInitChar(n_long_R, &par);
2312 }
2313}
2314
2315#ifdef HAVE_RINGS
2316void rComposeRing(lists L, ring R)
2317/* field is R or C */
2318{
2319 // ----------------------------------------
2320 // 0: string: integer
2321 // no further entries --> Z
2322 mpz_t modBase;
2323 unsigned int modExponent = 1;
2324
2325 if (L->nr == 0)
2326 {
2327 mpz_init_set_ui(modBase,0);
2328 modExponent = 1;
2329 }
2330 // ----------------------------------------
2331 // 1:
2332 else
2333 {
2334 if (L->m[1].rtyp!=LIST_CMD) WerrorS("invalid data, expecting list of numbers");
2335 lists LL=(lists)L->m[1].data;
2336 if ((LL->nr >= 0) && LL->m[0].rtyp == BIGINT_CMD)
2337 {
2338 number tmp= (number) LL->m[0].data; // never use CopyD() on list elements
2339 // assume that tmp is integer, not rational
2340 mpz_init(modBase);
2341 n_MPZ (modBase, tmp, coeffs_BIGINT);
2342 }
2343 else if (LL->nr >= 0 && LL->m[0].rtyp == INT_CMD)
2344 {
2345 mpz_init_set_ui(modBase,(unsigned long) LL->m[0].data);
2346 }
2347 else
2348 {
2349 mpz_init_set_ui(modBase,0);
2350 }
2351 if (LL->nr >= 1)
2352 {
2353 modExponent = (unsigned long) LL->m[1].data;
2354 }
2355 else
2356 {
2357 modExponent = 1;
2358 }
2359 }
2360 // ----------------------------------------
2361 if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
2362 {
2363 WerrorS("Wrong ground ring specification (module is 1)");
2364 return;
2365 }
2366 if (modExponent < 1)
2367 {
2368 WerrorS("Wrong ground ring specification (exponent smaller than 1)");
2369 return;
2370 }
2371 // module is 0 ---> integers
2372 if (mpz_sgn1(modBase) == 0)
2373 {
2374 R->cf=nInitChar(n_Z,NULL);
2375 }
2376 // we have an exponent
2377 else if (modExponent > 1)
2378 {
2379 //R->cf->ch = R->cf->modExponent;
2380 if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
2381 {
2382 /* this branch should be active for modExponent = 2..32 resp. 2..64,
2383 depending on the size of a long on the respective platform */
2384 R->cf=nInitChar(n_Z2m,(void*)(long)modExponent); // Use Z/2^ch
2385 }
2386 else
2387 {
2388 //ringtype 3
2389 ZnmInfo info;
2390 info.base= modBase;
2391 info.exp= modExponent;
2392 R->cf=nInitChar(n_Znm,(void*) &info);
2393 }
2394 }
2395 // just a module m > 1
2396 else
2397 {
2398 //ringtype = 2;
2399 //const int ch = mpz_get_ui(modBase);
2400 ZnmInfo info;
2401 info.base= modBase;
2402 info.exp= modExponent;
2403 R->cf=nInitChar(n_Zn,(void*) &info);
2404 }
2405 mpz_clear(modBase);
2406}
2407#endif
2408
2409static void rRenameVars(ring R)
2410{
2411 int i,j;
2412 BOOLEAN ch;
2413 do
2414 {
2415 ch=0;
2416 for(i=0;i<R->N-1;i++)
2417 {
2418 for(j=i+1;j<R->N;j++)
2419 {
2420 if (strcmp(R->names[i],R->names[j])==0)
2421 {
2422 ch=TRUE;
2423 Warn("name conflict var(%d) and var(%d): `%s`, rename to `@%s`in >>%s<<\nin %s:%d",i+1,j+1,R->names[i],R->names[i],my_yylinebuf,currentVoice->filename,yylineno);
2424 omFree(R->names[j]);
2425 R->names[j]=(char *)omAlloc(2+strlen(R->names[i]));
2426 sprintf(R->names[j],"@%s",R->names[i]);
2427 }
2428 }
2429 }
2430 }
2431 while (ch);
2432 for(i=0;i<rPar(R); i++)
2433 {
2434 for(j=0;j<R->N;j++)
2435 {
2436 if (strcmp(rParameter(R)[i],R->names[j])==0)
2437 {
2438 Warn("name conflict par(%d) and var(%d): `%s`, rename the VARIABLE to `@@(%d)`in >>%s<<\nin %s:%d",i+1,j+1,R->names[j],i+1,my_yylinebuf,currentVoice->filename,yylineno);
2439// omFree(rParameter(R)[i]);
2440// rParameter(R)[i]=(char *)omAlloc(10);
2441// sprintf(rParameter(R)[i],"@@(%d)",i+1);
2442 omFree(R->names[j]);
2443 R->names[j]=(char *)omAlloc(10);
2444 sprintf(R->names[j],"@@(%d)",i+1);
2445 }
2446 }
2447 }
2448}
2449
2450static inline BOOLEAN rComposeVar(const lists L, ring R)
2451{
2452 assume(R!=NULL);
2453 if (L->m[1].Typ()==LIST_CMD)
2454 {
2455 lists v=(lists)L->m[1].Data();
2456 R->N = v->nr+1;
2457 if (R->N<=0)
2458 {
2459 WerrorS("no ring variables");
2460 return TRUE;
2461 }
2462 R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
2463 int i;
2464 for(i=0;i<R->N;i++)
2465 {
2466 if (v->m[i].Typ()==STRING_CMD)
2467 R->names[i]=omStrDup((char *)v->m[i].Data());
2468 else if (v->m[i].Typ()==POLY_CMD)
2469 {
2470 poly p=(poly)v->m[i].Data();
2471 int nr=pIsPurePower(p);
2472 if (nr>0)
2473 R->names[i]=omStrDup(currRing->names[nr-1]);
2474 else
2475 {
2476 Werror("var name %d must be a string or a ring variable",i+1);
2477 return TRUE;
2478 }
2479 }
2480 else
2481 {
2482 Werror("var name %d must be `string` (not %d)",i+1, v->m[i].Typ());
2483 return TRUE;
2484 }
2485 }
2486 }
2487 else
2488 {
2489 WerrorS("variable must be given as `list`");
2490 return TRUE;
2491 }
2492 return FALSE;
2493}
2494
2495static inline BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
2496{
2497 assume(R!=NULL);
2498 long bitmask=0L;
2499 if (L->m[2].Typ()==LIST_CMD)
2500 {
2501 lists v=(lists)L->m[2].Data();
2502 int n= v->nr+2;
2503 int j_in_R,j_in_L;
2504 // do we have an entry "L",... ?: set bitmask
2505 for (int j=0; j < n-1; j++)
2506 {
2507 if (v->m[j].Typ()==LIST_CMD)
2508 {
2509 lists vv=(lists)v->m[j].Data();
2510 if ((vv->nr==1)
2511 &&(vv->m[0].Typ()==STRING_CMD)
2512 &&(strcmp((char*)vv->m[0].Data(),"L")==0))
2513 {
2514 number nn=(number)vv->m[1].Data();
2515 if (vv->m[1].Typ()==BIGINT_CMD)
2516 bitmask=n_Int(nn,coeffs_BIGINT);
2517 else if (vv->m[1].Typ()==INT_CMD)
2518 bitmask=(long)nn;
2519 else
2520 {
2521 Werror("illegal argument for pseudo ordering L: %d",vv->m[1].Typ());
2522 return TRUE;
2523 }
2524 break;
2525 }
2526 }
2527 }
2528 if (bitmask!=0) n--;
2529
2530 // initialize fields of R
2531 R->order=(rRingOrder_t *)omAlloc0((n+1)*sizeof(rRingOrder_t));
2532 R->block0=(int *)omAlloc0((n+1)*sizeof(int));
2533 R->block1=(int *)omAlloc0((n+1)*sizeof(int));
2534 R->wvhdl=(int**)omAlloc0((n+1)*sizeof(int_ptr));
2535 // init order, so that rBlocks works correctly
2536 for (j_in_R= n-2; j_in_R>=0; j_in_R--)
2537 R->order[j_in_R] = ringorder_unspec;
2538 // orderings
2539 for(j_in_R=0,j_in_L=0;j_in_R<n-1;j_in_R++,j_in_L++)
2540 {
2541 // todo: a(..), M
2542 if (v->m[j_in_L].Typ()!=LIST_CMD)
2543 {
2544 WerrorS("ordering must be list of lists");
2545 return TRUE;
2546 }
2547 lists vv=(lists)v->m[j_in_L].Data();
2548 if ((vv->nr==1)
2549 && (vv->m[0].Typ()==STRING_CMD))
2550 {
2551 if (strcmp((char*)vv->m[0].Data(),"L")==0)
2552 {
2553 j_in_R--;
2554 continue;
2555 }
2556 if ((vv->m[1].Typ()!=INTVEC_CMD) && (vv->m[1].Typ()!=INT_CMD)
2557 && (vv->m[1].Typ()!=INTMAT_CMD))
2558 {
2559 PrintS(lString(vv));
2560 Werror("ordering name must be a (string,intvec), not (string,%s)",Tok2Cmdname(vv->m[1].Typ()));
2561 return TRUE;
2562 }
2563 R->order[j_in_R]=rOrderName(omStrDup((char*)vv->m[0].Data())); // assume STRING
2564
2565 if (j_in_R==0) R->block0[0]=1;
2566 else
2567 {
2568 int jj=j_in_R-1;
2569 while((jj>=0)
2570 && ((R->order[jj]== ringorder_a)
2571 || (R->order[jj]== ringorder_aa)
2572 || (R->order[jj]== ringorder_am)
2573 || (R->order[jj]== ringorder_c)
2574 || (R->order[jj]== ringorder_C)
2575 || (R->order[jj]== ringorder_s)
2576 || (R->order[jj]== ringorder_S)
2577 ))
2578 {
2579 //Print("jj=%, skip %s\n",rSimpleOrdStr(R->order[jj]));
2580 jj--;
2581 }
2582 if (jj<0) R->block0[j_in_R]=1;
2583 else R->block0[j_in_R]=R->block1[jj]+1;
2584 }
2585 intvec *iv;
2586 if (vv->m[1].Typ()==INT_CMD)
2587 {
2588 int l=si_max(1,(int)(long)vv->m[1].Data());
2589 iv=new intvec(l);
2590 for(int i=0;i<l;i++) (*iv)[i]=1;
2591 }
2592 else
2593 iv=ivCopy((intvec*)vv->m[1].Data()); //assume INTVEC/INTMAT
2594 int iv_len=iv->length();
2595 if (iv_len==0)
2596 {
2597 Werror("empty intvec for ordering %d (%s)",j_in_R+1,rSimpleOrdStr(R->order[j_in_R]));
2598 return TRUE;
2599 }
2600 if (R->order[j_in_R]==ringorder_M)
2601 {
2602 if (vv->m[1].rtyp==INTMAT_CMD) iv->makeVector();
2603 iv_len=iv->length();
2604 }
2605 if ((R->order[j_in_R]!=ringorder_s)
2606 &&(R->order[j_in_R]!=ringorder_c)
2607 &&(R->order[j_in_R]!=ringorder_C))
2608 {
2609 R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+iv_len-1);
2610 if (R->block1[j_in_R]>R->N)
2611 {
2612 if (R->block0[j_in_R]>R->N)
2613 {
2614 Werror("not enough variables for ordering %d (%s)",j_in_R,rSimpleOrdStr(R->order[j_in_R]));
2615 return TRUE;
2616 }
2617 R->block1[j_in_R]=R->N;
2618 iv_len=R->block1[j_in_R]-R->block0[j_in_R]+1;
2619 }
2620 //Print("block %d from %d to %d\n",j,R->block0[j], R->block1[j]);
2621 }
2622 int i;
2623 switch (R->order[j_in_R])
2624 {
2625 case ringorder_ws:
2626 case ringorder_Ws:
2627 R->OrdSgn=-1; // and continue
2628 case ringorder_aa:
2629 case ringorder_a:
2630 case ringorder_wp:
2631 case ringorder_Wp:
2632 R->wvhdl[j_in_R] =( int *)omAlloc(iv_len*sizeof(int));
2633 for (i=0; i<iv_len;i++)
2634 {
2635 R->wvhdl[j_in_R][i]=(*iv)[i];
2636 }
2637 break;
2638 case ringorder_am:
2639 R->wvhdl[j_in_R] =( int *)omAlloc((iv->length()+1)*sizeof(int));
2640 for (i=0; i<iv_len;i++)
2641 {
2642 R->wvhdl[j_in_R][i]=(*iv)[i];
2643 }
2644 R->wvhdl[j_in_R][i]=iv->length() - iv_len;
2645 //printf("ivlen:%d,iv->len:%d,mod:%d\n",iv_len,iv->length(),R->wvhdl[j][i]);
2646 for (; i<iv->length(); i++)
2647 {
2648 R->wvhdl[j_in_R][i+1]=(*iv)[i];
2649 }
2650 break;
2651 case ringorder_M:
2652 R->wvhdl[j_in_R] =( int *)omAlloc((iv->length())*sizeof(int));
2653 for (i=0; i<iv->length();i++) R->wvhdl[j_in_R][i]=(*iv)[i];
2654 R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+(int)sqrt((double)(iv->length())));
2655 if (R->block1[j_in_R]>R->N)
2656 {
2657 R->block1[j_in_R]=R->N;
2658 }
2659 break;
2660 case ringorder_ls:
2661 case ringorder_ds:
2662 case ringorder_Ds:
2663 case ringorder_rs:
2664 R->OrdSgn=-1;
2665 case ringorder_lp:
2666 case ringorder_dp:
2667 case ringorder_Dp:
2668 case ringorder_rp:
2669 #if 0
2670 for (i=0; i<iv_len;i++)
2671 {
2672 if (((*iv)[i]!=1)&&(iv_len!=1))
2673 {
2674 iv->show(1);
2675 Warn("ignore weight %d for ord %d (%s) at pos %d\n>>%s<<",
2676 (*iv)[i],j_in_R+1,rSimpleOrdStr(R->order[j_in_R]),i+1,my_yylinebuf);
2677 break;
2678 }
2679 }
2680 #endif // break absfact.tst
2681 break;
2682 case ringorder_S:
2683 break;
2684 case ringorder_c:
2685 case ringorder_C:
2686 R->block1[j_in_R]=R->block0[j_in_R]=0;
2687 break;
2688
2689 case ringorder_s:
2690 R->block1[j_in_R]=R->block0[j_in_R]=(*iv)[0];
2691 rSetSyzComp(R->block0[j_in_R],R);
2692 break;
2693
2694 case ringorder_IS:
2695 {
2696 R->block1[j_in_R] = R->block0[j_in_R] = 0;
2697 if( iv->length() > 0 )
2698 {
2699 const int s = (*iv)[0];
2700 assume( -2 < s && s < 2 );
2701 R->block1[j_in_R] = R->block0[j_in_R] = s;
2702 }
2703 break;
2704 }
2705 case 0:
2706 case ringorder_unspec:
2707 break;
2708 case ringorder_L: /* cannot happen */
2709 case ringorder_a64: /*not implemented */
2710 WerrorS("ring order not implemented");
2711 return TRUE;
2712 }
2713 delete iv;
2714 }
2715 else
2716 {
2717 PrintS(lString(vv));
2718 WerrorS("ordering name must be a (string,intvec)");
2719 return TRUE;
2720 }
2721 }
2722 // sanity check
2723 j_in_R=n-2;
2724 if ((R->order[j_in_R]==ringorder_c)
2725 || (R->order[j_in_R]==ringorder_C)
2726 || (R->order[j_in_R]==ringorder_unspec)) j_in_R--;
2727 if (R->block1[j_in_R] != R->N)
2728 {
2729 if (((R->order[j_in_R]==ringorder_dp) ||
2730 (R->order[j_in_R]==ringorder_ds) ||
2731 (R->order[j_in_R]==ringorder_Dp) ||
2732 (R->order[j_in_R]==ringorder_Ds) ||
2733 (R->order[j_in_R]==ringorder_rp) ||
2734 (R->order[j_in_R]==ringorder_rs) ||
2735 (R->order[j_in_R]==ringorder_lp) ||
2736 (R->order[j_in_R]==ringorder_ls))
2737 &&
2738 R->block0[j_in_R] <= R->N)
2739 {
2740 R->block1[j_in_R] = R->N;
2741 }
2742 else
2743 {
2744 Werror("ordering incomplete: size (%d) should be %d",R->block1[j_in_R],R->N);
2745 return TRUE;
2746 }
2747 }
2748 if (R->block0[j_in_R]>R->N)
2749 {
2750 Werror("not enough variables (%d) for ordering block %d, scanned so far:",R->N,j_in_R+1);
2751 for(int ii=0;ii<=j_in_R;ii++)
2752 Werror("ord[%d]: %s from v%d to v%d",ii+1,rSimpleOrdStr(R->order[ii]),R->block0[ii],R->block1[ii]);
2753 return TRUE;
2754 }
2755 if (check_comp)
2756 {
2757 BOOLEAN comp_order=FALSE;
2758 int jj;
2759 for(jj=0;jj<n;jj++)
2760 {
2761 if ((R->order[jj]==ringorder_c) ||
2762 (R->order[jj]==ringorder_C)) { comp_order=TRUE; break; }
2763 }
2764 if (!comp_order)
2765 {
2766 R->order=(rRingOrder_t*)omRealloc0Size(R->order,n*sizeof(rRingOrder_t),(n+1)*sizeof(rRingOrder_t));
2767 R->block0=(int*)omRealloc0Size(R->block0,n*sizeof(int),(n+1)*sizeof(int));
2768 R->block1=(int*)omRealloc0Size(R->block1,n*sizeof(int),(n+1)*sizeof(int));
2769 R->wvhdl=(int**)omRealloc0Size(R->wvhdl,n*sizeof(int_ptr),(n+1)*sizeof(int_ptr));
2770 R->order[n-1]=ringorder_C;
2771 R->block0[n-1]=0;
2772 R->block1[n-1]=0;
2773 R->wvhdl[n-1]=NULL;
2774 n++;
2775 }
2776 }
2777 }
2778 else
2779 {
2780 WerrorS("ordering must be given as `list`");
2781 return TRUE;
2782 }
2783 if (bitmask!=0) { R->bitmask=bitmask; R->wanted_maxExp=bitmask; }
2784 return FALSE;
2785}
2786
2787ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask,const int isLetterplace)
2788{
2789 if ((L->nr!=3)
2790#ifdef HAVE_PLURAL
2791 &&(L->nr!=5)
2792#endif
2793 )
2794 return NULL;
2795 int is_gf_char=0;
2796 // 0: char/ cf - ring
2797 // 1: list (var)
2798 // 2: list (ord)
2799 // 3: qideal
2800 // possibly:
2801 // 4: C
2802 // 5: D
2803
2804 ring R = (ring) omAlloc0Bin(sip_sring_bin);
2805
2806 // ------------------------------------------------------------------
2807 // 0: char:
2808 if (L->m[0].Typ()==CRING_CMD)
2809 {
2810 R->cf=(coeffs)L->m[0].Data();
2811 R->cf->ref++;
2812 }
2813 else if (L->m[0].Typ()==INT_CMD)
2814 {
2815 int ch = (int)(long)L->m[0].Data();
2816 assume( ch >= 0 );
2817
2818 if (ch == 0) // Q?
2819 R->cf = nInitChar(n_Q, NULL);
2820 else
2821 {
2822 int l = IsPrime(ch); // Zp?
2823 if( l != ch )
2824 {
2825 Warn("%d is invalid characteristic of ground field. %d is used.", ch, l);
2826 ch = l;
2827 }
2828 #ifndef TEST_ZN_AS_ZP
2829 R->cf = nInitChar(n_Zp, (void*)(long)ch);
2830 #else
2831 mpz_t modBase;
2832 mpz_init_set_ui(modBase,(long) ch);
2833 ZnmInfo info;
2834 info.base= modBase;
2835 info.exp= 1;
2836 R->cf=nInitChar(n_Zn,(void*) &info); //exponent is missing
2837 R->cf->is_field=1;
2838 R->cf->is_domain=1;
2839 R->cf->has_simple_Inverse=1;
2840 #endif
2841 }
2842 }
2843 else if (L->m[0].Typ()==LIST_CMD) // something complicated...
2844 {
2845 lists LL=(lists)L->m[0].Data();
2846
2847#ifdef HAVE_RINGS
2848 if (LL->m[0].Typ() == STRING_CMD) // 1st comes a string?
2849 {
2850 rComposeRing(LL, R); // Ring!?
2851 }
2852 else
2853#endif
2854 if (LL->nr < 3)
2855 rComposeC(LL,R); // R, long_R, long_C
2856 else
2857 {
2858 if (LL->m[0].Typ()==INT_CMD)
2859 {
2860 int ch = (int)(long)LL->m[0].Data();
2861 while ((ch!=fftable[is_gf_char]) && (fftable[is_gf_char])) is_gf_char++;
2862 if (fftable[is_gf_char]==0) is_gf_char=-1;
2863
2864 if(is_gf_char!= -1)
2865 {
2866 GFInfo param;
2867
2868 param.GFChar = ch;
2869 param.GFDegree = 1;
2870 param.GFPar_name = (const char*)(((lists)(LL->m[1].Data()))->m[0].Data());
2871
2872 // nfInitChar should be able to handle the case when ch is in fftables!
2873 R->cf = nInitChar(n_GF, (void*)&param);
2874 }
2875 }
2876
2877 if( R->cf == NULL )
2878 {
2879 ring extRing = rCompose((lists)L->m[0].Data(),FALSE,0x7fff);
2880
2881 if (extRing==NULL)
2882 {
2883 WerrorS("could not create the specified coefficient field");
2884 goto rCompose_err;
2885 }
2886
2887 if( extRing->qideal != NULL ) // Algebraic extension
2888 {
2889 AlgExtInfo extParam;
2890
2891 extParam.r = extRing;
2892
2893 R->cf = nInitChar(n_algExt, (void*)&extParam);
2894 }
2895 else // Transcendental extension
2896 {
2897 TransExtInfo extParam;
2898 extParam.r = extRing;
2899 assume( extRing->qideal == NULL );
2900
2901 R->cf = nInitChar(n_transExt, &extParam);
2902 }
2903 }
2904 }
2905 }
2906 else
2907 {
2908 WerrorS("coefficient field must be described by `int` or `list`");
2909 goto rCompose_err;
2910 }
2911
2912 if( R->cf == NULL )
2913 {
2914 WerrorS("could not create coefficient field described by the input!");
2915 goto rCompose_err;
2916 }
2917
2918 // ------------------------- VARS ---------------------------
2919 if (rComposeVar(L,R)) goto rCompose_err;
2920 // ------------------------ ORDER ------------------------------
2921 if (rComposeOrder(L,check_comp,R)) goto rCompose_err;
2922
2923 // ------------------------ ??????? --------------------
2924
2925 if (!isLetterplace) rRenameVars(R);
2926 #ifdef HAVE_SHIFTBBA
2927 else
2928 {
2929 R->isLPring=isLetterplace;
2930 R->ShortOut=FALSE;
2931 R->CanShortOut=FALSE;
2932 }
2933 #endif
2934 if ((bitmask!=0)&&(R->wanted_maxExp==0)) R->wanted_maxExp=bitmask;
2935 rComplete(R);
2936
2937 // ------------------------ Q-IDEAL ------------------------
2938
2939 if (L->m[3].Typ()==IDEAL_CMD)
2940 {
2941 ideal q=(ideal)L->m[3].Data();
2942 if (q->m[0]!=NULL)
2943 {
2944 if (R->cf != currRing->cf) //->cf->ch!=currRing->cf->ch)
2945 {
2946 #if 0
2947 WerrorS("coefficient fields must be equal if q-ideal !=0");
2948 goto rCompose_err;
2949 #else
2950 ring orig_ring=currRing;
2952 int *perm=NULL;
2953 int *par_perm=NULL;
2954 int par_perm_size=0;
2955 nMapFunc nMap;
2956
2957 if ((nMap=nSetMap(orig_ring->cf))==NULL)
2958 {
2959 if (rEqual(orig_ring,currRing))
2960 {
2961 nMap=n_SetMap(currRing->cf, currRing->cf);
2962 }
2963 else
2964 // Allow imap/fetch to be make an exception only for:
2965 if ( (rField_is_Q_a(orig_ring) && // Q(a..) -> Q(a..) || Q || Zp || Zp(a)
2969 ||
2970 (rField_is_Zp_a(orig_ring) && // Zp(a..) -> Zp(a..) || Zp
2971 (rField_is_Zp(currRing, rInternalChar(orig_ring)) ||
2972 rField_is_Zp_a(currRing, rInternalChar(orig_ring)))) )
2973 {
2974 par_perm_size=rPar(orig_ring);
2975
2976// if ((orig_ring->minpoly != NULL) || (orig_ring->qideal != NULL))
2977// naSetChar(rInternalChar(orig_ring),orig_ring);
2978// else ntSetChar(rInternalChar(orig_ring),orig_ring);
2979
2980 nSetChar(currRing->cf);
2981 }
2982 else
2983 {
2984 WerrorS("coefficient fields must be equal if q-ideal !=0");
2985 goto rCompose_err;
2986 }
2987 }
2988 perm=(int *)omAlloc0((orig_ring->N+1)*sizeof(int));
2989 if (par_perm_size!=0)
2990 par_perm=(int *)omAlloc0(par_perm_size*sizeof(int));
2991 int i;
2992 #if 0
2993 // use imap:
2994 maFindPerm(orig_ring->names,orig_ring->N,orig_ring->parameter,orig_ring->P,
2995 currRing->names,currRing->N,currRing->parameter, currRing->P,
2996 perm,par_perm, currRing->ch);
2997 #else
2998 // use fetch
2999 if ((rPar(orig_ring)>0) && (rPar(currRing)==0))
3000 {
3001 for(i=si_min(rPar(orig_ring),rVar(currRing))-1;i>=0;i--) par_perm[i]=i+1;
3002 }
3003 else if (par_perm_size!=0)
3004 for(i=si_min(rPar(orig_ring),rPar(currRing))-1;i>=0;i--) par_perm[i]=-(i+1);
3005 for(i=si_min(orig_ring->N,rVar(currRing));i>0;i--) perm[i]=i;
3006 #endif
3007 ideal dest_id=idInit(IDELEMS(q),1);
3008 for(i=IDELEMS(q)-1; i>=0; i--)
3009 {
3010 dest_id->m[i]=p_PermPoly(q->m[i],perm,orig_ring, currRing,nMap,
3011 par_perm,par_perm_size);
3012 // PrintS("map:");pWrite(dest_id->m[i]);PrintLn();
3013 pTest(dest_id->m[i]);
3014 }
3015 R->qideal=dest_id;
3016 if (perm!=NULL)
3017 omFreeSize((ADDRESS)perm,(orig_ring->N+1)*sizeof(int));
3018 if (par_perm!=NULL)
3019 omFreeSize((ADDRESS)par_perm,par_perm_size*sizeof(int));
3020 rChangeCurrRing(orig_ring);
3021 #endif
3022 }
3023 else
3024 R->qideal=idrCopyR(q,currRing,R);
3025 }
3026 }
3027 else
3028 {
3029 WerrorS("q-ideal must be given as `ideal`");
3030 goto rCompose_err;
3031 }
3032
3033
3034 // ---------------------------------------------------------------
3035 #ifdef HAVE_PLURAL
3036 if (L->nr==5)
3037 {
3038 if (nc_CallPlural((matrix)L->m[4].Data(),
3039 (matrix)L->m[5].Data(),
3040 NULL,NULL,
3041 R,
3042 true, // !!!
3043 true, false,
3044 currRing, FALSE)) goto rCompose_err;
3045 // takes care about non-comm. quotient! i.e. calls "nc_SetupQuotient" due to last true
3046 }
3047 #endif
3048 return R;
3049
3050rCompose_err:
3051 if (R->N>0)
3052 {
3053 int i;
3054 if (R->names!=NULL)
3055 {
3056 i=R->N-1;
3057 while (i>=0) { omfree(R->names[i]); i--; }
3058 omFree(R->names);
3059 }
3060 }
3061 omfree(R->order);
3062 omfree(R->block0);
3063 omfree(R->block1);
3064 omfree(R->wvhdl);
3065 omFree(R);
3066 return NULL;
3067}
3068
3069// from matpol.cc
3070
3071/*2
3072* compute the jacobi matrix of an ideal
3073*/
3075{
3076 int i,j;
3077 matrix result;
3078 ideal id=(ideal)a->Data();
3079
3081 for (i=1; i<=IDELEMS(id); i++)
3082 {
3083 for (j=1; j<=rVar(currRing); j++)
3084 {
3085 MATELEM(result,i,j) = pDiff(id->m[i-1],j);
3086 }
3087 }
3088 res->data=(char *)result;
3089 return FALSE;
3090}
3091
3092/*2
3093* returns the Koszul-matrix of degree d of a vectorspace with dimension n
3094* uses the first n entrees of id, if id <> NULL
3095*/
3097{
3098 int n=(int)(long)b->Data();
3099 int d=(int)(long)c->Data();
3100 int k,l,sign,row,col;
3101 matrix result;
3102 ideal temp;
3103 BOOLEAN bo;
3104 poly p;
3105
3106 if ((d>n) || (d<1) || (n<1))
3107 {
3108 res->data=(char *)mpNew(1,1);
3109 return FALSE;
3110 }
3111 int *choise = (int*)omAlloc(d*sizeof(int));
3112 if (id==NULL)
3113 temp=idMaxIdeal(1);
3114 else
3115 temp=(ideal)id->Data();
3116
3117 k = binom(n,d);
3118 l = k*d;
3119 l /= n-d+1;
3120 result =mpNew(l,k);
3121 col = 1;
3122 idInitChoise(d,1,n,&bo,choise);
3123 while (!bo)
3124 {
3125 sign = 1;
3126 for (l=1;l<=d;l++)
3127 {
3128 if (choise[l-1]<=IDELEMS(temp))
3129 {
3130 p = pCopy(temp->m[choise[l-1]-1]);
3131 if (sign == -1) p = pNeg(p);
3132 sign *= -1;
3133 row = idGetNumberOfChoise(l-1,d,1,n,choise);
3134 MATELEM(result,row,col) = p;
3135 }
3136 }
3137 col++;
3138 idGetNextChoise(d,n,&bo,choise);
3139 }
3140 omFreeSize(choise,d*sizeof(int));
3141 if (id==NULL) idDelete(&temp);
3142
3143 res->data=(char *)result;
3144 return FALSE;
3145}
3146
3147// from syz1.cc
3148/*2
3149* read out the Betti numbers from resolution
3150* (interpreter interface)
3151*/
3153{
3154 syStrategy syzstr=(syStrategy)u->Data();
3155
3156 BOOLEAN minim=(int)(long)w->Data();
3157 int row_shift=0;
3158 int add_row_shift=0;
3159 intvec *weights=NULL;
3160 intvec *ww=(intvec *)atGet(u,"isHomog",INTVEC_CMD);
3161 if (ww!=NULL)
3162 {
3163 weights=ivCopy(ww);
3164 add_row_shift = ww->min_in();
3165 (*weights) -= add_row_shift;
3166 }
3167
3168 res->data=(void *)syBettiOfComputation(syzstr,minim,&row_shift,weights);
3169 //row_shift += add_row_shift;
3170 //Print("row_shift=%d, add_row_shift=%d\n",row_shift,add_row_shift);
3171 atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
3172
3173 return FALSE;
3174}
3176{
3177 sleftv tmp;
3178 tmp.Init();
3179 tmp.rtyp=INT_CMD;
3180 tmp.data=(void *)1;
3181 return syBetti2(res,u,&tmp);
3182}
3183
3184/*3
3185* converts a resolution into a list of modules
3186*/
3187lists syConvRes(syStrategy syzstr,BOOLEAN toDel,int add_row_shift)
3188{
3189 resolvente fullres = syzstr->fullres;
3190 resolvente minres = syzstr->minres;
3191
3192 const int length = syzstr->length;
3193
3194 if ((fullres==NULL) && (minres==NULL))
3195 {
3196 if (syzstr->hilb_coeffs==NULL)
3197 { // La Scala
3198 fullres = syReorder(syzstr->res, length, syzstr);
3199 }
3200 else
3201 { // HRES
3202 minres = syReorder(syzstr->orderedRes, length, syzstr);
3203 syKillEmptyEntres(minres, length);
3204 }
3205 }
3206
3207 resolvente tr;
3208 int typ0=IDEAL_CMD;
3209
3210 if (minres!=NULL)
3211 tr = minres;
3212 else
3213 tr = fullres;
3214
3215 resolvente trueres=NULL;
3216 intvec ** w=NULL;
3217
3218 if (length>0)
3219 {
3220 trueres = (resolvente)omAlloc0((length)*sizeof(ideal));
3221 for (int i=length-1;i>=0;i--)
3222 {
3223 if (tr[i]!=NULL)
3224 {
3225 trueres[i] = idCopy(tr[i]);
3226 }
3227 }
3228 if ( id_RankFreeModule(trueres[0], currRing) > 0)
3229 typ0 = MODUL_CMD;
3230 if (syzstr->weights!=NULL)
3231 {
3232 w = (intvec**)omAlloc0(length*sizeof(intvec*));
3233 for (int i=length-1;i>=0;i--)
3234 {
3235 if (syzstr->weights[i]!=NULL) w[i] = ivCopy(syzstr->weights[i]);
3236 }
3237 }
3238 }
3239
3240 lists li = liMakeResolv(trueres, length, syzstr->list_length,typ0,
3241 w, add_row_shift);
3242
3243 if (toDel)
3244 syKillComputation(syzstr);
3245 else
3246 {
3247 if( fullres != NULL && syzstr->fullres == NULL )
3248 syzstr->fullres = fullres;
3249
3250 if( minres != NULL && syzstr->minres == NULL )
3251 syzstr->minres = minres;
3252 }
3253 return li;
3254}
3255
3256/*3
3257* converts a list of modules into a resolution
3258*/
3260{
3261 int typ0;
3263
3264 resolvente fr = liFindRes(li,&(result->length),&typ0,&(result->weights));
3265 if (fr != NULL)
3266 {
3267
3268 result->fullres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3269 for (int i=result->length-1;i>=0;i--)
3270 {
3271 if (fr[i]!=NULL)
3272 result->fullres[i] = idCopy(fr[i]);
3273 }
3274 result->list_length=result->length;
3275 omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3276 }
3277 else
3278 {
3279 omFreeSize(result, sizeof(ssyStrategy));
3280 result = NULL;
3281 }
3282 return result;
3283}
3284
3285/*3
3286* converts a list of modules into a minimal resolution
3287*/
3289{
3290 int typ0;
3292
3293 resolvente fr = liFindRes(li,&(result->length),&typ0);
3294 result->minres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3295 for (int i=result->length-1;i>=0;i--)
3296 {
3297 if (fr[i]!=NULL)
3298 result->minres[i] = idCopy(fr[i]);
3299 }
3300 omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3301 return result;
3302}
3303// from weight.cc
3305{
3306 ideal F=(ideal)id->Data();
3307 intvec * iv = new intvec(rVar(currRing));
3308 polyset s;
3309 int sl, n, i;
3310 int *x;
3311
3312 res->data=(char *)iv;
3313 s = F->m;
3314 sl = IDELEMS(F) - 1;
3315 n = rVar(currRing);
3316 double wNsqr = (double)2.0 / (double)n;
3318 x = (int * )omAlloc(2 * (n + 1) * sizeof(int));
3319 wCall(s, sl, x, wNsqr, currRing);
3320 for (i = n; i!=0; i--)
3321 (*iv)[i-1] = x[i + n + 1];
3322 omFreeSize((ADDRESS)x, 2 * (n + 1) * sizeof(int));
3323 return FALSE;
3324}
3325
3327{
3328 res->data=(char *)id_QHomWeight((ideal)v->Data(), currRing);
3329 if (res->data==NULL)
3330 res->data=(char *)new intvec(rVar(currRing));
3331 return FALSE;
3332}
3333/*==============================================================*/
3334// from clapsing.cc
3335#if 0
3336BOOLEAN jjIS_SQR_FREE(leftv res, leftv u)
3337{
3338 BOOLEAN b=singclap_factorize((poly)(u->CopyD()), &v, 0);
3339 res->data=(void *)b;
3340}
3341#endif
3342
3344{
3345 res->data=singclap_resultant((poly)u->CopyD(),(poly)v->CopyD(),
3346 (poly)w->CopyD(), currRing);
3347 return errorreported;
3348}
3349
3351{
3352 res->data=singclap_irrCharSeries((ideal)u->Data(), currRing);
3353 return (res->data==NULL);
3354}
3355
3356// from semic.cc
3357#ifdef HAVE_SPECTRUM
3358
3359// ----------------------------------------------------------------------------
3360// Initialize a spectrum deep from a singular lists
3361// ----------------------------------------------------------------------------
3362
3364{
3365 spec.mu = (int)(long)(l->m[0].Data( ));
3366 spec.pg = (int)(long)(l->m[1].Data( ));
3367 spec.n = (int)(long)(l->m[2].Data( ));
3368
3369 spec.copy_new( spec.n );
3370
3371 intvec *num = (intvec*)l->m[3].Data( );
3372 intvec *den = (intvec*)l->m[4].Data( );
3373 intvec *mul = (intvec*)l->m[5].Data( );
3374
3375 for( int i=0; i<spec.n; i++ )
3376 {
3377 spec.s[i] = (Rational)((*num)[i])/(Rational)((*den)[i]);
3378 spec.w[i] = (*mul)[i];
3379 }
3380}
3381
3382// ----------------------------------------------------------------------------
3383// singular lists constructor for spectrum
3384// ----------------------------------------------------------------------------
3385
3386spectrum /*former spectrum::spectrum ( lists l )*/
3388{
3390 copy_deep( result, l );
3391 return result;
3392}
3393
3394// ----------------------------------------------------------------------------
3395// generate a Singular lists from a spectrum
3396// ----------------------------------------------------------------------------
3397
3398/* former spectrum::thelist ( void )*/
3400{
3402
3403 L->Init( 6 );
3404
3405 intvec *num = new intvec( spec.n );
3406 intvec *den = new intvec( spec.n );
3407 intvec *mult = new intvec( spec.n );
3408
3409 for( int i=0; i<spec.n; i++ )
3410 {
3411 (*num) [i] = spec.s[i].get_num_si( );
3412 (*den) [i] = spec.s[i].get_den_si( );
3413 (*mult)[i] = spec.w[i];
3414 }
3415
3416 L->m[0].rtyp = INT_CMD; // milnor number
3417 L->m[1].rtyp = INT_CMD; // geometrical genus
3418 L->m[2].rtyp = INT_CMD; // # of spectrum numbers
3419 L->m[3].rtyp = INTVEC_CMD; // numerators
3420 L->m[4].rtyp = INTVEC_CMD; // denomiantors
3421 L->m[5].rtyp = INTVEC_CMD; // multiplicities
3422
3423 L->m[0].data = (void*)(long)spec.mu;
3424 L->m[1].data = (void*)(long)spec.pg;
3425 L->m[2].data = (void*)(long)spec.n;
3426 L->m[3].data = (void*)num;
3427 L->m[4].data = (void*)den;
3428 L->m[5].data = (void*)mult;
3429
3430 return L;
3431}
3432// from spectrum.cc
3433// ----------------------------------------------------------------------------
3434// print out an error message for a spectrum list
3435// ----------------------------------------------------------------------------
3436
3437typedef enum
3438{
3441
3444
3451
3456
3462
3465
3468
3470
3472{
3473 switch( state )
3474 {
3475 case semicListTooShort:
3476 WerrorS( "the list is too short" );
3477 break;
3478 case semicListTooLong:
3479 WerrorS( "the list is too long" );
3480 break;
3481
3483 WerrorS( "first element of the list should be int" );
3484 break;
3486 WerrorS( "second element of the list should be int" );
3487 break;
3489 WerrorS( "third element of the list should be int" );
3490 break;
3492 WerrorS( "fourth element of the list should be intvec" );
3493 break;
3495 WerrorS( "fifth element of the list should be intvec" );
3496 break;
3498 WerrorS( "sixth element of the list should be intvec" );
3499 break;
3500
3501 case semicListNNegative:
3502 WerrorS( "first element of the list should be positive" );
3503 break;
3505 WerrorS( "wrong number of numerators" );
3506 break;
3508 WerrorS( "wrong number of denominators" );
3509 break;
3511 WerrorS( "wrong number of multiplicities" );
3512 break;
3513
3515 WerrorS( "the Milnor number should be positive" );
3516 break;
3518 WerrorS( "the geometrical genus should be nonnegative" );
3519 break;
3521 WerrorS( "all numerators should be positive" );
3522 break;
3524 WerrorS( "all denominators should be positive" );
3525 break;
3527 WerrorS( "all multiplicities should be positive" );
3528 break;
3529
3531 WerrorS( "it is not symmetric" );
3532 break;
3534 WerrorS( "it is not monotonous" );
3535 break;
3536
3538 WerrorS( "the Milnor number is wrong" );
3539 break;
3540 case semicListPGWrong:
3541 WerrorS( "the geometrical genus is wrong" );
3542 break;
3543
3544 default:
3545 WerrorS( "unspecific error" );
3546 break;
3547 }
3548}
3549// ----------------------------------------------------------------------------
3550// this is the main spectrum computation function
3551// ----------------------------------------------------------------------------
3552
3554{
3565
3566// from splist.cc
3567// ----------------------------------------------------------------------------
3568// Compute the spectrum of a spectrumPolyList
3569// ----------------------------------------------------------------------------
3570
3571/* former spectrumPolyList::spectrum ( lists*, int) */
3573{
3574 spectrumPolyNode **node = &speclist.root;
3576
3577 poly f,tmp;
3578 int found,cmp;
3579
3580 Rational smax( ( fast==0 ? 0 : rVar(currRing) ),
3581 ( fast==2 ? 2 : 1 ) );
3582
3583 Rational weight_prev( 0,1 );
3584
3585 int mu = 0; // the milnor number
3586 int pg = 0; // the geometrical genus
3587 int n = 0; // number of different spectral numbers
3588 int z = 0; // number of spectral number equal to smax
3589
3590 while( (*node)!=(spectrumPolyNode*)NULL &&
3591 ( fast==0 || (*node)->weight<=smax ) )
3592 {
3593 // ---------------------------------------
3594 // determine the first normal form which
3595 // contains the monomial node->mon
3596 // ---------------------------------------
3597
3598 found = FALSE;
3599 search = *node;
3600
3601 while( search!=(spectrumPolyNode*)NULL && found==FALSE )
3602 {
3603 if( search->nf!=(poly)NULL )
3604 {
3605 f = search->nf;
3606
3607 do
3608 {
3609 // --------------------------------
3610 // look for (*node)->mon in f
3611 // --------------------------------
3612
3613 cmp = pCmp( (*node)->mon,f );
3614
3615 if( cmp<0 )
3616 {
3617 f = pNext( f );
3618 }
3619 else if( cmp==0 )
3620 {
3621 // -----------------------------
3622 // we have found a normal form
3623 // -----------------------------
3624
3625 found = TRUE;
3626
3627 // normalize coefficient
3628
3629 number inv = nInvers( pGetCoeff( f ) );
3630 search->nf=__p_Mult_nn( search->nf,inv,currRing );
3631 nDelete( &inv );
3632
3633 // exchange normal forms
3634
3635 tmp = (*node)->nf;
3636 (*node)->nf = search->nf;
3637 search->nf = tmp;
3638 }
3639 }
3640 while( cmp<0 && f!=(poly)NULL );
3641 }
3642 search = search->next;
3643 }
3644
3645 if( found==FALSE )
3646 {
3647 // ------------------------------------------------
3648 // the weight of node->mon is a spectrum number
3649 // ------------------------------------------------
3650
3651 mu++;
3652
3653 if( (*node)->weight<=(Rational)1 ) pg++;
3654 if( (*node)->weight==smax ) z++;
3655 if( (*node)->weight>weight_prev ) n++;
3656
3657 weight_prev = (*node)->weight;
3658 node = &((*node)->next);
3659 }
3660 else
3661 {
3662 // -----------------------------------------------
3663 // determine all other normal form which contain
3664 // the monomial node->mon
3665 // replace for node->mon its normal form
3666 // -----------------------------------------------
3667
3668 while( search!=(spectrumPolyNode*)NULL )
3669 {
3670 if( search->nf!=(poly)NULL )
3671 {
3672 f = search->nf;
3673
3674 do
3675 {
3676 // --------------------------------
3677 // look for (*node)->mon in f
3678 // --------------------------------
3679
3680 cmp = pCmp( (*node)->mon,f );
3681
3682 if( cmp<0 )
3683 {
3684 f = pNext( f );
3685 }
3686 else if( cmp==0 )
3687 {
3688 search->nf = pSub( search->nf,
3689 __pp_Mult_nn( (*node)->nf,pGetCoeff( f ),currRing ) );
3690 pNorm( search->nf );
3691 }
3692 }
3693 while( cmp<0 && f!=(poly)NULL );
3694 }
3695 search = search->next;
3696 }
3697 speclist.delete_node( node );
3698 }
3699
3700 }
3701
3702 // --------------------------------------------------------
3703 // fast computation exploits the symmetry of the spectrum
3704 // --------------------------------------------------------
3705
3706 if( fast==2 )
3707 {
3708 mu = 2*mu - z;
3709 n = ( z > 0 ? 2*n - 1 : 2*n );
3710 }
3711
3712 // --------------------------------------------------------
3713 // compute the spectrum numbers with their multiplicities
3714 // --------------------------------------------------------
3715
3716 intvec *nom = new intvec( n );
3717 intvec *den = new intvec( n );
3718 intvec *mult = new intvec( n );
3719
3720 int count = 0;
3721 int multiplicity = 1;
3722
3723 for( search=speclist.root; search!=(spectrumPolyNode*)NULL &&
3724 ( fast==0 || search->weight<=smax );
3725 search=search->next )
3726 {
3727 if( search->next==(spectrumPolyNode*)NULL ||
3728 search->weight<search->next->weight )
3729 {
3730 (*nom) [count] = search->weight.get_num_si( );
3731 (*den) [count] = search->weight.get_den_si( );
3732 (*mult)[count] = multiplicity;
3733
3734 multiplicity=1;
3735 count++;
3736 }
3737 else
3738 {
3739 multiplicity++;
3740 }
3741 }
3742
3743 // --------------------------------------------------------
3744 // fast computation exploits the symmetry of the spectrum
3745 // --------------------------------------------------------
3746
3747 if( fast==2 )
3748 {
3749 int n1,n2;
3750 for( n1=0, n2=n-1; n1<n2; n1++, n2-- )
3751 {
3752 (*nom) [n2] = rVar(currRing)*(*den)[n1]-(*nom)[n1];
3753 (*den) [n2] = (*den)[n1];
3754 (*mult)[n2] = (*mult)[n1];
3755 }
3756 }
3757
3758 // -----------------------------------
3759 // test if the spectrum is symmetric
3760 // -----------------------------------
3761
3762 if( fast==0 || fast==1 )
3763 {
3764 int symmetric=TRUE;
3765
3766 for( int n1=0, n2=n-1 ; n1<n2 && symmetric==TRUE; n1++, n2-- )
3767 {
3768 if( (*mult)[n1]!=(*mult)[n2] ||
3769 (*den) [n1]!= (*den)[n2] ||
3770 (*nom)[n1]+(*nom)[n2]!=rVar(currRing)*(*den) [n1] )
3771 {
3772 symmetric = FALSE;
3773 }
3774 }
3775
3776 if( symmetric==FALSE )
3777 {
3778 // ---------------------------------------------
3779 // the spectrum is not symmetric => degenerate
3780 // principal part
3781 // ---------------------------------------------
3782
3783 *L = (lists)omAllocBin( slists_bin);
3784 (*L)->Init( 1 );
3785 (*L)->m[0].rtyp = INT_CMD; // milnor number
3786 (*L)->m[0].data = (void*)(long)mu;
3787
3788 return spectrumDegenerate;
3789 }
3790 }
3791
3792 *L = (lists)omAllocBin( slists_bin);
3793
3794 (*L)->Init( 6 );
3795
3796 (*L)->m[0].rtyp = INT_CMD; // milnor number
3797 (*L)->m[1].rtyp = INT_CMD; // geometrical genus
3798 (*L)->m[2].rtyp = INT_CMD; // number of spectrum values
3799 (*L)->m[3].rtyp = INTVEC_CMD; // nominators
3800 (*L)->m[4].rtyp = INTVEC_CMD; // denomiantors
3801 (*L)->m[5].rtyp = INTVEC_CMD; // multiplicities
3802
3803 (*L)->m[0].data = (void*)(long)mu;
3804 (*L)->m[1].data = (void*)(long)pg;
3805 (*L)->m[2].data = (void*)(long)n;
3806 (*L)->m[3].data = (void*)nom;
3807 (*L)->m[4].data = (void*)den;
3808 (*L)->m[5].data = (void*)mult;
3809
3810 return spectrumOK;
3811}
3812
3814{
3815 int i;
3816
3817 #ifdef SPECTRUM_DEBUG
3818 #ifdef SPECTRUM_PRINT
3819 #ifdef SPECTRUM_IOSTREAM
3820 cout << "spectrumCompute\n";
3821 if( fast==0 ) cout << " no optimization" << endl;
3822 if( fast==1 ) cout << " weight optimization" << endl;
3823 if( fast==2 ) cout << " symmetry optimization" << endl;
3824 #else
3825 fputs( "spectrumCompute\n",stdout );
3826 if( fast==0 ) fputs( " no optimization\n", stdout );
3827 if( fast==1 ) fputs( " weight optimization\n", stdout );
3828 if( fast==2 ) fputs( " symmetry optimization\n", stdout );
3829 #endif
3830 #endif
3831 #endif
3832
3833 // ----------------------
3834 // check if h is zero
3835 // ----------------------
3836
3837 if( h==(poly)NULL )
3838 {
3839 return spectrumZero;
3840 }
3841
3842 // ----------------------------------
3843 // check if h has a constant term
3844 // ----------------------------------
3845
3846 if( hasConstTerm( h, currRing ) )
3847 {
3848 return spectrumBadPoly;
3849 }
3850
3851 // --------------------------------
3852 // check if h has a linear term
3853 // --------------------------------
3854
3855 if( hasLinearTerm( h, currRing ) )
3856 {
3857 *L = (lists)omAllocBin( slists_bin);
3858 (*L)->Init( 1 );
3859 (*L)->m[0].rtyp = INT_CMD; // milnor number
3860 /* (*L)->m[0].data = (void*)0;a -- done by Init */
3861
3862 return spectrumNoSingularity;
3863 }
3864
3865 // ----------------------------------
3866 // compute the jacobi ideal of (h)
3867 // ----------------------------------
3868
3869 ideal J = NULL;
3870 J = idInit( rVar(currRing),1 );
3871
3872 #ifdef SPECTRUM_DEBUG
3873 #ifdef SPECTRUM_PRINT
3874 #ifdef SPECTRUM_IOSTREAM
3875 cout << "\n computing the Jacobi ideal...\n";
3876 #else
3877 fputs( "\n computing the Jacobi ideal...\n",stdout );
3878 #endif
3879 #endif
3880 #endif
3881
3882 for( i=0; i<rVar(currRing); i++ )
3883 {
3884 J->m[i] = pDiff( h,i+1); //j );
3885
3886 #ifdef SPECTRUM_DEBUG
3887 #ifdef SPECTRUM_PRINT
3888 #ifdef SPECTRUM_IOSTREAM
3889 cout << " ";
3890 #else
3891 fputs(" ", stdout );
3892 #endif
3893 pWrite( J->m[i] );
3894 #endif
3895 #endif
3896 }
3897
3898 // --------------------------------------------
3899 // compute a standard basis stdJ of jac(h)
3900 // --------------------------------------------
3901
3902 #ifdef SPECTRUM_DEBUG
3903 #ifdef SPECTRUM_PRINT
3904 #ifdef SPECTRUM_IOSTREAM
3905 cout << endl;
3906 cout << " computing a standard basis..." << endl;
3907 #else
3908 fputs( "\n", stdout );
3909 fputs( " computing a standard basis...\n", stdout );
3910 #endif
3911 #endif
3912 #endif
3913
3914 ideal stdJ = kStd(J,currRing->qideal,isNotHomog,NULL);
3915 idSkipZeroes( stdJ );
3916
3917 #ifdef SPECTRUM_DEBUG
3918 #ifdef SPECTRUM_PRINT
3919 for( i=0; i<IDELEMS(stdJ); i++ )
3920 {
3921 #ifdef SPECTRUM_IOSTREAM
3922 cout << " ";
3923 #else
3924 fputs( " ",stdout );
3925 #endif
3926
3927 pWrite( stdJ->m[i] );
3928 }
3929 #endif
3930 #endif
3931
3932 idDelete( &J );
3933
3934 // ------------------------------------------
3935 // check if the h has a singularity
3936 // ------------------------------------------
3937
3938 if( hasOne( stdJ, currRing ) )
3939 {
3940 // -------------------------------
3941 // h is smooth in the origin
3942 // return only the Milnor number
3943 // -------------------------------
3944
3945 *L = (lists)omAllocBin( slists_bin);
3946 (*L)->Init( 1 );
3947 (*L)->m[0].rtyp = INT_CMD; // milnor number
3948 /* (*L)->m[0].data = (void*)0;a -- done by Init */
3949
3950 return spectrumNoSingularity;
3951 }
3952
3953 // ------------------------------------------
3954 // check if the singularity h is isolated
3955 // ------------------------------------------
3956
3957 for( i=rVar(currRing); i>0; i-- )
3958 {
3959 if( hasAxis( stdJ,i, currRing )==FALSE )
3960 {
3961 return spectrumNotIsolated;
3962 }
3963 }
3964
3965 // ------------------------------------------
3966 // compute the highest corner hc of stdJ
3967 // ------------------------------------------
3968
3969 #ifdef SPECTRUM_DEBUG
3970 #ifdef SPECTRUM_PRINT
3971 #ifdef SPECTRUM_IOSTREAM
3972 cout << "\n computing the highest corner...\n";
3973 #else
3974 fputs( "\n computing the highest corner...\n", stdout );
3975 #endif
3976 #endif
3977 #endif
3978
3979 poly hc = (poly)NULL;
3980
3981 scComputeHC( stdJ,currRing->qideal, 0,hc );
3982
3983 if( hc!=(poly)NULL )
3984 {
3985 pGetCoeff(hc) = nInit(1);
3986
3987 for( i=rVar(currRing); i>0; i-- )
3988 {
3989 if( pGetExp( hc,i )>0 ) pDecrExp( hc,i );
3990 }
3991 pSetm( hc );
3992 }
3993 else
3994 {
3995 return spectrumNoHC;
3996 }
3997
3998 #ifdef SPECTRUM_DEBUG
3999 #ifdef SPECTRUM_PRINT
4000 #ifdef SPECTRUM_IOSTREAM
4001 cout << " ";
4002 #else
4003 fputs( " ", stdout );
4004 #endif
4005 pWrite( hc );
4006 #endif
4007 #endif
4008
4009 // ----------------------------------------
4010 // compute the Newton polygon nph of h
4011 // ----------------------------------------
4012
4013 #ifdef SPECTRUM_DEBUG
4014 #ifdef SPECTRUM_PRINT
4015 #ifdef SPECTRUM_IOSTREAM
4016 cout << "\n computing the newton polygon...\n";
4017 #else
4018 fputs( "\n computing the newton polygon...\n", stdout );
4019 #endif
4020 #endif
4021 #endif
4022
4023 newtonPolygon nph( h, currRing );
4024
4025 #ifdef SPECTRUM_DEBUG
4026 #ifdef SPECTRUM_PRINT
4027 cout << nph;
4028 #endif
4029 #endif
4030
4031 // -----------------------------------------------
4032 // compute the weight corner wc of (stdj,nph)
4033 // -----------------------------------------------
4034
4035 #ifdef SPECTRUM_DEBUG
4036 #ifdef SPECTRUM_PRINT
4037 #ifdef SPECTRUM_IOSTREAM
4038 cout << "\n computing the weight corner...\n";
4039 #else
4040 fputs( "\n computing the weight corner...\n", stdout );
4041 #endif
4042 #endif
4043 #endif
4044
4045 poly wc = ( fast==0 ? pCopy( hc ) :
4046 ( fast==1 ? computeWC( nph,(Rational)rVar(currRing), currRing ) :
4047 /* fast==2 */computeWC( nph,
4048 ((Rational)rVar(currRing))/(Rational)2, currRing ) ) );
4049
4050 #ifdef SPECTRUM_DEBUG
4051 #ifdef SPECTRUM_PRINT
4052 #ifdef SPECTRUM_IOSTREAM
4053 cout << " ";
4054 #else
4055 fputs( " ", stdout );
4056 #endif
4057 pWrite( wc );
4058 #endif
4059 #endif
4060
4061 // -------------
4062 // compute NF
4063 // -------------
4064
4065 #ifdef SPECTRUM_DEBUG
4066 #ifdef SPECTRUM_PRINT
4067 #ifdef SPECTRUM_IOSTREAM
4068 cout << "\n computing NF...\n" << endl;
4069 #else
4070 fputs( "\n computing NF...\n", stdout );
4071 #endif
4072 #endif
4073 #endif
4074
4075 spectrumPolyList NF( &nph );
4076
4077 computeNF( stdJ,hc,wc,&NF, currRing );
4078
4079 #ifdef SPECTRUM_DEBUG
4080 #ifdef SPECTRUM_PRINT
4081 cout << NF;
4082 #ifdef SPECTRUM_IOSTREAM
4083 cout << endl;
4084 #else
4085 fputs( "\n", stdout );
4086 #endif
4087 #endif
4088 #endif
4089
4090 // ----------------------------
4091 // compute the spectrum of h
4092 // ----------------------------
4093// spectrumState spectrumStateFromList( spectrumPolyList& speclist, lists *L, int fast );
4094
4095 return spectrumStateFromList(NF, L, fast );
4096}
4097
4098// ----------------------------------------------------------------------------
4099// this procedure is called from the interpreter
4100// ----------------------------------------------------------------------------
4101// first = polynomial
4102// result = list of spectrum numbers
4103// ----------------------------------------------------------------------------
4104
4106{
4107 switch( state )
4108 {
4109 case spectrumZero:
4110 WerrorS( "polynomial is zero" );
4111 break;
4112 case spectrumBadPoly:
4113 WerrorS( "polynomial has constant term" );
4114 break;
4116 WerrorS( "not a singularity" );
4117 break;
4119 WerrorS( "the singularity is not isolated" );
4120 break;
4121 case spectrumNoHC:
4122 WerrorS( "highest corner cannot be computed" );
4123 break;
4124 case spectrumDegenerate:
4125 WerrorS( "principal part is degenerate" );
4126 break;
4127 case spectrumOK:
4128 break;
4129
4130 default:
4131 WerrorS( "unknown error occurred" );
4132 break;
4133 }
4134}
4135
4137{
4138 spectrumState state = spectrumOK;
4139
4140 // -------------------
4141 // check consistency
4142 // -------------------
4143
4144 // check for a local ring
4145
4146 if( !ringIsLocal(currRing ) )
4147 {
4148 WerrorS( "only works for local orderings" );
4149 state = spectrumWrongRing;
4150 }
4151
4152 // no quotient rings are allowed
4153
4154 else if( currRing->qideal != NULL )
4155 {
4156 WerrorS( "does not work in quotient rings" );
4157 state = spectrumWrongRing;
4158 }
4159 else
4160 {
4161 lists L = (lists)NULL;
4162 int flag = 1; // weight corner optimization is safe
4163
4164 state = spectrumCompute( (poly)first->Data( ),&L,flag );
4165
4166 if( state==spectrumOK )
4167 {
4168 result->rtyp = LIST_CMD;
4169 result->data = (char*)L;
4170 }
4171 else
4172 {
4173 spectrumPrintError(state);
4174 }
4175 }
4176
4177 return (state!=spectrumOK);
4178}
4179
4180// ----------------------------------------------------------------------------
4181// this procedure is called from the interpreter
4182// ----------------------------------------------------------------------------
4183// first = polynomial
4184// result = list of spectrum numbers
4185// ----------------------------------------------------------------------------
4186
4188{
4189 spectrumState state = spectrumOK;
4190
4191 // -------------------
4192 // check consistency
4193 // -------------------
4194
4195 // check for a local polynomial ring
4196
4197 if( currRing->OrdSgn != -1 )
4198 // ?? HS: the test above is also true for k[x][[y]], k[[x]][y]
4199 // or should we use:
4200 //if( !ringIsLocal( ) )
4201 {
4202 WerrorS( "only works for local orderings" );
4203 state = spectrumWrongRing;
4204 }
4205 else if( currRing->qideal != NULL )
4206 {
4207 WerrorS( "does not work in quotient rings" );
4208 state = spectrumWrongRing;
4209 }
4210 else
4211 {
4212 lists L = (lists)NULL;
4213 int flag = 2; // symmetric optimization
4214
4215 state = spectrumCompute( (poly)first->Data( ),&L,flag );
4216
4217 if( state==spectrumOK )
4218 {
4219 result->rtyp = LIST_CMD;
4220 result->data = (char*)L;
4221 }
4222 else
4223 {
4224 spectrumPrintError(state);
4225 }
4226 }
4227
4228 return (state!=spectrumOK);
4229}
4230
4231// ----------------------------------------------------------------------------
4232// check if a list is a spectrum
4233// check for:
4234// list has 6 elements
4235// 1st element is int (mu=Milnor number)
4236// 2nd element is int (pg=geometrical genus)
4237// 3rd element is int (n =number of different spectrum numbers)
4238// 4th element is intvec (num=numerators)
4239// 5th element is intvec (den=denomiantors)
4240// 6th element is intvec (mul=multiplicities)
4241// exactly n numerators
4242// exactly n denominators
4243// exactly n multiplicities
4244// mu>0
4245// pg>=0
4246// n>0
4247// num>0
4248// den>0
4249// mul>0
4250// symmetriy with respect to numberofvariables/2
4251// monotony
4252// mu = sum of all multiplicities
4253// pg = sum of all multiplicities where num/den<=1
4254// ----------------------------------------------------------------------------
4255
4257{
4258 // -------------------
4259 // check list length
4260 // -------------------
4261
4262 if( l->nr < 5 )
4263 {
4264 return semicListTooShort;
4265 }
4266 else if( l->nr > 5 )
4267 {
4268 return semicListTooLong;
4269 }
4270
4271 // -------------
4272 // check types
4273 // -------------
4274
4275 if( l->m[0].rtyp != INT_CMD )
4276 {
4278 }
4279 else if( l->m[1].rtyp != INT_CMD )
4280 {
4282 }
4283 else if( l->m[2].rtyp != INT_CMD )
4284 {
4286 }
4287 else if( l->m[3].rtyp != INTVEC_CMD )
4288 {
4290 }
4291 else if( l->m[4].rtyp != INTVEC_CMD )
4292 {
4294 }
4295 else if( l->m[5].rtyp != INTVEC_CMD )
4296 {
4298 }
4299
4300 // -------------------------
4301 // check number of entries
4302 // -------------------------
4303
4304 int mu = (int)(long)(l->m[0].Data( ));
4305 int pg = (int)(long)(l->m[1].Data( ));
4306 int n = (int)(long)(l->m[2].Data( ));
4307
4308 if( n <= 0 )
4309 {
4310 return semicListNNegative;
4311 }
4312
4313 intvec *num = (intvec*)l->m[3].Data( );
4314 intvec *den = (intvec*)l->m[4].Data( );
4315 intvec *mul = (intvec*)l->m[5].Data( );
4316
4317 if( n != num->length( ) )
4318 {
4320 }
4321 else if( n != den->length( ) )
4322 {
4324 }
4325 else if( n != mul->length( ) )
4326 {
4328 }
4329
4330 // --------
4331 // values
4332 // --------
4333
4334 if( mu <= 0 )
4335 {
4336 return semicListMuNegative;
4337 }
4338 if( pg < 0 )
4339 {
4340 return semicListPgNegative;
4341 }
4342
4343 int i;
4344
4345 for( i=0; i<n; i++ )
4346 {
4347 if( (*num)[i] <= 0 )
4348 {
4349 return semicListNumNegative;
4350 }
4351 if( (*den)[i] <= 0 )
4352 {
4353 return semicListDenNegative;
4354 }
4355 if( (*mul)[i] <= 0 )
4356 {
4357 return semicListMulNegative;
4358 }
4359 }
4360
4361 // ----------------
4362 // check symmetry
4363 // ----------------
4364
4365 int j;
4366
4367 for( i=0, j=n-1; i<=j; i++,j-- )
4368 {
4369 if( (*num)[i] != rVar(currRing)*((*den)[i]) - (*num)[j] ||
4370 (*den)[i] != (*den)[j] ||
4371 (*mul)[i] != (*mul)[j] )
4372 {
4373 return semicListNotSymmetric;
4374 }
4375 }
4376
4377 // ----------------
4378 // check monotony
4379 // ----------------
4380
4381 for( i=0, j=1; i<n/2; i++,j++ )
4382 {
4383 if( (*num)[i]*(*den)[j] >= (*num)[j]*(*den)[i] )
4384 {
4386 }
4387 }
4388
4389 // ---------------------
4390 // check Milnor number
4391 // ---------------------
4392
4393 for( mu=0, i=0; i<n; i++ )
4394 {
4395 mu += (*mul)[i];
4396 }
4397
4398 if( mu != (int)(long)(l->m[0].Data( )) )
4399 {
4400 return semicListMilnorWrong;
4401 }
4402
4403 // -------------------------
4404 // check geometrical genus
4405 // -------------------------
4406
4407 for( pg=0, i=0; i<n; i++ )
4408 {
4409 if( (*num)[i]<=(*den)[i] )
4410 {
4411 pg += (*mul)[i];
4412 }
4413 }
4414
4415 if( pg != (int)(long)(l->m[1].Data( )) )
4416 {
4417 return semicListPGWrong;
4418 }
4419
4420 return semicOK;
4421}
4422
4423// ----------------------------------------------------------------------------
4424// this procedure is called from the interpreter
4425// ----------------------------------------------------------------------------
4426// first = list of spectrum numbers
4427// second = list of spectrum numbers
4428// result = sum of the two lists
4429// ----------------------------------------------------------------------------
4430
4432{
4433 semicState state;
4434
4435 // -----------------
4436 // check arguments
4437 // -----------------
4438
4439 lists l1 = (lists)first->Data( );
4440 lists l2 = (lists)second->Data( );
4441
4442 if( (state=list_is_spectrum( l1 )) != semicOK )
4443 {
4444 WerrorS( "first argument is not a spectrum:" );
4445 list_error( state );
4446 }
4447 else if( (state=list_is_spectrum( l2 )) != semicOK )
4448 {
4449 WerrorS( "second argument is not a spectrum:" );
4450 list_error( state );
4451 }
4452 else
4453 {
4454 spectrum s1= spectrumFromList ( l1 );
4455 spectrum s2= spectrumFromList ( l2 );
4456 spectrum sum( s1+s2 );
4457
4458 result->rtyp = LIST_CMD;
4459 result->data = (char*)(getList(sum));
4460 }
4461
4462 return (state!=semicOK);
4463}
4464
4465// ----------------------------------------------------------------------------
4466// this procedure is called from the interpreter
4467// ----------------------------------------------------------------------------
4468// first = list of spectrum numbers
4469// second = integer
4470// result = the multiple of the first list by the second factor
4471// ----------------------------------------------------------------------------
4472
4474{
4475 semicState state;
4476
4477 // -----------------
4478 // check arguments
4479 // -----------------
4480
4481 lists l = (lists)first->Data( );
4482 int k = (int)(long)second->Data( );
4483
4484 if( (state=list_is_spectrum( l ))!=semicOK )
4485 {
4486 WerrorS( "first argument is not a spectrum" );
4487 list_error( state );
4488 }
4489 else if( k < 0 )
4490 {
4491 WerrorS( "second argument should be positive" );
4492 state = semicMulNegative;
4493 }
4494 else
4495 {
4497 spectrum product( k*s );
4498
4499 result->rtyp = LIST_CMD;
4500 result->data = (char*)getList(product);
4501 }
4502
4503 return (state!=semicOK);
4504}
4505
4506// ----------------------------------------------------------------------------
4507// this procedure is called from the interpreter
4508// ----------------------------------------------------------------------------
4509// first = list of spectrum numbers
4510// second = list of spectrum numbers
4511// result = semicontinuity index
4512// ----------------------------------------------------------------------------
4513
4515{
4516 semicState state;
4517 BOOLEAN qh=(((int)(long)w->Data())==1);
4518
4519 // -----------------
4520 // check arguments
4521 // -----------------
4522
4523 lists l1 = (lists)u->Data( );
4524 lists l2 = (lists)v->Data( );
4525
4526 if( (state=list_is_spectrum( l1 ))!=semicOK )
4527 {
4528 WerrorS( "first argument is not a spectrum" );
4529 list_error( state );
4530 }
4531 else if( (state=list_is_spectrum( l2 ))!=semicOK )
4532 {
4533 WerrorS( "second argument is not a spectrum" );
4534 list_error( state );
4535 }
4536 else
4537 {
4538 spectrum s1= spectrumFromList( l1 );
4539 spectrum s2= spectrumFromList( l2 );
4540
4541 res->rtyp = INT_CMD;
4542 if (qh)
4543 res->data = (void*)(long)(s1.mult_spectrumh( s2 ));
4544 else
4545 res->data = (void*)(long)(s1.mult_spectrum( s2 ));
4546 }
4547
4548 // -----------------
4549 // check status
4550 // -----------------
4551
4552 return (state!=semicOK);
4553}
4555{
4556 sleftv tmp;
4557 tmp.Init();
4558 tmp.rtyp=INT_CMD;
4559 /* tmp.data = (void *)0; -- done by Init */
4560
4561 return semicProc3(res,u,v,&tmp);
4562}
4563
4564#endif
4565
4567{
4568 res->data= (void*)loNewtonPolytope( (ideal)arg1->Data() );
4569 return FALSE;
4570}
4571
4573{
4574 if ( !(rField_is_long_R(currRing)) )
4575 {
4576 WerrorS("Ground field not implemented!");
4577 return TRUE;
4578 }
4579
4580 simplex * LP;
4581 matrix m;
4582
4583 leftv v= args;
4584 if ( v->Typ() != MATRIX_CMD ) // 1: matrix
4585 return TRUE;
4586 else
4587 m= (matrix)(v->CopyD());
4588
4589 LP = new simplex(MATROWS(m),MATCOLS(m));
4590 LP->mapFromMatrix(m);
4591
4592 v= v->next;
4593 if ( v->Typ() != INT_CMD ) // 2: m = number of constraints
4594 return TRUE;
4595 else
4596 LP->m= (int)(long)(v->Data());
4597
4598 v= v->next;
4599 if ( v->Typ() != INT_CMD ) // 3: n = number of variables
4600 return TRUE;
4601 else
4602 LP->n= (int)(long)(v->Data());
4603
4604 v= v->next;
4605 if ( v->Typ() != INT_CMD ) // 4: m1 = number of <= constraints
4606 return TRUE;
4607 else
4608 LP->m1= (int)(long)(v->Data());
4609
4610 v= v->next;
4611 if ( v->Typ() != INT_CMD ) // 5: m2 = number of >= constraints
4612 return TRUE;
4613 else
4614 LP->m2= (int)(long)(v->Data());
4615
4616 v= v->next;
4617 if ( v->Typ() != INT_CMD ) // 6: m3 = number of == constraints
4618 return TRUE;
4619 else
4620 LP->m3= (int)(long)(v->Data());
4621
4622#ifdef mprDEBUG_PROT
4623 Print("m (constraints) %d\n",LP->m);
4624 Print("n (columns) %d\n",LP->n);
4625 Print("m1 (<=) %d\n",LP->m1);
4626 Print("m2 (>=) %d\n",LP->m2);
4627 Print("m3 (==) %d\n",LP->m3);
4628#endif
4629
4630 LP->compute();
4631
4632 lists lres= (lists)omAlloc( sizeof(slists) );
4633 lres->Init( 6 );
4634
4635 lres->m[0].rtyp= MATRIX_CMD; // output matrix
4636 lres->m[0].data=(void*)LP->mapToMatrix(m);
4637
4638 lres->m[1].rtyp= INT_CMD; // found a solution?
4639 lres->m[1].data=(void*)(long)LP->icase;
4640
4641 lres->m[2].rtyp= INTVEC_CMD;
4642 lres->m[2].data=(void*)LP->posvToIV();
4643
4644 lres->m[3].rtyp= INTVEC_CMD;
4645 lres->m[3].data=(void*)LP->zrovToIV();
4646
4647 lres->m[4].rtyp= INT_CMD;
4648 lres->m[4].data=(void*)(long)LP->m;
4649
4650 lres->m[5].rtyp= INT_CMD;
4651 lres->m[5].data=(void*)(long)LP->n;
4652
4653 res->data= (void*)lres;
4654
4655 return FALSE;
4656}
4657
4659{
4660 ideal gls = (ideal)(arg1->Data());
4661 int imtype= (int)(long)arg2->Data();
4662
4663 uResultant::resMatType mtype= determineMType( imtype );
4664
4665 // check input ideal ( = polynomial system )
4666 if ( mprIdealCheck( gls, arg1->Name(), mtype, true ) != mprOk )
4667 {
4668 return TRUE;
4669 }
4670
4671 uResultant *resMat= new uResultant( gls, mtype, false );
4672 if (resMat!=NULL)
4673 {
4674 res->rtyp = MODUL_CMD;
4675 res->data= (void*)resMat->accessResMat()->getMatrix();
4676 if (!errorreported) delete resMat;
4677 }
4678 return errorreported;
4679}
4680
4682{
4683 poly gls;
4684 gls= (poly)(arg1->Data());
4685 int howclean= (int)(long)arg3->Data();
4686
4687 if ( gls == NULL || pIsConstant( gls ) )
4688 {
4689 WerrorS("Input polynomial is constant!");
4690 return TRUE;
4691 }
4692
4694 {
4695 int* r=Zp_roots(gls, currRing);
4696 lists rlist;
4697 rlist= (lists)omAlloc( sizeof(slists) );
4698 rlist->Init( r[0] );
4699 for(int i=r[0];i>0;i--)
4700 {
4701 rlist->m[i-1].data=n_Init(r[i],currRing->cf);
4702 rlist->m[i-1].rtyp=NUMBER_CMD;
4703 }
4704 omFree(r);
4705 res->data=rlist;
4706 res->rtyp= LIST_CMD;
4707 return FALSE;
4708 }
4709 if ( !(rField_is_R(currRing) ||
4713 {
4714 WerrorS("Ground field not implemented!");
4715 return TRUE;
4716 }
4717
4720 {
4721 unsigned long int ii = (unsigned long int)arg2->Data();
4722 setGMPFloatDigits( ii, ii );
4723 }
4724
4725 int ldummy;
4726 int deg= currRing->pLDeg( gls, &ldummy, currRing );
4727 int i,vpos=0;
4728 poly piter;
4729 lists elist;
4730
4731 elist= (lists)omAlloc( sizeof(slists) );
4732 elist->Init( 0 );
4733
4734 if ( rVar(currRing) > 1 )
4735 {
4736 piter= gls;
4737 for ( i= 1; i <= rVar(currRing); i++ )
4738 if ( pGetExp( piter, i ) )
4739 {
4740 vpos= i;
4741 break;
4742 }
4743 while ( piter )
4744 {
4745 for ( i= 1; i <= rVar(currRing); i++ )
4746 if ( (vpos != i) && (pGetExp( piter, i ) != 0) )
4747 {
4748 WerrorS("The input polynomial must be univariate!");
4749 return TRUE;
4750 }
4751 pIter( piter );
4752 }
4753 }
4754
4755 rootContainer * roots= new rootContainer();
4756 number * pcoeffs= (number *)omAlloc( (deg+1) * sizeof( number ) );
4757 piter= gls;
4758 for ( i= deg; i >= 0; i-- )
4759 {
4760 if ( piter && pTotaldegree(piter) == i )
4761 {
4762 pcoeffs[i]= nCopy( pGetCoeff( piter ) );
4763 //nPrint( pcoeffs[i] );PrintS(" ");
4764 pIter( piter );
4765 }
4766 else
4767 {
4768 pcoeffs[i]= nInit(0);
4769 }
4770 }
4771
4772#ifdef mprDEBUG_PROT
4773 for (i=deg; i >= 0; i--)
4774 {
4775 nPrint( pcoeffs[i] );PrintS(" ");
4776 }
4777 PrintLn();
4778#endif
4779
4780 roots->fillContainer( pcoeffs, NULL, 1, deg, rootContainer::onepoly, 1 );
4781 roots->solver( howclean );
4782
4783 int elem= roots->getAnzRoots();
4784 char *dummy;
4785 int j;
4786
4787 lists rlist;
4788 rlist= (lists)omAlloc( sizeof(slists) );
4789 rlist->Init( elem );
4790
4792 {
4793 for ( j= 0; j < elem; j++ )
4794 {
4795 rlist->m[j].rtyp=NUMBER_CMD;
4796 rlist->m[j].data=(void *)nCopy((number)(roots->getRoot(j)));
4797 //rlist->m[j].data=(void *)(number)(roots->getRoot(j));
4798 }
4799 }
4800 else
4801 {
4802 for ( j= 0; j < elem; j++ )
4803 {
4804 dummy = complexToStr( (*roots)[j], gmp_output_digits, currRing->cf );
4805 rlist->m[j].rtyp=STRING_CMD;
4806 rlist->m[j].data=(void *)dummy;
4807 }
4808 }
4809
4810 elist->Clean();
4811 //omFreeSize( (ADDRESS) elist, sizeof(slists) );
4812
4813 // this is (via fillContainer) the same data as in root
4814 //for ( i= deg; i >= 0; i-- ) nDelete( &pcoeffs[i] );
4815 //omFreeSize( (ADDRESS) pcoeffs, (deg+1) * sizeof( number ) );
4816
4817 delete roots;
4818
4819 res->data= (void*)rlist;
4820
4821 return FALSE;
4822}
4823
4825{
4826 int i;
4827 ideal p,w;
4828 p= (ideal)arg1->Data();
4829 w= (ideal)arg2->Data();
4830
4831 // w[0] = f(p^0)
4832 // w[1] = f(p^1)
4833 // ...
4834 // p can be a vector of numbers (multivariate polynom)
4835 // or one number (univariate polynom)
4836 // tdg = deg(f)
4837
4838 int n= IDELEMS( p );
4839 int m= IDELEMS( w );
4840 int tdg= (int)(long)arg3->Data();
4841
4842 res->data= (void*)NULL;
4843
4844 // check the input
4845 if ( tdg < 1 )
4846 {
4847 WerrorS("Last input parameter must be > 0!");
4848 return TRUE;
4849 }
4850 if ( n != rVar(currRing) )
4851 {
4852 Werror("Size of first input ideal must be equal to %d!",rVar(currRing));
4853 return TRUE;
4854 }
4855 if ( m != (int)pow((double)tdg+1,(double)n) )
4856 {
4857 Werror("Size of second input ideal must be equal to %d!",
4858 (int)pow((double)tdg+1,(double)n));
4859 return TRUE;
4860 }
4861 if ( !(rField_is_Q(currRing) /* ||
4862 rField_is_R() || rField_is_long_R() ||
4863 rField_is_long_C()*/ ) )
4864 {
4865 WerrorS("Ground field not implemented!");
4866 return TRUE;
4867 }
4868
4869 number tmp;
4870 number *pevpoint= (number *)omAlloc( n * sizeof( number ) );
4871 for ( i= 0; i < n; i++ )
4872 {
4873 pevpoint[i]=nInit(0);
4874 if ( (p->m)[i] )
4875 {
4876 tmp = pGetCoeff( (p->m)[i] );
4877 if ( nIsZero(tmp) || nIsOne(tmp) || nIsMOne(tmp) )
4878 {
4879 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4880 WerrorS("Elements of first input ideal must not be equal to -1, 0, 1!");
4881 return TRUE;
4882 }
4883 } else tmp= NULL;
4884 if ( !nIsZero(tmp) )
4885 {
4886 if ( !pIsConstant((p->m)[i]))
4887 {
4888 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4889 WerrorS("Elements of first input ideal must be numbers!");
4890 return TRUE;
4891 }
4892 pevpoint[i]= nCopy( tmp );
4893 }
4894 }
4895
4896 number *wresults= (number *)omAlloc( m * sizeof( number ) );
4897 for ( i= 0; i < m; i++ )
4898 {
4899 wresults[i]= nInit(0);
4900 if ( (w->m)[i] && !nIsZero(pGetCoeff((w->m)[i])) )
4901 {
4902 if ( !pIsConstant((w->m)[i]))
4903 {
4904 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4905 omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4906 WerrorS("Elements of second input ideal must be numbers!");
4907 return TRUE;
4908 }
4909 wresults[i]= nCopy(pGetCoeff((w->m)[i]));
4910 }
4911 }
4912
4913 vandermonde vm( m, n, tdg, pevpoint, FALSE );
4914 number *ncpoly= vm.interpolateDense( wresults );
4915 // do not free ncpoly[]!!
4916 poly rpoly= vm.numvec2poly( ncpoly );
4917
4918 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4919 omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4920
4921 res->data= (void*)rpoly;
4922 return FALSE;
4923}
4924
4926{
4927 leftv v= args;
4928
4929 ideal gls;
4930 int imtype;
4931 int howclean;
4932
4933 // get ideal
4934 if ( v->Typ() != IDEAL_CMD )
4935 return TRUE;
4936 else gls= (ideal)(v->Data());
4937 v= v->next;
4938
4939 // get resultant matrix type to use (0,1)
4940 if ( v->Typ() != INT_CMD )
4941 return TRUE;
4942 else imtype= (int)(long)v->Data();
4943 v= v->next;
4944
4945 if (imtype==0)
4946 {
4947 ideal test_id=idInit(1,1);
4948 int j;
4949 for(j=IDELEMS(gls)-1;j>=0;j--)
4950 {
4951 if (gls->m[j]!=NULL)
4952 {
4953 test_id->m[0]=gls->m[j];
4954 intvec *dummy_w=id_QHomWeight(test_id, currRing);
4955 if (dummy_w!=NULL)
4956 {
4957 WerrorS("Newton polytope not of expected dimension");
4958 delete dummy_w;
4959 return TRUE;
4960 }
4961 }
4962 }
4963 }
4964
4965 // get and set precision in digits ( > 0 )
4966 if ( v->Typ() != INT_CMD )
4967 return TRUE;
4968 else if ( !(rField_is_R(currRing) || rField_is_long_R(currRing) || \
4970 {
4971 unsigned long int ii=(unsigned long int)v->Data();
4972 setGMPFloatDigits( ii, ii );
4973 }
4974 v= v->next;
4975
4976 // get interpolation steps (0,1,2)
4977 if ( v->Typ() != INT_CMD )
4978 return TRUE;
4979 else howclean= (int)(long)v->Data();
4980
4981 uResultant::resMatType mtype= determineMType( imtype );
4982 int i,count;
4983 lists listofroots= NULL;
4984 number smv= NULL;
4985 BOOLEAN interpolate_det= (mtype==uResultant::denseResMat)?TRUE:FALSE;
4986
4987 //emptylist= (lists)omAlloc( sizeof(slists) );
4988 //emptylist->Init( 0 );
4989
4990 //res->rtyp = LIST_CMD;
4991 //res->data= (void *)emptylist;
4992
4993 // check input ideal ( = polynomial system )
4994 if ( mprIdealCheck( gls, args->Name(), mtype ) != mprOk )
4995 {
4996 return TRUE;
4997 }
4998
4999 uResultant * ures;
5000 rootContainer ** iproots;
5001 rootContainer ** muiproots;
5002 rootArranger * arranger;
5003
5004 // main task 1: setup of resultant matrix
5005 ures= new uResultant( gls, mtype );
5006 if ( ures->accessResMat()->initState() != resMatrixBase::ready )
5007 {
5008 WerrorS("Error occurred during matrix setup!");
5009 return TRUE;
5010 }
5011
5012 // if dense resultant, check if minor nonsingular
5013 if ( mtype == uResultant::denseResMat )
5014 {
5015 smv= ures->accessResMat()->getSubDet();
5016#ifdef mprDEBUG_PROT
5017 PrintS("// Determinant of submatrix: ");nPrint(smv);PrintLn();
5018#endif
5019 if ( nIsZero(smv) )
5020 {
5021 WerrorS("Unsuitable input ideal: Minor of resultant matrix is singular!");
5022 return TRUE;
5023 }
5024 }
5025
5026 // main task 2: Interpolate specialized resultant polynomials
5027 if ( interpolate_det )
5028 iproots= ures->interpolateDenseSP( false, smv );
5029 else
5030 iproots= ures->specializeInU( false, smv );
5031
5032 // main task 3: Interpolate specialized resultant polynomials
5033 if ( interpolate_det )
5034 muiproots= ures->interpolateDenseSP( true, smv );
5035 else
5036 muiproots= ures->specializeInU( true, smv );
5037
5038#ifdef mprDEBUG_PROT
5039 int c= iproots[0]->getAnzElems();
5040 for (i=0; i < c; i++) pWrite(iproots[i]->getPoly());
5041 c= muiproots[0]->getAnzElems();
5042 for (i=0; i < c; i++) pWrite(muiproots[i]->getPoly());
5043#endif
5044
5045 // main task 4: Compute roots of specialized polys and match them up
5046 arranger= new rootArranger( iproots, muiproots, howclean );
5047 arranger->solve_all();
5048
5049 // get list of roots
5050 if ( arranger->success() )
5051 {
5052 arranger->arrange();
5053 listofroots= listOfRoots(arranger, gmp_output_digits );
5054 }
5055 else
5056 {
5057 WerrorS("Solver was unable to find any roots!");
5058 return TRUE;
5059 }
5060
5061 // free everything
5062 count= iproots[0]->getAnzElems();
5063 for (i=0; i < count; i++) delete iproots[i];
5064 omFreeSize( (ADDRESS) iproots, count * sizeof(rootContainer*) );
5065 count= muiproots[0]->getAnzElems();
5066 for (i=0; i < count; i++) delete muiproots[i];
5067 omFreeSize( (ADDRESS) muiproots, count * sizeof(rootContainer*) );
5068
5069 delete ures;
5070 delete arranger;
5071 if (smv!=NULL) nDelete( &smv );
5072
5073 res->data= (void *)listofroots;
5074
5075 //emptylist->Clean();
5076 // omFreeSize( (ADDRESS) emptylist, sizeof(slists) );
5077
5078 return FALSE;
5079}
5080
5081// from mpr_numeric.cc
5082lists listOfRoots( rootArranger* self, const unsigned int oprec )
5083{
5084 int i,j;
5085 int count= self->roots[0]->getAnzRoots(); // number of roots
5086 int elem= self->roots[0]->getAnzElems(); // number of koordinates per root
5087
5088 lists listofroots= (lists)omAlloc( sizeof(slists) ); // must be done this way!
5089
5090 if ( self->found_roots )
5091 {
5092 listofroots->Init( count );
5093
5094 for (i=0; i < count; i++)
5095 {
5096 lists onepoint= (lists)omAlloc(sizeof(slists)); // must be done this way!
5097 onepoint->Init(elem);
5098 for ( j= 0; j < elem; j++ )
5099 {
5100 if ( !rField_is_long_C(currRing) )
5101 {
5102 onepoint->m[j].rtyp=STRING_CMD;
5103 onepoint->m[j].data=(void *)complexToStr((*self->roots[j])[i],oprec, currRing->cf);
5104 }
5105 else
5106 {
5107 onepoint->m[j].rtyp=NUMBER_CMD;
5108 onepoint->m[j].data=(void *)n_Copy((number)(self->roots[j]->getRoot(i)), currRing->cf);
5109 }
5110 onepoint->m[j].next= NULL;
5111 onepoint->m[j].name= NULL;
5112 }
5113 listofroots->m[i].rtyp=LIST_CMD;
5114 listofroots->m[i].data=(void *)onepoint;
5115 listofroots->m[j].next= NULL;
5116 listofroots->m[j].name= NULL;
5117 }
5118
5119 }
5120 else
5121 {
5122 listofroots->Init( 0 );
5123 }
5124
5125 return listofroots;
5126}
5127
5128// from ring.cc
5130{
5131 ring rg = NULL;
5132 if (h!=NULL)
5133 {
5134// Print(" new ring:%s (l:%d)\n",IDID(h),IDLEV(h));
5135 rg = IDRING(h);
5136 if (rg==NULL) return; //id <>NULL, ring==NULL
5137 omCheckAddrSize((ADDRESS)h,sizeof(idrec));
5138 if (IDID(h)) // OB: ????
5140 rTest(rg);
5141 }
5142 else return;
5143
5144 // clean up history
5145 if (currRing!=NULL)
5146 {
5148 {
5150 }
5151
5152 if (rg!=currRing)/*&&(currRing!=NULL)*/
5153 {
5154 if (rg->cf!=currRing->cf)
5155 {
5158 {
5159 if (TEST_V_ALLWARN)
5160 Warn("deleting denom_list for ring change to %s",IDID(h));
5161 do
5162 {
5163 n_Delete(&(dd->n),currRing->cf);
5164 dd=dd->next;
5167 } while(DENOMINATOR_LIST!=NULL);
5168 }
5169 }
5170 }
5171 }
5172
5173 // test for valid "currRing":
5174 if ((rg!=NULL) && (rg->idroot==NULL))
5175 {
5176 ring old=rg;
5177 rg=rAssure_HasComp(rg);
5178 if (old!=rg)
5179 {
5180 rKill(old);
5181 IDRING(h)=rg;
5182 }
5183 }
5184 /*------------ change the global ring -----------------------*/
5185 rChangeCurrRing(rg);
5186 currRingHdl = h;
5187}
5188
5190{
5191 // change some bad orderings/combination into better ones
5192 leftv h=ord;
5193 while(h!=NULL)
5194 {
5195 BOOLEAN change=FALSE;
5196 intvec *iv = (intvec *)(h->data);
5197 // ws(-i) -> wp(i)
5198 if ((*iv)[1]==ringorder_ws)
5199 {
5200 BOOLEAN neg=TRUE;
5201 for(int i=2;i<iv->length();i++)
5202 if((*iv)[i]>=0) { neg=FALSE; break; }
5203 if (neg)
5204 {
5205 (*iv)[1]=ringorder_wp;
5206 for(int i=2;i<iv->length();i++)
5207 (*iv)[i]= - (*iv)[i];
5208 change=TRUE;
5209 }
5210 }
5211 // Ws(-i) -> Wp(i)
5212 if ((*iv)[1]==ringorder_Ws)
5213 {
5214 BOOLEAN neg=TRUE;
5215 for(int i=2;i<iv->length();i++)
5216 if((*iv)[i]>=0) { neg=FALSE; break; }
5217 if (neg)
5218 {
5219 (*iv)[1]=ringorder_Wp;
5220 for(int i=2;i<iv->length();i++)
5221 (*iv)[i]= -(*iv)[i];
5222 change=TRUE;
5223 }
5224 }
5225 // wp(1) -> dp
5226 if ((*iv)[1]==ringorder_wp)
5227 {
5228 BOOLEAN all_one=TRUE;
5229 for(int i=2;i<iv->length();i++)
5230 if((*iv)[i]!=1) { all_one=FALSE; break; }
5231 if (all_one)
5232 {
5233 intvec *iv2=new intvec(3);
5234 (*iv2)[0]=1;
5235 (*iv2)[1]=ringorder_dp;
5236 (*iv2)[2]=iv->length()-2;
5237 delete iv;
5238 iv=iv2;
5239 h->data=iv2;
5240 change=TRUE;
5241 }
5242 }
5243 // Wp(1) -> Dp
5244 if ((*iv)[1]==ringorder_Wp)
5245 {
5246 BOOLEAN all_one=TRUE;
5247 for(int i=2;i<iv->length();i++)
5248 if((*iv)[i]!=1) { all_one=FALSE; break; }
5249 if (all_one)
5250 {
5251 intvec *iv2=new intvec(3);
5252 (*iv2)[0]=1;
5253 (*iv2)[1]=ringorder_Dp;
5254 (*iv2)[2]=iv->length()-2;
5255 delete iv;
5256 iv=iv2;
5257 h->data=iv2;
5258 change=TRUE;
5259 }
5260 }
5261 // dp(1)/Dp(1)/rp(1) -> lp(1)
5262 if (((*iv)[1]==ringorder_dp)
5263 || ((*iv)[1]==ringorder_Dp)
5264 || ((*iv)[1]==ringorder_rp))
5265 {
5266 if (iv->length()==3)
5267 {
5268 if ((*iv)[2]==1)
5269 {
5270 if(h->next!=NULL)
5271 {
5272 intvec *iv2 = (intvec *)(h->next->data);
5273 if ((*iv2)[1]==ringorder_lp)
5274 {
5275 (*iv)[1]=ringorder_lp;
5276 change=TRUE;
5277 }
5278 }
5279 }
5280 }
5281 }
5282 // lp(i),lp(j) -> lp(i+j)
5283 if(((*iv)[1]==ringorder_lp)
5284 && (h->next!=NULL))
5285 {
5286 intvec *iv2 = (intvec *)(h->next->data);
5287 if ((*iv2)[1]==ringorder_lp)
5288 {
5289 leftv hh=h->next;
5290 h->next=hh->next;
5291 hh->next=NULL;
5292 if ((*iv2)[0]==1)
5293 (*iv)[2] += 1; // last block unspecified, at least 1
5294 else
5295 (*iv)[2] += (*iv2)[2];
5296 hh->CleanUp();
5298 change=TRUE;
5299 }
5300 }
5301 // -------------------
5302 if (!change) h=h->next;
5303 }
5304 return ord;
5305}
5306
5307
5309{
5310 int last = 0, o=0, n = 1, i=0, typ = 1, j;
5311 ord=rOptimizeOrdAsSleftv(ord);
5312 sleftv *sl = ord;
5313
5314 // determine nBlocks
5315 while (sl!=NULL)
5316 {
5317 intvec *iv = (intvec *)(sl->data);
5318 if (((*iv)[1]==ringorder_c)||((*iv)[1]==ringorder_C))
5319 i++;
5320 else if ((*iv)[1]==ringorder_L)
5321 {
5322 R->wanted_maxExp=(*iv)[2]*2+1;
5323 n--;
5324 }
5325 else if (((*iv)[1]!=ringorder_a)
5326 && ((*iv)[1]!=ringorder_a64)
5327 && ((*iv)[1]!=ringorder_am))
5328 o++;
5329 n++;
5330 sl=sl->next;
5331 }
5332 // check whether at least one real ordering
5333 if (o==0)
5334 {
5335 WerrorS("invalid combination of orderings");
5336 return TRUE;
5337 }
5338 // if no c/C ordering is given, increment n
5339 if (i==0) n++;
5340 else if (i != 1)
5341 {
5342 // throw error if more than one is given
5343 WerrorS("more than one ordering c/C specified");
5344 return TRUE;
5345 }
5346
5347 // initialize fields of R
5348 R->order=(rRingOrder_t *)omAlloc0(n*sizeof(rRingOrder_t));
5349 R->block0=(int *)omAlloc0(n*sizeof(int));
5350 R->block1=(int *)omAlloc0(n*sizeof(int));
5351 R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
5352
5353 int *weights=(int*)omAlloc0((R->N+1)*sizeof(int));
5354
5355 // init order, so that rBlocks works correctly
5356 for (j=0; j < n-1; j++)
5357 R->order[j] = ringorder_unspec;
5358 // set last _C order, if no c/C order was given
5359 if (i == 0) R->order[n-2] = ringorder_C;
5360
5361 /* init orders */
5362 sl=ord;
5363 n=-1;
5364 while (sl!=NULL)
5365 {
5366 intvec *iv;
5367 iv = (intvec *)(sl->data);
5368 if ((*iv)[1]!=ringorder_L)
5369 {
5370 n++;
5371
5372 /* the format of an ordering:
5373 * iv[0]: factor
5374 * iv[1]: ordering
5375 * iv[2..end]: weights
5376 */
5377 R->order[n] = (rRingOrder_t)((*iv)[1]);
5378 typ=1;
5379 switch ((*iv)[1])
5380 {
5381 case ringorder_ws:
5382 case ringorder_Ws:
5383 typ=-1; // and continue
5384 case ringorder_wp:
5385 case ringorder_Wp:
5386 R->wvhdl[n]=(int*)omAlloc((iv->length()-1)*sizeof(int));
5387 R->block0[n] = last+1;
5388 for (i=2; i<iv->length(); i++)
5389 {
5390 R->wvhdl[n][i-2] = (*iv)[i];
5391 last++;
5392 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5393 }
5394 R->block1[n] = si_min(last,R->N);
5395 break;
5396 case ringorder_ls:
5397 case ringorder_ds:
5398 case ringorder_Ds:
5399 case ringorder_rs:
5400 typ=-1; // and continue
5401 case ringorder_lp:
5402 case ringorder_dp:
5403 case ringorder_Dp:
5404 case ringorder_rp:
5405 R->block0[n] = last+1;
5406 if (iv->length() == 3) last+=(*iv)[2];
5407 else last += (*iv)[0];
5408 R->block1[n] = si_min(last,R->N);
5409 if (rCheckIV(iv)) return TRUE;
5410 for(i=si_min(rVar(R),R->block1[n]);i>=R->block0[n];i--)
5411 {
5412 if (weights[i]==0) weights[i]=typ;
5413 }
5414 break;
5415
5416 case ringorder_s: // no 'rank' params!
5417 {
5418
5419 if(iv->length() > 3)
5420 return TRUE;
5421
5422 if(iv->length() == 3)
5423 {
5424 const int s = (*iv)[2];
5425 R->block0[n] = s;
5426 R->block1[n] = s;
5427 }
5428 break;
5429 }
5430 case ringorder_IS:
5431 {
5432 if(iv->length() != 3) return TRUE;
5433
5434 const int s = (*iv)[2];
5435
5436 if( 1 < s || s < -1 ) return TRUE;
5437
5438 R->block0[n] = s;
5439 R->block1[n] = s;
5440 break;
5441 }
5442 case ringorder_S:
5443 case ringorder_c:
5444 case ringorder_C:
5445 {
5446 if (rCheckIV(iv)) return TRUE;
5447 break;
5448 }
5449 case ringorder_aa:
5450 case ringorder_a:
5451 {
5452 R->block0[n] = last+1;
5453 R->block1[n] = si_min(last+iv->length()-2 , R->N);
5454 R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int));
5455 for (i=2; i<iv->length(); i++)
5456 {
5457 R->wvhdl[n][i-2]=(*iv)[i];
5458 last++;
5459 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5460 }
5461 last=R->block0[n]-1;
5462 break;
5463 }
5464 case ringorder_am:
5465 {
5466 R->block0[n] = last+1;
5467 R->block1[n] = si_min(last+iv->length()-2 , R->N);
5468 R->wvhdl[n] = (int*)omAlloc(iv->length()*sizeof(int));
5469 if (R->block1[n]- R->block0[n]+2>=iv->length())
5470 WarnS("missing module weights");
5471 for (i=2; i<=(R->block1[n]-R->block0[n]+2); i++)
5472 {
5473 R->wvhdl[n][i-2]=(*iv)[i];
5474 last++;
5475 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5476 }
5477 R->wvhdl[n][i-2]=iv->length() -3 -(R->block1[n]- R->block0[n]);
5478 for (; i<iv->length(); i++)
5479 {
5480 R->wvhdl[n][i-1]=(*iv)[i];
5481 }
5482 last=R->block0[n]-1;
5483 break;
5484 }
5485 case ringorder_a64:
5486 {
5487 R->block0[n] = last+1;
5488 R->block1[n] = si_min(last+iv->length()-2 , R->N);
5489 R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int64));
5490 int64 *w=(int64 *)R->wvhdl[n];
5491 for (i=2; i<iv->length(); i++)
5492 {
5493 w[i-2]=(*iv)[i];
5494 last++;
5495 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5496 }
5497 last=R->block0[n]-1;
5498 break;
5499 }
5500 case ringorder_M:
5501 {
5502 int Mtyp=rTypeOfMatrixOrder(iv);
5503 if (Mtyp==0) return TRUE;
5504 if (Mtyp==-1) typ = -1;
5505
5506 R->wvhdl[n] =( int *)omAlloc((iv->length()-1)*sizeof(int));
5507 for (i=2; i<iv->length();i++)
5508 R->wvhdl[n][i-2]=(*iv)[i];
5509
5510 R->block0[n] = last+1;
5511 last += (int)sqrt((double)(iv->length()-2));
5512 R->block1[n] = si_min(last,R->N);
5513 for(i=R->block1[n];i>=R->block0[n];i--)
5514 {
5515 if (weights[i]==0) weights[i]=typ;
5516 }
5517 break;
5518 }
5519
5520 case ringorder_no:
5521 R->order[n] = ringorder_unspec;
5522 return TRUE;
5523
5524 default:
5525 Werror("Internal Error: Unknown ordering %d", (*iv)[1]);
5526 R->order[n] = ringorder_unspec;
5527 return TRUE;
5528 }
5529 }
5530 if (last>R->N)
5531 {
5532 Werror("mismatch of number of vars (%d) and ordering (>=%d vars)",
5533 R->N,last);
5534 return TRUE;
5535 }
5536 sl=sl->next;
5537 }
5538 // find OrdSgn:
5539 R->OrdSgn = 1;
5540 for(i=1;i<=R->N;i++)
5541 { if (weights[i]<0) { R->OrdSgn=-1;break; }}
5542 omFree(weights);
5543
5544 // check for complete coverage
5545 while ( n >= 0 && (
5546 (R->order[n]==ringorder_c)
5547 || (R->order[n]==ringorder_C)
5548 || (R->order[n]==ringorder_s)
5549 || (R->order[n]==ringorder_S)
5550 || (R->order[n]==ringorder_IS)
5551 )) n--;
5552
5553 assume( n >= 0 );
5554
5555 if (R->block1[n] != R->N)
5556 {
5557 if (((R->order[n]==ringorder_dp) ||
5558 (R->order[n]==ringorder_ds) ||
5559 (R->order[n]==ringorder_Dp) ||
5560 (R->order[n]==ringorder_Ds) ||
5561 (R->order[n]==ringorder_rp) ||
5562 (R->order[n]==ringorder_rs) ||
5563 (R->order[n]==ringorder_lp) ||
5564 (R->order[n]==ringorder_ls))
5565 &&
5566 R->block0[n] <= R->N)
5567 {
5568 R->block1[n] = R->N;
5569 }
5570 else
5571 {
5572 Werror("mismatch of number of vars (%d) and ordering (%d vars)",
5573 R->N,R->block1[n]);
5574 return TRUE;
5575 }
5576 }
5577 return FALSE;
5578}
5579
5581{
5582
5583 while(sl!=NULL)
5584 {
5585 if ((sl->rtyp == IDHDL)||(sl->rtyp==ALIAS_CMD))
5586 {
5587 *p = omStrDup(sl->Name());
5588 }
5589 else if (sl->name!=NULL)
5590 {
5591 *p = (char*)sl->name;
5592 sl->name=NULL;
5593 }
5594 else if (sl->rtyp==POLY_CMD)
5595 {
5596 sleftv s_sl;
5597 iiConvert(POLY_CMD,ANY_TYPE,-1,sl,&s_sl);
5598 if (s_sl.name != NULL)
5599 {
5600 *p = (char*)s_sl.name; s_sl.name=NULL;
5601 }
5602 else
5603 *p = NULL;
5604 sl->next = s_sl.next;
5605 s_sl.next = NULL;
5606 s_sl.CleanUp();
5607 if (*p == NULL) return TRUE;
5608 }
5609 else return TRUE;
5610 p++;
5611 sl=sl->next;
5612 }
5613 return FALSE;
5614}
5615
5616const short MAX_SHORT = 32767; // (1 << (sizeof(short)*8)) - 1;
5617
5618////////////////////
5619//
5620// rInit itself:
5621//
5622// INPUT: pn: ch & parameter (names), rv: variable (names)
5623// ord: ordering (all !=NULL)
5624// RETURN: currRingHdl on success
5625// NULL on error
5626// NOTE: * makes new ring to current ring, on success
5627// * considers input sleftv's as read-only
5628ring rInit(leftv pn, leftv rv, leftv ord)
5629{
5630 int float_len=0;
5631 int float_len2=0;
5632 ring R = NULL;
5633 //BOOLEAN ffChar=FALSE;
5634
5635 /* ch -------------------------------------------------------*/
5636 // get ch of ground field
5637
5638 // allocated ring
5639 R = (ring) omAlloc0Bin(sip_sring_bin);
5640
5641 coeffs cf = NULL;
5642
5643 assume( pn != NULL );
5644 const int P = pn->listLength();
5645
5646 if (pn->Typ()==CRING_CMD)
5647 {
5648 cf=(coeffs)pn->CopyD();
5649 leftv pnn=pn;
5650 if(P>1) /*parameter*/
5651 {
5652 pnn = pnn->next;
5653 const int pars = pnn->listLength();
5654 assume( pars > 0 );
5655 char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5656
5657 if (rSleftvList2StringArray(pnn, names))
5658 {
5659 WerrorS("parameter expected");
5660 goto rInitError;
5661 }
5662
5663 TransExtInfo extParam;
5664
5665 extParam.r = rDefault( cf, pars, names); // Q/Zp [ p_1, ... p_pars ]
5666 for(int i=pars-1; i>=0;i--)
5667 {
5668 omFree(names[i]);
5669 }
5670 omFree(names);
5671
5672 cf = nInitChar(n_transExt, &extParam);
5673 }
5674 assume( cf != NULL );
5675 }
5676 else if (pn->Typ()==INT_CMD)
5677 {
5678 int ch = (int)(long)pn->Data();
5679 leftv pnn=pn;
5680
5681 /* parameter? -------------------------------------------------------*/
5682 pnn = pnn->next;
5683
5684 if (pnn == NULL) // no params!?
5685 {
5686 if (ch!=0)
5687 {
5688 int ch2=IsPrime(ch);
5689 if ((ch<2)||(ch!=ch2))
5690 {
5691 Warn("%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5692 ch=32003;
5693 }
5694 #ifndef TEST_ZN_AS_ZP
5695 cf = nInitChar(n_Zp, (void*)(long)ch);
5696 #else
5697 mpz_t modBase;
5698 mpz_init_set_ui(modBase, (long)ch);
5699 ZnmInfo info;
5700 info.base= modBase;
5701 info.exp= 1;
5702 cf=nInitChar(n_Zn,(void*) &info);
5703 cf->is_field=1;
5704 cf->is_domain=1;
5705 cf->has_simple_Inverse=1;
5706 #endif
5707 }
5708 else
5709 cf = nInitChar(n_Q, (void*)(long)ch);
5710 }
5711 else
5712 {
5713 const int pars = pnn->listLength();
5714
5715 assume( pars > 0 );
5716
5717 // predefined finite field: (p^k, a)
5718 if ((ch!=0) && (ch!=IsPrime(ch)) && (pars == 1))
5719 {
5720 GFInfo param;
5721
5722 param.GFChar = ch;
5723 param.GFDegree = 1;
5724 param.GFPar_name = pnn->name;
5725
5726 cf = nInitChar(n_GF, &param);
5727 }
5728 else // (0/p, a, b, ..., z)
5729 {
5730 if ((ch!=0) && (ch!=IsPrime(ch)))
5731 {
5732 WerrorS("too many parameters");
5733 goto rInitError;
5734 }
5735
5736 char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5737
5738 if (rSleftvList2StringArray(pnn, names))
5739 {
5740 WerrorS("parameter expected");
5741 goto rInitError;
5742 }
5743
5744 TransExtInfo extParam;
5745
5746 extParam.r = rDefault( ch, pars, names); // Q/Zp [ p_1, ... p_pars ]
5747 for(int i=pars-1; i>=0;i--)
5748 {
5749 omFree(names[i]);
5750 }
5751 omFree(names);
5752
5753 cf = nInitChar(n_transExt, &extParam);
5754 }
5755 }
5756
5757 //if (cf==NULL) ->Error: Invalid ground field specification
5758 }
5759 else if ((pn->name != NULL)
5760 && ((strcmp(pn->name,"real")==0) || (strcmp(pn->name,"complex")==0)))
5761 {
5762 leftv pnn=pn->next;
5763 BOOLEAN complex_flag=(strcmp(pn->name,"complex")==0);
5764 if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5765 {
5766 float_len=(int)(long)pnn->Data();
5767 float_len2=float_len;
5768 pnn=pnn->next;
5769 if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5770 {
5771 float_len2=(int)(long)pnn->Data();
5772 pnn=pnn->next;
5773 }
5774 }
5775
5776 if (!complex_flag)
5777 complex_flag= (pnn!=NULL) && (pnn->name!=NULL);
5778 if( !complex_flag && (float_len2 <= (short)SHORT_REAL_LENGTH))
5779 cf=nInitChar(n_R, NULL);
5780 else // longR or longC?
5781 {
5782 LongComplexInfo param;
5783
5784 param.float_len = si_min (float_len, 32767);
5785 param.float_len2 = si_min (float_len2, 32767);
5786
5787 // set the parameter name
5788 if (complex_flag)
5789 {
5790 if (param.float_len < SHORT_REAL_LENGTH)
5791 {
5794 }
5795 if ((pnn == NULL) || (pnn->name == NULL))
5796 param.par_name=(const char*)"i"; //default to i
5797 else
5798 param.par_name = (const char*)pnn->name;
5799 }
5800
5801 cf = nInitChar(complex_flag ? n_long_C: n_long_R, (void*)&param);
5802 }
5803 assume( cf != NULL );
5804 }
5805#ifdef HAVE_RINGS
5806 else if ((pn->name != NULL) && (strcmp(pn->name, "integer") == 0))
5807 {
5808 // TODO: change to use coeffs_BIGINT!?
5809 mpz_t modBase;
5810 unsigned int modExponent = 1;
5811 mpz_init_set_si(modBase, 0);
5812 if (pn->next!=NULL)
5813 {
5814 leftv pnn=pn;
5815 if (pnn->next->Typ()==INT_CMD)
5816 {
5817 pnn=pnn->next;
5818 mpz_set_ui(modBase, (long) pnn->Data());
5819 if ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5820 {
5821 pnn=pnn->next;
5822 modExponent = (long) pnn->Data();
5823 }
5824 while ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5825 {
5826 pnn=pnn->next;
5827 mpz_mul_ui(modBase, modBase, (int)(long) pnn->Data());
5828 }
5829 }
5830 else if (pnn->next->Typ()==BIGINT_CMD)
5831 {
5832 number p=(number)pnn->next->CopyD();
5833 n_MPZ(modBase,p,coeffs_BIGINT);
5835 }
5836 }
5837 else
5839
5840 if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
5841 {
5842 WerrorS("Wrong ground ring specification (module is 1)");
5843 goto rInitError;
5844 }
5845 if (modExponent < 1)
5846 {
5847 WerrorS("Wrong ground ring specification (exponent smaller than 1");
5848 goto rInitError;
5849 }
5850 // module is 0 ---> integers ringtype = 4;
5851 // we have an exponent
5852 if (modExponent > 1 && cf == NULL)
5853 {
5854 if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
5855 {
5856 /* this branch should be active for modExponent = 2..32 resp. 2..64,
5857 depending on the size of a long on the respective platform */
5858 //ringtype = 1; // Use Z/2^ch
5859 cf=nInitChar(n_Z2m,(void*)(long)modExponent);
5860 }
5861 else
5862 {
5863 if (mpz_sgn1(modBase)==0)
5864 {
5865 WerrorS("modulus must not be 0 or parameter not allowed");
5866 goto rInitError;
5867 }
5868 //ringtype = 3;
5869 ZnmInfo info;
5870 info.base= modBase;
5871 info.exp= modExponent;
5872 cf=nInitChar(n_Znm,(void*) &info); //exponent is missing
5873 }
5874 }
5875 // just a module m > 1
5876 else if (cf == NULL)
5877 {
5878 if (mpz_sgn1(modBase)==0)
5879 {
5880 WerrorS("modulus must not be 0 or parameter not allowed");
5881 goto rInitError;
5882 }
5883 //ringtype = 2;
5884 ZnmInfo info;
5885 info.base= modBase;
5886 info.exp= modExponent;
5887 cf=nInitChar(n_Zn,(void*) &info);
5888 }
5889 assume( cf != NULL );
5890 mpz_clear(modBase);
5891 }
5892#endif
5893 // ring NEW = OLD, (), (); where OLD is a polynomial ring...
5894 else if ((pn->Typ()==RING_CMD) && (P == 1))
5895 {
5896 TransExtInfo extParam;
5897 extParam.r = (ring)pn->Data();
5898 extParam.r->ref++;
5899 cf = nInitChar(n_transExt, &extParam);
5900 }
5901 //else if ((pn->Typ()==QRING_CMD) && (P == 1)) // same for qrings - which should be fields!?
5902 //{
5903 // AlgExtInfo extParam;
5904 // extParam.r = (ring)pn->Data();
5905
5906 // cf = nInitChar(n_algExt, &extParam); // Q[a]/<minideal>
5907 //}
5908 else
5909 {
5910 WerrorS("Wrong or unknown ground field specification");
5911#if 0
5912// debug stuff for unknown cf descriptions:
5913 sleftv* p = pn;
5914 while (p != NULL)
5915 {
5916 Print( "pn[%p]: type: %d [%s]: %p, name: %s", (void*)p, p->Typ(), Tok2Cmdname(p->Typ()), p->Data(), (p->name == NULL? "NULL" : p->name) );
5917 PrintLn();
5918 p = p->next;
5919 }
5920#endif
5921 goto rInitError;
5922 }
5923
5924 /*every entry in the new ring is initialized to 0*/
5925
5926 /* characteristic -----------------------------------------------*/
5927 /* input: 0 ch=0 : Q parameter=NULL ffChar=FALSE float_len
5928 * 0 1 : Q(a,...) *names FALSE
5929 * 0 -1 : R NULL FALSE 0
5930 * 0 -1 : R NULL FALSE prec. >6
5931 * 0 -1 : C *names FALSE prec. 0..?
5932 * p p : Fp NULL FALSE
5933 * p -p : Fp(a) *names FALSE
5934 * q q : GF(q=p^n) *names TRUE
5935 */
5936 if (cf==NULL)
5937 {
5938 WerrorS("Invalid ground field specification");
5939 goto rInitError;
5940// const int ch=32003;
5941// cf=nInitChar(n_Zp, (void*)(long)ch);
5942 }
5943
5944 assume( R != NULL );
5945
5946 R->cf = cf;
5947
5948 /* names and number of variables-------------------------------------*/
5949 {
5950 int l=rv->listLength();
5951
5952 if (l>MAX_SHORT)
5953 {
5954 Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5955 goto rInitError;
5956 }
5957 R->N = l; /*rv->listLength();*/
5958 }
5959 R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5960 if (rSleftvList2StringArray(rv, R->names))
5961 {
5962 WerrorS("name of ring variable expected");
5963 goto rInitError;
5964 }
5965
5966 /* check names and parameters for conflicts ------------------------- */
5967 rRenameVars(R); // conflicting variables will be renamed
5968 /* ordering -------------------------------------------------------------*/
5969 if (rSleftvOrdering2Ordering(ord, R))
5970 goto rInitError;
5971
5972 // Complete the initialization
5973 if (rComplete(R,1))
5974 goto rInitError;
5975
5976/*#ifdef HAVE_RINGS
5977// currently, coefficients which are ring elements require a global ordering:
5978 if (rField_is_Ring(R) && (R->OrdSgn==-1))
5979 {
5980 WerrorS("global ordering required for these coefficients");
5981 goto rInitError;
5982 }
5983#endif*/
5984
5985 rTest(R);
5986
5987 // try to enter the ring into the name list
5988 // need to clean up sleftv here, before this ring can be set to
5989 // new currRing or currRing can be killed beacuse new ring has
5990 // same name
5991 pn->CleanUp();
5992 rv->CleanUp();
5993 ord->CleanUp();
5994 //if ((tmp = enterid(s, myynest, RING_CMD, &IDROOT))==NULL)
5995 // goto rInitError;
5996
5997 //memcpy(IDRING(tmp),R,sizeof(*R));
5998 // set current ring
5999 //omFreeBin(R, ip_sring_bin);
6000 //return tmp;
6001 return R;
6002
6003 // error case:
6004 rInitError:
6005 if ((R != NULL)&&(R->cf!=NULL)) rDelete(R);
6006 pn->CleanUp();
6007 rv->CleanUp();
6008 ord->CleanUp();
6009 return NULL;
6010}
6011
6012ring rSubring(ring org_ring, sleftv* rv)
6013{
6014 ring R = rCopy0(org_ring);
6015 int *perm=(int *)omAlloc0((org_ring->N+1)*sizeof(int));
6016 int n = rBlocks(org_ring), i=0, j;
6017
6018 /* names and number of variables-------------------------------------*/
6019 {
6020 int l=rv->listLength();
6021 if (l>MAX_SHORT)
6022 {
6023 Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
6024 goto rInitError;
6025 }
6026 R->N = l; /*rv->listLength();*/
6027 }
6028 omFree(R->names);
6029 R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
6030 if (rSleftvList2StringArray(rv, R->names))
6031 {
6032 WerrorS("name of ring variable expected");
6033 goto rInitError;
6034 }
6035
6036 /* check names for subring in org_ring ------------------------- */
6037 {
6038 i=0;
6039
6040 for(j=0;j<R->N;j++)
6041 {
6042 for(;i<org_ring->N;i++)
6043 {
6044 if (strcmp(org_ring->names[i],R->names[j])==0)
6045 {
6046 perm[i+1]=j+1;
6047 break;
6048 }
6049 }
6050 if (i>org_ring->N)
6051 {
6052 Werror("variable %d (%s) not in basering",j+1,R->names[j]);
6053 break;
6054 }
6055 }
6056 }
6057 //Print("perm=");
6058 //for(i=1;i<org_ring->N;i++) Print("v%d -> v%d\n",i,perm[i]);
6059 /* ordering -------------------------------------------------------------*/
6060
6061 for(i=0;i<n;i++)
6062 {
6063 int min_var=-1;
6064 int max_var=-1;
6065 for(j=R->block0[i];j<=R->block1[i];j++)
6066 {
6067 if (perm[j]>0)
6068 {
6069 if (min_var==-1) min_var=perm[j];
6070 max_var=perm[j];
6071 }
6072 }
6073 if (min_var!=-1)
6074 {
6075 //Print("block %d: old %d..%d, now:%d..%d\n",
6076 // i,R->block0[i],R->block1[i],min_var,max_var);
6077 R->block0[i]=min_var;
6078 R->block1[i]=max_var;
6079 if (R->wvhdl[i]!=NULL)
6080 {
6081 omFree(R->wvhdl[i]);
6082 R->wvhdl[i]=(int*)omAlloc0((max_var-min_var+1)*sizeof(int));
6083 for(j=org_ring->block0[i];j<=org_ring->block1[i];j++)
6084 {
6085 if (perm[j]>0)
6086 {
6087 R->wvhdl[i][perm[j]-R->block0[i]]=
6088 org_ring->wvhdl[i][j-org_ring->block0[i]];
6089 //Print("w%d=%d (orig_w%d)\n",perm[j],R->wvhdl[i][perm[j]-R->block0[i]],j);
6090 }
6091 }
6092 }
6093 }
6094 else
6095 {
6096 if(R->block0[i]>0)
6097 {
6098 //Print("skip block %d\n",i);
6099 R->order[i]=ringorder_unspec;
6100 if (R->wvhdl[i] !=NULL) omFree(R->wvhdl[i]);
6101 R->wvhdl[i]=NULL;
6102 }
6103 //else Print("keep block %d\n",i);
6104 }
6105 }
6106 i=n-1;
6107 while(i>0)
6108 {
6109 // removed unneded blocks
6110 if(R->order[i-1]==ringorder_unspec)
6111 {
6112 for(j=i;j<=n;j++)
6113 {
6114 R->order[j-1]=R->order[j];
6115 R->block0[j-1]=R->block0[j];
6116 R->block1[j-1]=R->block1[j];
6117 if (R->wvhdl[j-1] !=NULL) omFree(R->wvhdl[j-1]);
6118 R->wvhdl[j-1]=R->wvhdl[j];
6119 }
6120 R->order[n]=ringorder_unspec;
6121 n--;
6122 }
6123 i--;
6124 }
6125 n=rBlocks(org_ring)-1;
6126 while (R->order[n]==0) n--;
6127 while (R->order[n]==ringorder_unspec) n--;
6128 if ((R->order[n]==ringorder_c) || (R->order[n]==ringorder_C)) n--;
6129 if (R->block1[n] != R->N)
6130 {
6131 if (((R->order[n]==ringorder_dp) ||
6132 (R->order[n]==ringorder_ds) ||
6133 (R->order[n]==ringorder_Dp) ||
6134 (R->order[n]==ringorder_Ds) ||
6135 (R->order[n]==ringorder_rp) ||
6136 (R->order[n]==ringorder_rs) ||
6137 (R->order[n]==ringorder_lp) ||
6138 (R->order[n]==ringorder_ls))
6139 &&
6140 R->block0[n] <= R->N)
6141 {
6142 R->block1[n] = R->N;
6143 }
6144 else
6145 {
6146 Werror("mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6147 R->N,R->block1[n],n);
6148 return NULL;
6149 }
6150 }
6151 omFree(perm);
6152 // find OrdSgn:
6153 R->OrdSgn = org_ring->OrdSgn; // IMPROVE!
6154 //for(i=1;i<=R->N;i++)
6155 //{ if (weights[i]<0) { R->OrdSgn=-1;break; }}
6156 //omFree(weights);
6157 // Complete the initialization
6158 if (rComplete(R,1))
6159 goto rInitError;
6160
6161 rTest(R);
6162
6163 if (rv != NULL) rv->CleanUp();
6164
6165 return R;
6166
6167 // error case:
6168 rInitError:
6169 if (R != NULL) rDelete(R);
6170 if (rv != NULL) rv->CleanUp();
6171 return NULL;
6172}
6173
6174void rKill(ring r)
6175{
6176 if ((r->ref<=0)&&(r->order!=NULL))
6177 {
6178#ifdef RDEBUG
6179 if (traceit &TRACE_SHOW_RINGS) Print("kill ring %lx\n",(long)r);
6180#endif
6181 int j;
6182 for (j=0;j<myynest;j++)
6183 {
6184 if (iiLocalRing[j]==r)
6185 {
6186 if (j==0) WarnS("killing the basering for level 0");
6188 }
6189 }
6190// any variables depending on r ?
6191 while (r->idroot!=NULL)
6192 {
6193 r->idroot->lev=myynest; // avoid warning about kill global objects
6194 killhdl2(r->idroot,&(r->idroot),r);
6195 }
6196 if (r==currRing)
6197 {
6198 // all dependend stuff is done, clean global vars:
6199 if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
6201 {
6203 }
6204 //if ((myynest>0) && (iiRETURNEXPR.RingDependend()))
6205 //{
6206 // WerrorS("return value depends on local ring variable (export missing ?)");
6207 // iiRETURNEXPR.CleanUp();
6208 //}
6209 currRing=NULL;
6211 }
6212
6213 /* nKillChar(r); will be called from inside of rDelete */
6214 rDelete(r);
6215 return;
6216 }
6217 rDecRefCnt(r);
6218}
6219
6221{
6222 ring r = IDRING(h);
6223 int ref=0;
6224 if (r!=NULL)
6225 {
6226 // avoid, that sLastPrinted is the last reference to the base ring:
6227 // clean up before killing the last "named" refrence:
6229 && (sLastPrinted.data==(void*)r))
6230 {
6232 }
6233 ref=r->ref;
6234 if ((ref<=0)&&(r==currRing))
6235 {
6236 // cleanup DENOMINATOR_LIST
6238 {
6240 if (TEST_V_ALLWARN)
6241 Warn("deleting denom_list for ring change from %s",IDID(h));
6242 do
6243 {
6244 n_Delete(&(dd->n),currRing->cf);
6245 dd=dd->next;
6248 } while(DENOMINATOR_LIST!=NULL);
6249 }
6250 }
6251 rKill(r);
6252 }
6253 if (h==currRingHdl)
6254 {
6255 if (ref<=0) { currRing=NULL; currRingHdl=NULL;}
6256 else
6257 {
6259 }
6260 }
6261}
6262
6263static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
6264{
6265 idhdl h=root;
6266 while (h!=NULL)
6267 {
6268 if ((IDTYP(h)==RING_CMD)
6269 && (h!=n)
6270 && (IDRING(h)==r)
6271 )
6272 {
6273 return h;
6274 }
6275 h=IDNEXT(h);
6276 }
6277 return NULL;
6278}
6279
6280extern BOOLEAN jjPROC(leftv res, leftv u, leftv v);
6281
6282static void jjINT_S_TO_ID(int n,int *e, leftv res)
6283{
6284 if (n==0) n=1;
6285 ideal l=idInit(n,1);
6286 int i;
6287 poly p;
6288 for(i=rVar(currRing);i>0;i--)
6289 {
6290 if (e[i]>0)
6291 {
6292 n--;
6293 p=pOne();
6294 pSetExp(p,i,1);
6295 pSetm(p);
6296 l->m[n]=p;
6297 if (n==0) break;
6298 }
6299 }
6300 res->data=(char*)l;
6302 omFreeSize((ADDRESS)e,(rVar(currRing)+1)*sizeof(int));
6303}
6305{
6306 int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6307 int n=pGetVariables((poly)u->Data(),e);
6308 jjINT_S_TO_ID(n,e,res);
6309 return FALSE;
6310}
6311
6313{
6314 int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6315 ideal I=(ideal)u->Data();
6316 int i;
6317 int n=0;
6318 for(i=I->nrows*I->ncols-1;i>=0;i--)
6319 {
6320 int n0=pGetVariables(I->m[i],e);
6321 if (n0>n) n=n0;
6322 }
6323 jjINT_S_TO_ID(n,e,res);
6324 return FALSE;
6325}
6326
6327void paPrint(const char *n,package p)
6328{
6329 Print(" %s (",n);
6330 switch (p->language)
6331 {
6332 case LANG_SINGULAR: PrintS("S"); break;
6333 case LANG_C: PrintS("C"); break;
6334 case LANG_TOP: PrintS("T"); break;
6335 case LANG_MAX: PrintS("M"); break;
6336 case LANG_NONE: PrintS("N"); break;
6337 default: PrintS("U");
6338 }
6339 if(p->libname!=NULL)
6340 Print(",%s", p->libname);
6341 PrintS(")");
6342}
6343
6345{
6346 intvec *aa=(intvec*)a->Data();
6347 sleftv tmp_out;
6348 sleftv tmp_in;
6349 leftv curr=res;
6350 BOOLEAN bo=FALSE;
6351 for(int i=0;i<aa->length(); i++)
6352 {
6353 tmp_in.Init();
6354 tmp_in.rtyp=INT_CMD;
6355 tmp_in.data=(void*)(long)(*aa)[i];
6356 if (proc==NULL)
6357 bo=iiExprArith1(&tmp_out,&tmp_in,op);
6358 else
6359 bo=jjPROC(&tmp_out,proc,&tmp_in);
6360 if (bo)
6361 {
6362 res->CleanUp(currRing);
6363 Werror("apply fails at index %d",i+1);
6364 return TRUE;
6365 }
6366 if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6367 else
6368 {
6370 curr=curr->next;
6371 memcpy(curr,&tmp_out,sizeof(tmp_out));
6372 }
6373 }
6374 return FALSE;
6375}
6377{
6378 WerrorS("not implemented");
6379 return TRUE;
6380}
6382{
6383 WerrorS("not implemented");
6384 return TRUE;
6385}
6387{
6388 lists aa=(lists)a->Data();
6389 if (aa->nr==-1) /* empty list*/
6390 {
6392 l->Init();
6393 res->data=(void *)l;
6394 return FALSE;
6395 }
6396 sleftv tmp_out;
6397 sleftv tmp_in;
6398 leftv curr=res;
6399 BOOLEAN bo=FALSE;
6400 for(int i=0;i<=aa->nr; i++)
6401 {
6402 tmp_in.Init();
6403 tmp_in.Copy(&(aa->m[i]));
6404 if (proc==NULL)
6405 bo=iiExprArith1(&tmp_out,&tmp_in,op);
6406 else
6407 bo=jjPROC(&tmp_out,proc,&tmp_in);
6408 tmp_in.CleanUp();
6409 if (bo)
6410 {
6411 res->CleanUp(currRing);
6412 Werror("apply fails at index %d",i+1);
6413 return TRUE;
6414 }
6415 if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6416 else
6417 {
6419 curr=curr->next;
6420 memcpy(curr,&tmp_out,sizeof(tmp_out));
6421 }
6422 }
6423 return FALSE;
6424}
6426{
6427 res->Init();
6428 res->rtyp=a->Typ();
6429 switch (res->rtyp /*a->Typ()*/)
6430 {
6431 case INTVEC_CMD:
6432 case INTMAT_CMD:
6433 return iiApplyINTVEC(res,a,op,proc);
6434 case BIGINTMAT_CMD:
6435 return iiApplyBIGINTMAT(res,a,op,proc);
6436 case IDEAL_CMD:
6437 case MODUL_CMD:
6438 case MATRIX_CMD:
6439 return iiApplyIDEAL(res,a,op,proc);
6440 case LIST_CMD:
6441 return iiApplyLIST(res,a,op,proc);
6442 }
6443 WerrorS("first argument to `apply` must allow an index");
6444 return TRUE;
6445}
6446
6448{
6449 // assume a: level
6450 if ((a->Typ()==INT_CMD)&&((long)a->Data()>=0))
6451 {
6452 if ((TEST_V_ALLWARN) && (myynest==0)) WarnS("ASSUME at top level is of no use: see documentation");
6453 char assume_yylinebuf[80];
6454 strncpy(assume_yylinebuf,my_yylinebuf,79);
6455 int lev=(long)a->Data();
6456 int startlev=0;
6457 idhdl h=ggetid("assumeLevel");
6458 if ((h!=NULL)&&(IDTYP(h)==INT_CMD)) startlev=(long)IDINT(h);
6459 if(lev <=startlev)
6460 {
6461 BOOLEAN bo=b->Eval();
6462 if (bo) { WerrorS("syntax error in ASSUME");return TRUE;}
6463 if (b->Typ()!=INT_CMD) { WerrorS("ASUMME(<level>,<int expr>)");return TRUE; }
6464 if (b->Data()==NULL) { Werror("ASSUME failed:%s",assume_yylinebuf);return TRUE;}
6465 }
6466 }
6467 b->CleanUp();
6468 a->CleanUp();
6469 return FALSE;
6470}
6471
6472#include "libparse.h"
6473
6474BOOLEAN iiARROW(leftv r, char* a, char *s)
6475{
6476 char *ss=(char*)omAlloc(strlen(a)+strlen(s)+30); /* max. 27 currently */
6477 // find end of s:
6478 int end_s=strlen(s);
6479 while ((end_s>0) && ((s[end_s]<=' ')||(s[end_s]==';'))) end_s--;
6480 s[end_s+1]='\0';
6481 char *name=(char *)omAlloc(strlen(a)+strlen(s)+30);
6482 sprintf(name,"%s->%s",a,s);
6483 // find start of last expression
6484 int start_s=end_s-1;
6485 while ((start_s>=0) && (s[start_s]!=';')) start_s--;
6486 if (start_s<0) // ';' not found
6487 {
6488 sprintf(ss,"parameter def %s;return(%s);\n",a,s);
6489 }
6490 else // s[start_s] is ';'
6491 {
6492 s[start_s]='\0';
6493 sprintf(ss,"parameter def %s;%s;return(%s);\n",a,s,s+start_s+1);
6494 }
6495 r->Init();
6496 // now produce procinfo for PROC_CMD:
6497 r->data = (void *)omAlloc0Bin(procinfo_bin);
6498 ((procinfo *)(r->data))->language=LANG_NONE;
6500 ((procinfo *)r->data)->data.s.body=ss;
6501 omFree(name);
6502 r->rtyp=PROC_CMD;
6503 //r->rtyp=STRING_CMD;
6504 //r->data=ss;
6505 return FALSE;
6506}
6507
6509{
6510 char* ring_name=omStrDup((char*)r->Name());
6511 int t=arg->Typ();
6512 if (t==RING_CMD)
6513 {
6514 sleftv tmp;
6515 tmp.Init();
6516 tmp.rtyp=IDHDL;
6517 idhdl h=rDefault(ring_name);
6518 tmp.data=(char*)h;
6519 if (h!=NULL)
6520 {
6521 tmp.name=h->id;
6522 BOOLEAN b=iiAssign(&tmp,arg);
6523 if (b) return TRUE;
6524 rSetHdl(ggetid(ring_name));
6525 omFree(ring_name);
6526 return FALSE;
6527 }
6528 else
6529 return TRUE;
6530 }
6531 else if (t==CRING_CMD)
6532 {
6533 sleftv tmp;
6534 sleftv n;
6535 n.Init();
6536 n.name=ring_name;
6537 if (iiDeclCommand(&tmp,&n,myynest,CRING_CMD,&IDROOT)) return TRUE;
6538 if (iiAssign(&tmp,arg)) return TRUE;
6539 //Print("create %s\n",r->Name());
6540 //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6541 return FALSE;
6542 }
6543 //Print("create %s\n",r->Name());
6544 //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6545 return TRUE;// not handled -> error for now
6546}
6547
6548static void iiReportTypes(int nr,int t,const short *T)
6549{
6550 char buf[250];
6551 buf[0]='\0';
6552 if (nr==0)
6553 sprintf(buf,"wrong length of parameters(%d), expected ",t);
6554 else
6555 sprintf(buf,"par. %d is of type `%s`, expected ",nr,Tok2Cmdname(t));
6556 for(int i=1;i<=T[0];i++)
6557 {
6558 strcat(buf,"`");
6559 strcat(buf,Tok2Cmdname(T[i]));
6560 strcat(buf,"`");
6561 if (i<T[0]) strcat(buf,",");
6562 }
6563 WerrorS(buf);
6564}
6565
6566BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
6567{
6568 int l=0;
6569 if (args==NULL)
6570 {
6571 if (type_list[0]==0) return TRUE;
6572 }
6573 else l=args->listLength();
6574 if (l!=(int)type_list[0])
6575 {
6576 if (report) iiReportTypes(0,l,type_list);
6577 return FALSE;
6578 }
6579 for(int i=1;i<=l;i++,args=args->next)
6580 {
6581 short t=type_list[i];
6582 if (t!=ANY_TYPE)
6583 {
6584 if (((t==IDHDL)&&(args->rtyp!=IDHDL))
6585 || (t!=args->Typ()))
6586 {
6587 if (report) iiReportTypes(i,args->Typ(),type_list);
6588 return FALSE;
6589 }
6590 }
6591 }
6592 return TRUE;
6593}
6594
6595void iiSetReturn(const leftv source)
6596{
6597 if ((source->next==NULL)&&(source->e==NULL))
6598 {
6599 if ((source->rtyp!=IDHDL)&&(source->rtyp!=ALIAS_CMD))
6600 {
6601 memcpy(&iiRETURNEXPR,source,sizeof(sleftv));
6602 source->Init();
6603 return;
6604 }
6605 if (source->rtyp==IDHDL)
6606 {
6607 if ((IDLEV((idhdl)source->data)==myynest)
6608 &&(IDTYP((idhdl)source->data)!=RING_CMD))
6609 {
6611 iiRETURNEXPR.rtyp=IDTYP((idhdl)source->data);
6612 iiRETURNEXPR.data=IDDATA((idhdl)source->data);
6613 iiRETURNEXPR.flag=IDFLAG((idhdl)source->data);
6615 IDATTR((idhdl)source->data)=NULL;
6616 IDDATA((idhdl)source->data)=NULL;
6617 source->name=NULL;
6618 source->attribute=NULL;
6619 return;
6620 }
6621 }
6622 }
6623 iiRETURNEXPR.Copy(source);
6624}
Rational pow(const Rational &a, int e)
Definition: GMPrat.cc:411
ring r
Definition: algext.h:37
struct for passing initialization parameters to naInitChar
Definition: algext.h:37
void atSet(idhdl root, char *name, void *data, int typ)
Definition: attrib.cc:153
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
Definition: attrib.cc:132
long int64
Definition: auxiliary.h:68
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
int sign(const CanonicalForm &a)
CanonicalForm num(const CanonicalForm &f)
CanonicalForm den(const CanonicalForm &f)
CanonicalForm Lc(const CanonicalForm &f)
int l
Definition: cfEzgcd.cc:100
int m
Definition: cfEzgcd.cc:128
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:72
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
Variable x
Definition: cfModGcd.cc:4082
int p
Definition: cfModGcd.cc:4078
CanonicalForm cf
Definition: cfModGcd.cc:4083
CanonicalForm b
Definition: cfModGcd.cc:4103
void mu(int **points, int sizePoints)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
Definition: cf_map_ext.cc:504
FILE * f
Definition: checklibs.c:9
unsigned char * proc[NUM_PROC]
Definition: checklibs.c:16
poly singclap_resultant(poly f, poly g, poly x, const ring r)
Definition: clapsing.cc:345
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
Definition: clapsing.cc:948
matrix singclap_irrCharSeries(ideal I, const ring r)
Definition: clapsing.cc:1571
int * Zp_roots(poly p, const ring r)
Definition: clapsing.cc:2188
int get_num_si()
Definition: GMPrat.cc:138
int get_den_si()
Definition: GMPrat.cc:152
char name() const
Definition: variable.cc:122
Variable next() const
Definition: variable.h:52
char * buffer
Definition: fevoices.h:69
char * filename
Definition: fevoices.h:63
long fptr
Definition: fevoices.h:70
Matrices of numbers.
Definition: bigintmat.h:51
Definition: idrec.h:35
idhdl get(const char *s, int lev)
Definition: ipid.cc:72
int typ
Definition: idrec.h:43
idhdl next
Definition: idrec.h:38
attr attribute
Definition: idrec.h:41
Definition: intvec.h:23
void makeVector()
Definition: intvec.h:102
void show(int mat=0, int spaces=0) const
Definition: intvec.cc:149
int min_in()
Definition: intvec.h:121
int length() const
Definition: intvec.h:94
int rows() const
Definition: intvec.h:96
int & cols()
Definition: matpol.h:24
int & rows()
Definition: matpol.h:23
Definition: ipid.h:56
virtual number getSubDet()
Definition: mpr_base.h:37
virtual ideal getMatrix()
Definition: mpr_base.h:31
virtual IStateType initState() const
Definition: mpr_base.h:41
void solve_all()
Definition: mpr_numeric.cc:858
rootContainer ** roots
Definition: mpr_numeric.h:167
bool found_roots
Definition: mpr_numeric.h:172
bool success()
Definition: mpr_numeric.h:162
void arrange()
Definition: mpr_numeric.cc:883
complex root finder for univariate polynomials based on laguers algorithm
Definition: mpr_numeric.h:66
gmp_complex * getRoot(const int i)
Definition: mpr_numeric.h:88
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
Definition: mpr_numeric.cc:300
int getAnzRoots()
Definition: mpr_numeric.h:97
bool solver(const int polishmode=PM_NONE)
Definition: mpr_numeric.cc:437
int getAnzElems()
Definition: mpr_numeric.h:95
Definition: attrib.h:21
attr get(const char *s)
Definition: attrib.cc:93
void * CopyA()
Definition: subexpr.cc:2100
int atyp
Definition: attrib.h:27
Linear Programming / Linear Optimization using Simplex - Algorithm.
Definition: mpr_numeric.h:195
intvec * zrovToIV()
BOOLEAN mapFromMatrix(matrix m)
int icase
Definition: mpr_numeric.h:201
void compute()
matrix mapToMatrix(matrix m)
intvec * posvToIV()
Class used for (list of) interpreter objects.
Definition: subexpr.h:83
void * CopyD(int t)
Definition: subexpr.cc:710
int Typ()
Definition: subexpr.cc:1011
const char * name
Definition: subexpr.h:87
int rtyp
Definition: subexpr.h:91
void * Data()
Definition: subexpr.cc:1154
void Init()
Definition: subexpr.h:107
BOOLEAN RingDependend()
Definition: subexpr.cc:418
leftv next
Definition: subexpr.h:86
const char * Name()
Definition: subexpr.h:120
int listLength()
Definition: subexpr.cc:51
void Copy(leftv e)
Definition: subexpr.cc:685
void * data
Definition: subexpr.h:88
void CleanUp(ring r=currRing)
Definition: subexpr.cc:348
attr * Attribute()
Definition: subexpr.cc:1454
BITSET flag
Definition: subexpr.h:90
Subexpr e
Definition: subexpr.h:105
attr attribute
Definition: subexpr.h:89
Definition: lists.h:24
sleftv * m
Definition: lists.h:46
void Clean(ring r=currRing)
Definition: lists.h:26
INLINE_THIS void Init(int l=0)
int nr
Definition: lists.h:44
spectrumPolyNode * root
Definition: splist.h:60
void delete_node(spectrumPolyNode **)
Definition: splist.cc:256
Definition: semic.h:64
int mu
Definition: semic.h:67
void copy_new(int)
Definition: semic.cc:54
Rational * s
Definition: semic.h:70
int mult_spectrum(spectrum &)
Definition: semic.cc:396
int n
Definition: semic.h:69
int pg
Definition: semic.h:68
int mult_spectrumh(spectrum &)
Definition: semic.cc:425
int * w
Definition: semic.h:71
Base class for solving 0-dim poly systems using u-resultant.
Definition: mpr_base.h:63
rootContainer ** specializeInU(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:3059
rootContainer ** interpolateDenseSP(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:2921
@ denseResMat
Definition: mpr_base.h:65
resMatrixBase * accessResMat()
Definition: mpr_base.h:78
vandermonde system solver for interpolating polynomials from their values
Definition: mpr_numeric.h:29
poly numvec2poly(const number *q)
Definition: mpr_numeric.cc:93
number * interpolateDense(const number *q)
Solves the Vandermode linear system \sum_{i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
Definition: mpr_numeric.cc:146
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
Definition: coeffs.h:547
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:451
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:839
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition: coeffs.h:816
int GFDegree
Definition: coeffs.h:95
@ n_R
single prescision (6,6) real numbers
Definition: coeffs.h:31
@ n_GF
\GF{p^n < 2^16}
Definition: coeffs.h:32
@ n_Q
rational (GMP) numbers
Definition: coeffs.h:30
@ n_Znm
only used if HAVE_RINGS is defined
Definition: coeffs.h:45
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:35
@ n_Zn
only used if HAVE_RINGS is defined
Definition: coeffs.h:44
@ n_long_R
real floating point (GMP) numbers
Definition: coeffs.h:33
@ n_Z2m
only used if HAVE_RINGS is defined
Definition: coeffs.h:46
@ n_Zp
\F{p < 2^31}
Definition: coeffs.h:29
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:38
@ n_Z
only used if HAVE_RINGS is defined
Definition: coeffs.h:43
@ n_long_C
complex floating point (GMP) numbers
Definition: coeffs.h:41
short float_len2
additional char-flags, rInit
Definition: coeffs.h:102
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
Definition: coeffs.h:832
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
Definition: coeffs.h:551
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:700
const char * par_name
parameter name
Definition: coeffs.h:103
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
Definition: coeffs.h:778
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition: numbers.cc:354
const unsigned short fftable[]
Definition: ffields.cc:31
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
Definition: coeffs.h:436
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:730
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:455
static FORCE_INLINE char * nCoeffName(const coeffs cf)
Definition: coeffs.h:963
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
Definition: coeffs.h:542
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:538
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:910
short float_len
additional char-flags, rInit
Definition: coeffs.h:101
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
const char * GFPar_name
Definition: coeffs.h:96
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
Definition: coeffs.h:894
int GFChar
Definition: coeffs.h:94
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:918
Creation data needed for finite fields.
Definition: coeffs.h:93
#define Print
Definition: emacs.cc:80
#define Warn
Definition: emacs.cc:77
#define WarnS
Definition: emacs.cc:78
return result
Definition: facAbsBiFact.cc:75
const CanonicalForm int s
Definition: facAbsFact.cc:51
CanonicalForm res
Definition: facAbsFact.cc:60
const CanonicalForm & w
Definition: facAbsFact.cc:51
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
bool found
Definition: facFactorize.cc:55
CanonicalForm buf2
Definition: facFqBivar.cc:73
CFList tmp2
Definition: facFqBivar.cc:72
const ExtensionInfo & info
< [in] sqrfree poly
int j
Definition: facHensel.cc:110
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
VAR short errorreported
Definition: feFopen.cc:23
void WerrorS(const char *s)
Definition: feFopen.cc:24
VAR int yylineno
Definition: febase.cc:40
VAR char my_yylinebuf[80]
Definition: febase.cc:44
VAR int myynest
Definition: febase.cc:41
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
Definition: feread.cc:32
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
Definition: fevoices.cc:164
VAR Voice * currentVoice
Definition: fevoices.cc:47
const char * VoiceName()
Definition: fevoices.cc:56
const char sNoName_fe[]
Definition: fevoices.cc:55
void VoiceBackTrack()
Definition: fevoices.cc:75
@ BT_execute
Definition: fevoices.h:23
@ BT_proc
Definition: fevoices.h:20
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
Definition: gen_maps.cc:87
int iiTestConvert(int inputType, int outputType)
Definition: gentable.cc:301
const char * Tok2Cmdname(int tok)
Definition: gentable.cc:140
#define STATIC_VAR
Definition: globaldefs.h:7
#define VAR
Definition: globaldefs.h:5
@ PLUSPLUS
Definition: grammar.cc:274
@ MINUSMINUS
Definition: grammar.cc:271
@ IDEAL_CMD
Definition: grammar.cc:284
@ MATRIX_CMD
Definition: grammar.cc:286
@ BIGINTMAT_CMD
Definition: grammar.cc:278
@ GE
Definition: grammar.cc:269
@ EQUAL_EQUAL
Definition: grammar.cc:268
@ MAP_CMD
Definition: grammar.cc:285
@ PROC_CMD
Definition: grammar.cc:280
@ LE
Definition: grammar.cc:270
@ INTMAT_CMD
Definition: grammar.cc:279
@ MODUL_CMD
Definition: grammar.cc:287
@ SMATRIX_CMD
Definition: grammar.cc:291
@ VECTOR_CMD
Definition: grammar.cc:292
@ NOTEQUAL
Definition: grammar.cc:273
@ DOTDOT
Definition: grammar.cc:267
@ COLONCOLON
Definition: grammar.cc:275
@ NUMBER_CMD
Definition: grammar.cc:288
@ POLY_CMD
Definition: grammar.cc:289
@ RING_CMD
Definition: grammar.cc:281
const char * currid
Definition: grammar.cc:171
int yyparse(void)
Definition: grammar.cc:2111
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:386
STATIC_VAR poly last
Definition: hdegree.cc:1151
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge, ring tailRing)
Definition: hdegree.cc:1079
VAR int hMu
Definition: hdegree.cc:27
VAR omBin indlist_bin
Definition: hdegree.cc:28
VAR int hMu2
Definition: hdegree.cc:27
VAR int hCo
Definition: hdegree.cc:27
VAR indset ISet
Definition: hdegree.cc:352
VAR indset JSet
Definition: hdegree.cc:352
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:34
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:569
monf hCreate(int Nvar)
Definition: hutil.cc:999
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
Definition: hutil.cc:31
VAR varset hvar
Definition: hutil.cc:18
void hKill(monf xmem, int Nvar)
Definition: hutil.cc:1013
VAR int hNexist
Definition: hutil.cc:19
void hDelete(scfmon ev, int ev_length)
Definition: hutil.cc:143
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
Definition: hutil.cc:624
VAR scfmon hwork
Definition: hutil.cc:16
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
Definition: hutil.cc:177
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
Definition: hutil.cc:568
VAR scmon hpure
Definition: hutil.cc:17
VAR scfmon hrad
Definition: hutil.cc:16
VAR int hisModule
Definition: hutil.cc:20
VAR monf radmem
Definition: hutil.cc:21
VAR int hNpure
Definition: hutil.cc:19
VAR int hNrad
Definition: hutil.cc:19
VAR scfmon hexist
Definition: hutil.cc:16
void hRadical(scfmon rad, int *Nrad, int Nvar)
Definition: hutil.cc:414
VAR int hNvar
Definition: hutil.cc:19
scmon * scfmon
Definition: hutil.h:15
indlist * indset
Definition: hutil.h:28
int * varset
Definition: hutil.h:16
int * scmon
Definition: hutil.h:14
int binom(int n, int r)
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
Definition: ideals.h:176
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
ideal idCopy(ideal A)
Definition: ideals.h:60
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:33
ideal * resolvente
Definition: ideals.h:18
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
STATIC_VAR int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
intvec * ivCopy(const intvec *o)
Definition: intvec.h:135
#define IMATELEM(M, I, J)
Definition: intvec.h:85
int IsCmd(const char *n, int &tok)
Definition: iparith.cc:9480
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
Definition: iparith.cc:9070
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
Definition: ipassign.cc:1963
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
Definition: ipconv.cc:435
idhdl ggetid(const char *n)
Definition: ipid.cc:572
void killhdl2(idhdl h, idhdl *ih, ring r)
Definition: ipid.cc:438
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
Definition: ipid.cc:279
VAR package basePack
Definition: ipid.cc:58
void ipListFlag(idhdl h)
Definition: ipid.cc:610
VAR proclevel * procstack
Definition: ipid.cc:52
VAR idhdl currRingHdl
Definition: ipid.cc:59
VAR package currPack
Definition: ipid.cc:57
VAR idhdl currPackHdl
Definition: ipid.cc:55
idhdl packFindHdl(package r)
Definition: ipid.cc:822
VAR coeffs coeffs_BIGINT
Definition: ipid.cc:50
#define IDMAP(a)
Definition: ipid.h:135
#define IDMATRIX(a)
Definition: ipid.h:134
#define IDSTRING(a)
Definition: ipid.h:136
#define IDNEXT(a)
Definition: ipid.h:118
EXTERN_VAR omBin sleftv_bin
Definition: ipid.h:145
#define IDDATA(a)
Definition: ipid.h:126
#define IDPROC(a)
Definition: ipid.h:140
#define setFlag(A, F)
Definition: ipid.h:113
#define IDINTVEC(a)
Definition: ipid.h:128
#define IDIDEAL(a)
Definition: ipid.h:133
#define IDFLAG(a)
Definition: ipid.h:120
#define IDPOLY(a)
Definition: ipid.h:130
#define IDID(a)
Definition: ipid.h:122
#define IDROOT
Definition: ipid.h:19
#define IDINT(a)
Definition: ipid.h:125
#define FLAG_QRING_DEF
Definition: ipid.h:109
#define IDPACKAGE(a)
Definition: ipid.h:139
#define IDLEV(a)
Definition: ipid.h:121
#define IDRING(a)
Definition: ipid.h:127
#define IDTYP(a)
Definition: ipid.h:119
#define FLAG_STD
Definition: ipid.h:106
#define IDLIST(a)
Definition: ipid.h:137
#define IDATTR(a)
Definition: ipid.h:123
VAR int iiRETURNEXPR_len
Definition: iplib.cc:475
INST_VAR sleftv iiRETURNEXPR
Definition: iplib.cc:474
VAR ring * iiLocalRing
Definition: iplib.cc:473
char * iiGetLibProcBuffer(procinfo *pi, int part)
Definition: iplib.cc:197
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
Definition: iplib.cc:1049
lists rDecompose(const ring r)
Definition: ipshell.cc:2165
semicState
Definition: ipshell.cc:3438
@ semicListWrongNumberOfNumerators
Definition: ipshell.cc:3453
@ semicListPGWrong
Definition: ipshell.cc:3467
@ semicListFirstElementWrongType
Definition: ipshell.cc:3445
@ semicListPgNegative
Definition: ipshell.cc:3458
@ semicListSecondElementWrongType
Definition: ipshell.cc:3446
@ semicListMilnorWrong
Definition: ipshell.cc:3466
@ semicListMulNegative
Definition: ipshell.cc:3461
@ semicListFourthElementWrongType
Definition: ipshell.cc:3448
@ semicListWrongNumberOfDenominators
Definition: ipshell.cc:3454
@ semicListNotMonotonous
Definition: ipshell.cc:3464
@ semicListNotSymmetric
Definition: ipshell.cc:3463
@ semicListNNegative
Definition: ipshell.cc:3452
@ semicListDenNegative
Definition: ipshell.cc:3460
@ semicListTooShort
Definition: ipshell.cc:3442
@ semicListTooLong
Definition: ipshell.cc:3443
@ semicListThirdElementWrongType
Definition: ipshell.cc:3447
@ semicListMuNegative
Definition: ipshell.cc:3457
@ semicListNumNegative
Definition: ipshell.cc:3459
@ semicMulNegative
Definition: ipshell.cc:3440
@ semicListWrongNumberOfMultiplicities
Definition: ipshell.cc:3455
@ semicOK
Definition: ipshell.cc:3439
@ semicListFifthElementWrongType
Definition: ipshell.cc:3449
@ semicListSixthElementWrongType
Definition: ipshell.cc:3450
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6344
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
Definition: ipshell.cc:6304
lists rDecompose_list_cf(const ring r)
Definition: ipshell.cc:2126
int iiOpsTwoChar(const char *s)
Definition: ipshell.cc:121
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4431
VAR idhdl iiCurrProc
Definition: ipshell.cc:81
BOOLEAN jjMINRES(leftv res, leftv v)
Definition: ipshell.cc:946
BOOLEAN killlocals_list(int v, lists L)
Definition: ipshell.cc:366
BOOLEAN iiParameter(leftv p)
Definition: ipshell.cc:1380
STATIC_VAR BOOLEAN iiNoKeepRing
Definition: ipshell.cc:84
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
Definition: ipshell.cc:1202
static void rRenameVars(ring R)
Definition: ipshell.cc:2409
void iiCheckPack(package &p)
Definition: ipshell.cc:1634
void rKill(ring r)
Definition: ipshell.cc:6174
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
Definition: ipshell.cc:6566
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6425
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
Definition: ipshell.cc:425
VAR BOOLEAN iiDebugMarker
Definition: ipshell.cc:1063
ring rInit(leftv pn, leftv rv, leftv ord)
Definition: ipshell.cc:5628
leftv iiMap(map theMap, const char *what)
Definition: ipshell.cc:615
int iiRegularity(lists L)
Definition: ipshell.cc:1037
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
Definition: ipshell.cc:4681
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
Definition: ipshell.cc:1953
static void rDecomposeC_41(leftv h, const coeffs C)
Definition: ipshell.cc:1823
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
Definition: ipshell.cc:847
BOOLEAN iiARROW(leftv r, char *a, char *s)
Definition: ipshell.cc:6474
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:4514
BOOLEAN syBetti1(leftv res, leftv u)
Definition: ipshell.cc:3175
void killlocals(int v)
Definition: ipshell.cc:386
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6386
idhdl rDefault(const char *s)
Definition: ipshell.cc:1648
static void rDecomposeC(leftv h, const ring R)
Definition: ipshell.cc:1857
int exprlist_length(leftv v)
Definition: ipshell.cc:552
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
Definition: ipshell.cc:3096
poly iiHighCorner(ideal I, int ak)
Definition: ipshell.cc:1610
BOOLEAN spectrumfProc(leftv result, leftv first)
Definition: ipshell.cc:4187
lists listOfRoots(rootArranger *self, const unsigned int oprec)
Definition: ipshell.cc:5082
static void jjINT_S_TO_ID(int n, int *e, leftv res)
Definition: ipshell.cc:6282
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
Definition: ipshell.cc:1103
VAR leftv iiCurrArgs
Definition: ipshell.cc:80
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
Definition: ipshell.cc:4824
BOOLEAN jjCHARSERIES(leftv res, leftv u)
Definition: ipshell.cc:3350
void rDecomposeCF(leftv h, const ring r, const ring R)
Definition: ipshell.cc:1733
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
Definition: ipshell.cc:6381
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
Definition: ipshell.cc:149
void list_error(semicState state)
Definition: ipshell.cc:3471
BOOLEAN mpJacobi(leftv res, leftv a)
Definition: ipshell.cc:3074
const char * iiTwoOps(int t)
Definition: ipshell.cc:88
BOOLEAN iiBranchTo(leftv, leftv args)
Definition: ipshell.cc:1277
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
Definition: ipshell.cc:980
spectrumState
Definition: ipshell.cc:3554
@ spectrumWrongRing
Definition: ipshell.cc:3561
@ spectrumOK
Definition: ipshell.cc:3555
@ spectrumDegenerate
Definition: ipshell.cc:3560
@ spectrumUnspecErr
Definition: ipshell.cc:3563
@ spectrumNotIsolated
Definition: ipshell.cc:3559
@ spectrumBadPoly
Definition: ipshell.cc:3557
@ spectrumNoSingularity
Definition: ipshell.cc:3558
@ spectrumZero
Definition: ipshell.cc:3556
@ spectrumNoHC
Definition: ipshell.cc:3562
BOOLEAN iiTestAssume(leftv a, leftv b)
Definition: ipshell.cc:6447
void iiSetReturn(const leftv source)
Definition: ipshell.cc:6595
BOOLEAN iiAssignCR(leftv r, leftv arg)
Definition: ipshell.cc:6508
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4473
spectrumState spectrumCompute(poly h, lists *L, int fast)
Definition: ipshell.cc:3813
idhdl rFindHdl(ring r, idhdl n)
Definition: ipshell.cc:1705
void iiDebug()
Definition: ipshell.cc:1065
syStrategy syConvList(lists li)
Definition: ipshell.cc:3259
BOOLEAN spectrumProc(leftv result, leftv first)
Definition: ipshell.cc:4136
BOOLEAN iiDefaultParameter(leftv p)
Definition: ipshell.cc:1264
void rComposeC(lists L, ring R)
Definition: ipshell.cc:2264
BOOLEAN iiCheckRing(int i)
Definition: ipshell.cc:1590
#define BREAK_LINE_LENGTH
Definition: ipshell.cc:1064
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
Definition: ipshell.cc:3572
const short MAX_SHORT
Definition: ipshell.cc:5616
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
Definition: ipshell.cc:3152
ring rSubring(ring org_ring, sleftv *rv)
Definition: ipshell.cc:6012
BOOLEAN kWeight(leftv res, leftv id)
Definition: ipshell.cc:3304
static leftv rOptimizeOrdAsSleftv(leftv ord)
Definition: ipshell.cc:5189
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
Definition: ipshell.cc:5308
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
Definition: ipshell.cc:2495
spectrum spectrumFromList(lists l)
Definition: ipshell.cc:3387
static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
Definition: ipshell.cc:6263
void test_cmd(int i)
Definition: ipshell.cc:514
syStrategy syForceMin(lists li)
Definition: ipshell.cc:3288
static void iiReportTypes(int nr, int t, const short *T)
Definition: ipshell.cc:6548
void rDecomposeRing(leftv h, const ring R)
Definition: ipshell.cc:1921
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:3343
static BOOLEAN iiInternalExport(leftv v, int toLev)
Definition: ipshell.cc:1416
static void rDecompose_23456(const ring r, lists L)
Definition: ipshell.cc:2025
void copy_deep(spectrum &spec, lists l)
Definition: ipshell.cc:3363
void killlocals_rec(idhdl *root, int v, ring r)
Definition: ipshell.cc:330
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
Definition: ipshell.cc:4658
semicState list_is_spectrum(lists l)
Definition: ipshell.cc:4256
static void killlocals0(int v, idhdl *localhdl, const ring r)
Definition: ipshell.cc:295
BOOLEAN semicProc(leftv res, leftv u, leftv v)
Definition: ipshell.cc:4554
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
Definition: ipshell.cc:4572
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
Definition: iparith.cc:1619
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
Definition: ipshell.cc:2787
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
Definition: ipshell.cc:4566
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
Definition: ipshell.cc:6376
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
Definition: ipshell.cc:1001
const char * lastreserved
Definition: ipshell.cc:82
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
Definition: ipshell.cc:5580
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
Definition: ipshell.cc:3187
void type_cmd(leftv v)
Definition: ipshell.cc:254
BOOLEAN iiWRITE(leftv, leftv v)
Definition: ipshell.cc:588
void paPrint(const char *n, package p)
Definition: ipshell.cc:6327
static resolvente iiCopyRes(resolvente r, int l)
Definition: ipshell.cc:936
void rSetHdl(idhdl h)
Definition: ipshell.cc:5129
BOOLEAN kQHWeight(leftv res, leftv v)
Definition: ipshell.cc:3326
void rComposeRing(lists L, ring R)
Definition: ipshell.cc:2316
BOOLEAN iiExport(leftv v, int toLev)
Definition: ipshell.cc:1515
BOOLEAN jjBETTI(leftv res, leftv u)
Definition: ipshell.cc:967
void spectrumPrintError(spectrumState state)
Definition: ipshell.cc:4105
lists getList(spectrum &spec)
Definition: ipshell.cc:3399
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
Definition: ipshell.cc:4925
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
Definition: ipshell.cc:6312
void rDecomposeRing_41(leftv h, const coeffs C)
Definition: ipshell.cc:1893
static BOOLEAN rComposeVar(const lists L, ring R)
Definition: ipshell.cc:2450
STATIC_VAR jList * T
Definition: janet.cc:30
STATIC_VAR Poly * h
Definition: janet.cc:971
STATIC_VAR jList * Q
Definition: janet.cc:30
VAR BITSET validOpts
Definition: kstd1.cc:60
VAR BITSET kOptions
Definition: kstd1.cc:45
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2433
VAR denominator_list DENOMINATOR_LIST
Definition: kutil.cc:84
denominator_list next
Definition: kutil.h:65
#define pi
Definition: libparse.cc:1145
if(yy_init)
Definition: libparse.cc:1420
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
Definition: old.gring.cc:2682
char * lString(lists l, BOOLEAN typed, int dim)
Definition: lists.cc:380
VAR omBin slists_bin
Definition: lists.cc:23
BOOLEAN lRingDependend(lists L)
Definition: lists.cc:199
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
Definition: lists.cc:315
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
Definition: lists.cc:216
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
Definition: maps.cc:163
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
Definition: maps_ip.cc:45
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:37
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:64
#define MATELEM(mat, i, j)
1-based access to matrix
Definition: matpol.h:29
ip_smatrix * matrix
Definition: matpol.h:43
#define MATROWS(i)
Definition: matpol.h:26
#define MATCOLS(i)
Definition: matpol.h:27
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:647
#define assume(x)
Definition: mod2.h:387
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
#define pSetCoeff0(p, n)
Definition: monomials.h:59
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
ideal loNewtonPolytope(const ideal id)
Definition: mpr_base.cc:3190
@ mprOk
Definition: mpr_base.h:98
EXTERN_VAR size_t gmp_output_digits
Definition: mpr_base.h:115
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
Definition: mpr_complex.cc:704
gmp_float sqrt(const gmp_float &a)
Definition: mpr_complex.cc:327
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
Definition: mpr_complex.cc:60
slists * lists
Definition: mpr_numeric.h:146
void report(const char *fmt, const char *name)
Definition: shared.cc:666
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nDelete(n)
Definition: numbers.h:16
#define nIsZero(n)
Definition: numbers.h:19
#define nSetMap(R)
Definition: numbers.h:43
#define nIsMOne(n)
Definition: numbers.h:26
#define nCopy(n)
Definition: numbers.h:15
#define nPrint(a)
only for debug, over any initalized currRing
Definition: numbers.h:46
#define nInvers(a)
Definition: numbers.h:33
#define SHORT_REAL_LENGTH
Definition: numbers.h:57
#define nIsOne(n)
Definition: numbers.h:25
#define nInit(i)
Definition: numbers.h:24
#define omStrDup(s)
Definition: omAllocDecl.h:263
#define omfree(addr)
Definition: omAllocDecl.h:237
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omCheckAddr(addr)
Definition: omAllocDecl.h:328
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220
#define omAllocBin(bin)
Definition: omAllocDecl.h:205
#define omCheckAddrSize(addr, size)
Definition: omAllocDecl.h:327
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:206
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258
#define omRealloc0Size(addr, o_size, size)
Definition: omAllocDecl.h:221
#define NULL
Definition: omList.c:12
VAR unsigned si_opt_2
Definition: options.c:6
VAR unsigned si_opt_1
Definition: options.c:5
#define V_DEF_RES
Definition: options.h:49
#define BVERBOSE(a)
Definition: options.h:34
#define TEST_V_ALLWARN
Definition: options.h:143
#define Sy_bit(x)
Definition: options.h:31
#define V_REDEFINE
Definition: options.h:44
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4195
poly p_One(const ring r)
Definition: p_polys.cc:1313
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:1002
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
static unsigned pLength(poly a)
Definition: p_polys.h:191
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1320
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:846
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1507
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:971
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
Compatiblity layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
Definition: polys.h:282
#define pTest(p)
Definition: polys.h:415
#define pDelete(p_ptr)
Definition: polys.h:186
#define pSetm(p)
Definition: polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition: polys.h:238
#define pNeg(p)
Definition: polys.h:198
#define pDiff(a, b)
Definition: polys.h:296
void pNorm(poly p)
Definition: polys.h:363
#define pSub(a, b)
Definition: polys.h:287
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
Definition: polys.h:115
#define pGetVariables(p, e)
Definition: polys.h:251
#define pSetComp(p, v)
Definition: polys.h:38
void wrp(poly p)
Definition: polys.h:310
void pWrite(poly p)
Definition: polys.h:308
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
#define pIsPurePower(p)
Definition: polys.h:248
#define pSetExp(p, i, v)
Definition: polys.h:42
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
#define pOne()
Definition: polys.h:315
poly * polyset
Definition: polys.h:259
#define pDecrExp(p, i)
Definition: polys.h:44
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:192
int IsPrime(int p)
Definition: prime.cc:61
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
void Werror(const char *fmt,...)
Definition: reporter.cc:189
EXTERN_VAR int traceit
Definition: reporter.h:24
#define TRACE_SHOW_RINGS
Definition: reporter.h:36
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3492
const char * rSimpleOrdStr(int ord)
Definition: ring.cc:77
int rTypeOfMatrixOrder(const intvec *order)
Definition: ring.cc:185
VAR omBin sip_sring_bin
Definition: ring.cc:43
ring rAssure_HasComp(const ring r)
Definition: ring.cc:4705
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1421
BOOLEAN rCheckIV(const intvec *iv)
Definition: ring.cc:175
rRingOrder_t rOrderName(char *ordername)
Definition: ring.cc:507
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:450
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
Definition: ring.cc:1746
void rSetSyzComp(int k, const ring r)
Definition: ring.cc:5166
static BOOLEAN rField_is_R(const ring r)
Definition: ring.h:519
static int rBlocks(ring r)
Definition: ring.h:569
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:530
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:510
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:501
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
static BOOLEAN rField_is_long_C(const ring r)
Definition: ring.h:546
static ring rIncRefCnt(ring r)
Definition: ring.h:843
static BOOLEAN rField_is_Zn(const ring r)
Definition: ring.h:513
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:600
static int rInternalChar(const ring r)
Definition: ring.h:690
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411
rRingOrder_t
order stuff
Definition: ring.h:68
@ ringorder_lp
Definition: ring.h:77
@ ringorder_a
Definition: ring.h:70
@ ringorder_am
Definition: ring.h:88
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_rs
opposite of ls
Definition: ring.h:92
@ ringorder_C
Definition: ring.h:73
@ ringorder_S
S?
Definition: ring.h:75
@ ringorder_ds
Definition: ring.h:84
@ ringorder_Dp
Definition: ring.h:80
@ ringorder_unspec
Definition: ring.h:94
@ ringorder_L
Definition: ring.h:89
@ ringorder_Ds
Definition: ring.h:85
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_rp
Definition: ring.h:79
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_no
Definition: ring.h:69
@ ringorder_Wp
Definition: ring.h:82
@ ringorder_ws
Definition: ring.h:86
@ ringorder_Ws
Definition: ring.h:87
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:93
@ ringorder_ls
Definition: ring.h:83
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
@ ringorder_M
Definition: ring.h:74
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:540
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:507
static void rDecRefCnt(ring r)
Definition: ring.h:844
static char const ** rParameter(const ring r)
(r->cf->parameter)
Definition: ring.h:626
static BOOLEAN rField_is_long_R(const ring r)
Definition: ring.h:543
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:516
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:522
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:593
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition: ring.h:761
#define rTest(r)
Definition: ring.h:786
#define rField_is_Ring(R)
Definition: ring.h:486
idrec * idhdl
Definition: ring.h:21
void myychangebuffer()
Definition: scanner.cc:2311
VAR int sdb_flags
Definition: sdb.cc:31
#define mpz_sgn1(A)
Definition: si_gmp.h:18
int status int void size_t count
Definition: si_signals.h:59
int status int void * buf
Definition: si_signals.h:59
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
#define IDELEMS(i)
Definition: simpleideals.h:23
#define R
Definition: sirandom.c:27
BOOLEAN hasAxis(ideal J, int k, const ring r)
Definition: spectrum.cc:81
int hasOne(ideal J, const ring r)
Definition: spectrum.cc:96
BOOLEAN ringIsLocal(const ring r)
Definition: spectrum.cc:461
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
Definition: spectrum.cc:142
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
Definition: spectrum.cc:309
BOOLEAN hasLinearTerm(poly h, const ring r)
Definition: spectrum.h:30
BOOLEAN hasConstTerm(poly h, const ring r)
Definition: spectrum.h:28
ip_package * package
Definition: structs.h:43
sleftv * leftv
Definition: structs.h:57
char * char_ptr
Definition: structs.h:53
@ isNotHomog
Definition: structs.h:36
#define BITSET
Definition: structs.h:16
#define loop
Definition: structs.h:75
int * int_ptr
Definition: structs.h:54
VAR omBin procinfo_bin
Definition: subexpr.cc:42
INST_VAR sleftv sLastPrinted
Definition: subexpr.cc:46
VAR BOOLEAN siq
Definition: subexpr.cc:48
@ LANG_MAX
Definition: subexpr.h:22
@ LANG_SINGULAR
Definition: subexpr.h:22
@ LANG_NONE
Definition: subexpr.h:22
@ LANG_C
Definition: subexpr.h:22
@ LANG_TOP
Definition: subexpr.h:22
BOOLEAN RingDependend(int t)
Definition: subexpr.h:142
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:770
void syMinimizeResolvente(resolvente res, int length, int first)
Definition: syz.cc:355
intvec ** hilb_coeffs
Definition: syz.h:46
resolvente minres
Definition: syz.h:58
void syKillComputation(syStrategy syzstr, ring r=currRing)
Definition: syz1.cc:1495
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
Definition: syz1.cc:1641
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
Definition: syz1.cc:1755
void syKillEmptyEntres(resolvente res, int length)
Definition: syz1.cc:2199
short list_length
Definition: syz.h:62
resolvente res
Definition: syz.h:47
resolvente fullres
Definition: syz.h:57
intvec ** weights
Definition: syz.h:45
ssyStrategy * syStrategy
Definition: syz.h:35
resolvente orderedRes
Definition: syz.h:48
int length
Definition: syz.h:60
#define IDHDL
Definition: tok.h:31
@ ALIAS_CMD
Definition: tok.h:34
@ BIGINT_CMD
Definition: tok.h:38
@ CRING_CMD
Definition: tok.h:56
@ LIST_CMD
Definition: tok.h:118
@ INTVEC_CMD
Definition: tok.h:101
@ PACKAGE_CMD
Definition: tok.h:149
@ CMATRIX_CMD
Definition: tok.h:46
@ DEF_CMD
Definition: tok.h:58
@ CNUMBER_CMD
Definition: tok.h:47
@ LINK_CMD
Definition: tok.h:117
@ QRING_CMD
Definition: tok.h:158
@ STRING_CMD
Definition: tok.h:185
@ INT_CMD
Definition: tok.h:96
#define ANY_TYPE
Definition: tok.h:30
struct for passing initialization parameters to naInitChar
Definition: transext.h:88
char name(const Variable &v)
Definition: variable.h:95
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:20
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:108
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.cc:78