10#include "factory/factory.h"
114 case LE:
return "<=";
115 case GE:
return ">=";
124 if (
s[1]==
'\0')
return s[0];
125 else if (
s[2]!=
'\0')
return 0;
128 case '.':
if (
s[1]==
'.')
return DOTDOT;
134 case '+':
if (
s[1]==
'+')
return PLUSPLUS;
138 case '<':
if (
s[1]==
'=')
return LE;
141 case '>':
if (
s[1]==
'=')
return GE;
143 case '!':
if (
s[1]==
'=')
return NOTEQUAL;
155 if(fullname) sprintf(
buf2,
"%s::%s",
"",
IDID(
h));
199 && (strlen(
IDPROC(
h)->libname)>0))
210 memset(buffer,0,
sizeof(buffer));
212 if ((
s=strchr(buffer,
'\n'))!=
NULL)
220 Print(
"..., %d char(s)",
l);
237 { number2 n=(number2)
IDDATA(
h);
243 Print(
" %d x %d (%s)",
269 ((
intvec*)(
v->Data()))->cols());
break;
273 case MODUL_CMD:
Print(
", rk %d\n", (
int)(((ideal)(
v->Data()))->rank));
break;
376 && (((ring)d)->idroot!=
NULL))
402 if (((ring)
h->data)->idroot!=
NULL)
427 package savePack=currPack;
434 if (strcmp(what,
"all")==0)
469 Werror(
"%s is undefined",what);
503 package save_p=currPack;
537 WarnS(
"Gerhard, use the option command");
567 rc += ((
intvec *)(
v->Data()))->length();
578 rc+=((
lists)
v->Data())->nr+1;
599 WerrorS(
"write: need at least two arguments");
609 Werror(
"cannot write to %s",
s);
636 Werror(
"can not map from ground field of %s to current ground field",
640 if (
IDELEMS(theMap)<src_ring->N)
644 (src_ring->N)*
sizeof(poly));
654 short src_lV = src_ring->isLPring;
655 short src_ncGenCount = src_ring->LPncGenCount;
656 short src_nVars = src_lV - src_ncGenCount;
657 int src_nblocks = src_ring->N / src_lV;
660 short dest_ncGenCount =
currRing->LPncGenCount;
663 for(
i=
IDELEMS(theMap);
i < src_lV - src_ncGenCount;
i++)
671 if (theMap->m[
i] !=
NULL)
679 for(
i = src_nVars;
i < src_lV;
i++)
681 short ncGenIndex =
i - src_nVars;
682 if (ncGenIndex < dest_ncGenCount)
696 for(
i = 1;
i < src_nblocks;
i++)
698 for(
int j = 0;
j < src_lV;
j++)
716 WerrorS(
"argument of a map must have a name");
728 save_r=
IDMAP(
w)->preimage;
738 ideal
id=(ideal)tmpW.
data;
746 for(
int j=
IDELEMS(theMap)-1;
j>=0 && !overflow;
j--)
748 if (theMap->m[
j]!=
NULL)
755 if ((
p!=
NULL) && (degs[
i]!=0) &&
756 ((
unsigned long)deg_monexp > (
currRing->bitmask / ((
unsigned long)degs[
i])/2)))
768 for(
int j=
IDELEMS(theMap)-1;
j>=0 && !overflow;
j--)
770 if (theMap->m[
j]!=
NULL)
773 poly
p=(poly)tmpW.
data;
776 ((
unsigned long)deg_monexp > (
currRing->bitmask / ((
unsigned long)deg)/2)))
790 Warn(
"possible OVERFLOW in map, max exponent is %ld",
currRing->bitmask/2);
809 char *tmp = theMap->preimage;
810 theMap->preimage=(
char*)1L;
813 theMap->preimage=tmp;
828 IDMAP(
w)->preimage=save_r;
836 Werror(
"%s undefined in %s",what,theMap->preimage);
841 Werror(
"cannot find preimage %s",theMap->preimage);
857 sprintf(
s,
"%s(%d)",
name,
i+1);
864 h->data.uideal=(ideal)L->
m[
i].
data;
867 Print(
"//defining: %s as %d-th syzygy module\n",
s,
i+1);
872 Warn(
"cannot define %s",
s);
952 int add_row_shift = 0;
955 if (weights!=
NULL) add_row_shift=weights->
min_in();
984 l->m[0].rtyp=u->
Typ();
985 l->m[0].data=u->
Data();
988 l->m[0].attribute=*a;
995 l->m[0].attribute=
NULL;
1009 int add_row_shift=0;
1015 add_row_shift = ww->
min_in();
1016 (*weights) -= add_row_shift;
1023 res->data=(
void*)res_im;
1026 for(
int i=1;
i<=res_im->
rows();
i++)
1028 if (
IMATELEM(*res_im,1,
i)==0) { add_row_shift--; }
1033 if (weights!=
NULL)
delete weights;
1046 int add_row_shift=0;
1051 add_row_shift = ww->
min_in();
1052 (*weights) -= add_row_shift;
1057 if (weights!=
NULL)
delete weights;
1060 return reg+1+add_row_shift;
1064#define BREAK_LINE_LENGTH 80
1091 else if(strncmp(
s,
"cont;",5)==0)
1098 strcat(
s,
"\n;~\n");
1168 res->m[
i].data = (
void *)save->set;
1180 res->m[
i].data = (
void *)save->set;
1206 const char *
id =
name->name;
1211 WerrorS(
"object to declare is not a name");
1221 Werror(
"can not define `%s` in other package",
name->name);
1282 WerrorS(
"branchTo can only occur in a proc");
1290 if (ll!=(
l-1))
return FALSE;
1293 short *t=(
short*)
omAlloc(
l*
sizeof(
short));
1297 for(
i=1;
i<
l;
i++,
h=
h->next)
1302 Werror(
"arg %d is not a string",
i);
1306 b=
IsCmd((
char *)
h->Data(),tt);
1311 Werror(
"arg %d is not a type name",
i);
1318 Werror(
"last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1331 if(
pi->data.s.body==
NULL )
1360 if (err==0)
Warn(
"too many arguments for %s",
IDID(currProc));
1384 if (strcmp(
p->name,
"#")==0)
1393 if (strcmp(
p->name,
"#")==0)
1395 is_default_list=
TRUE;
1403 if (is_default_list)
1456 WerrorS(
"object with a different type exists");
1474 Warn(
"'%s': no such identifier\n",
v->
name);
1477 package frompack=v->req_packhdl;
1491 v->req_packhdl=rootpack;
1492 if (
h==frompack->idroot)
1494 frompack->idroot=
h->next;
1498 idhdl hh=frompack->idroot;
1505 Werror(
"`%s` not found",
v->Name());
1509 h->next=rootpack->idroot;
1523 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1549 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1562 else if (
IDTYP(old)==
v->Typ())
1600 WerrorS(
"no ring active (9)");
1642 WarnS(
"package not found\n");
1663 #ifndef TEST_ZN_AS_ZP
1667 mpz_init_set_ui(modBase, (
long)32003);
1674 r->cf->has_simple_Inverse=1;
1687 r->block0 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1688 r->block1 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1707 if ((r==
NULL)||(r->VarOffset==
NULL))
1746 L->
m[0].
data=(
void *)(
long)r->cf->ch;
1752 for(
i=0;
i<r->N;
i++)
1758 L->
m[1].
data=(
void *)LL;
1775 if (r->block1[
i]-r->block0[
i] >=0 )
1777 j=r->block1[
i]-r->block0[
i];
1780 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
1782 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j];
1784 else switch (r->order[
i])
1793 for(;
j>=0;
j--) (*iv)[
j]=1;
1803 LLL->
m[1].
data=(
void *)iv;
1804 LL->
m[
i].
data=(
void *)LLL;
1807 L->
m[2].
data=(
void *)LL;
1817 pSetCoeff0(q->m[0],(number)(r->qideal->m[0]));
1818 L->
m[3].
data=(
void *)q;
1837 L->
m[0].
data=(
void *)0;
1847 L->
m[1].
data=(
void *)LL;
1871 L->
m[0].
data=(
void *)0;
1881 L->
m[1].
data=(
void *)LL;
1915 LL->
m[1].
data=(
void *) C->modExponent;
1917 L->
m[1].
data=(
void *)LL;
1944 LL->
m[1].
data=(
void *)
R->cf->modExponent;
1946 L->
m[1].
data=(
void *)LL;
1960 WerrorS(
"ring with polynomial data must be the base ring or compatible");
1973 else if ( C->extRing!=
NULL )
1983 Lc->m[0].data=(
void*)(
long)C->m_nfCharQ;
1990 Lc->m[1].data=(
void*)Lv;
2001 Loo->
m[1].
data=(
void *)iv;
2004 Lo->
m[0].
data=(
void*)Loo;
2007 Lc->m[2].data=(
void*)Lo;
2013 res->data=(
void*)
Lc;
2018 res->data=(
void *)(
long)C->ch;
2032 for(
i=0;
i<r->N;
i++)
2038 L->
m[1].
data=(
void *)LL;
2059 assume( r->block0[
i] == r->block1[
i] );
2060 const int s = r->block0[
i];
2066 else if (r->block1[
i]-r->block0[
i] >=0 )
2068 int bl=
j=r->block1[
i]-r->block0[
i];
2076 j+=r->wvhdl[
i][bl+1];
2079 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
2081 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j+(
j>bl)];
2083 else switch (r->order[
i])
2092 for(;
j>=0;
j--) (*iv)[
j]=1;
2102 LLL->
m[1].
data=(
void *)iv;
2103 LL->
m[
i].
data=(
void *)LLL;
2106 L->
m[2].
data=(
void *)LL;
2110 if (r->qideal==
NULL)
2141 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2159 L->
m[0].
data=(
char*)r->cf; r->cf->ref++;
2174 || (r->qideal !=
NULL)
2181 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2206 else if ( r->cf->extRing!=
NULL )
2216 Lc->m[0].data=(
void*)(
long)r->cf->m_nfCharQ;
2223 Lc->m[1].data=(
void*)Lv;
2234 Loo->
m[1].
data=(
void *)iv;
2237 Lo->
m[0].
data=(
void*)Loo;
2240 Lc->m[2].data=(
void*)Lo;
2251 L->
m[0].
data=(
void *)(
long)r->cf->ch;
2256 L->
m[0].
data=(
void *)r->cf;
2271 WerrorS(
"invalid coeff. field description, expecting 0");
2279 WerrorS(
"invalid coeff. field description, expecting precision list");
2287 WerrorS(
"invalid coeff. field description list, expected list(`int`,`int`)");
2290 int r1=(int)(
long)LL->
m[0].
data;
2291 int r2=(int)(
long)LL->
m[1].
data;
2301 WerrorS(
"invalid coeff. field description, expecting parameter name");
2323 unsigned int modExponent = 1;
2327 mpz_init_set_ui(modBase,0);
2338 number tmp= (number) LL->
m[0].
data;
2345 mpz_init_set_ui(modBase,(
unsigned long) LL->
m[0].
data);
2349 mpz_init_set_ui(modBase,0);
2353 modExponent = (
unsigned long) LL->
m[1].
data;
2361 if ((mpz_cmp_ui(modBase, 1) == 0) && (
mpz_sgn1(modBase) < 0))
2363 WerrorS(
"Wrong ground ring specification (module is 1)");
2366 if (modExponent < 1)
2368 WerrorS(
"Wrong ground ring specification (exponent smaller than 1)");
2377 else if (modExponent > 1)
2380 if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
2391 info.exp= modExponent;
2402 info.exp= modExponent;
2416 for(
i=0;
i<
R->N-1;
i++)
2418 for(
j=
i+1;
j<
R->N;
j++)
2420 if (strcmp(
R->names[
i],
R->names[
j])==0)
2425 R->names[
j]=(
char *)
omAlloc(2+strlen(
R->names[
i]));
2426 sprintf(
R->names[
j],
"@%s",
R->names[
i]);
2444 sprintf(
R->names[
j],
"@@(%d)",
i+1);
2470 poly
p=(poly)
v->m[
i].Data();
2476 Werror(
"var name %d must be a string or a ring variable",
i+1);
2482 Werror(
"var name %d must be `string` (not %d)",
i+1,
v->m[
i].Typ());
2489 WerrorS(
"variable must be given as `list`");
2505 for (
int j=0;
j < n-1;
j++)
2512 &&(strcmp((
char*)vv->
m[0].
Data(),
"L")==0))
2514 number nn=(number)vv->
m[1].
Data();
2521 Werror(
"illegal argument for pseudo ordering L: %d",vv->
m[1].
Typ());
2528 if (bitmask!=0) n--;
2532 R->block0=(
int *)
omAlloc0((n+1)*
sizeof(int));
2533 R->block1=(
int *)
omAlloc0((n+1)*
sizeof(int));
2536 for (j_in_R= n-2; j_in_R>=0; j_in_R--)
2539 for(j_in_R=0,j_in_L=0;j_in_R<n-1;j_in_R++,j_in_L++)
2544 WerrorS(
"ordering must be list of lists");
2551 if (strcmp((
char*)vv->
m[0].
Data(),
"L")==0)
2565 if (j_in_R==0)
R->block0[0]=1;
2582 if (jj<0)
R->block0[j_in_R]=1;
2583 else R->block0[j_in_R]=
R->block1[jj]+1;
2590 for(
int i=0;
i<
l;
i++) (*iv)[
i]=1;
2609 R->block1[j_in_R]=
si_max(
R->block0[j_in_R],
R->block0[j_in_R]+iv_len-1);
2610 if (
R->block1[j_in_R]>
R->N)
2612 if (
R->block0[j_in_R]>
R->N)
2617 R->block1[j_in_R]=
R->N;
2618 iv_len=
R->block1[j_in_R]-
R->block0[j_in_R]+1;
2623 switch (
R->order[j_in_R])
2632 R->wvhdl[j_in_R] =(
int *)
omAlloc(iv_len*
sizeof(
int));
2633 for (
i=0;
i<iv_len;
i++)
2635 R->wvhdl[j_in_R][
i]=(*iv)[
i];
2640 for (
i=0;
i<iv_len;
i++)
2642 R->wvhdl[j_in_R][
i]=(*iv)[
i];
2644 R->wvhdl[j_in_R][
i]=iv->
length() - iv_len;
2648 R->wvhdl[j_in_R][
i+1]=(*iv)[
i];
2653 for (
i=0;
i<iv->
length();
i++)
R->wvhdl[j_in_R][
i]=(*iv)[
i];
2654 R->block1[j_in_R]=
si_max(
R->block0[j_in_R],
R->block0[j_in_R]+(
int)
sqrt((
double)(iv->
length())));
2655 if (
R->block1[j_in_R]>
R->N)
2657 R->block1[j_in_R]=
R->N;
2670 for (
i=0;
i<iv_len;
i++)
2672 if (((*iv)[
i]!=1)&&(iv_len!=1))
2675 Warn(
"ignore weight %d for ord %d (%s) at pos %d\n>>%s<<",
2686 R->block1[j_in_R]=
R->block0[j_in_R]=0;
2690 R->block1[j_in_R]=
R->block0[j_in_R]=(*iv)[0];
2696 R->block1[j_in_R] =
R->block0[j_in_R] = 0;
2699 const int s = (*iv)[0];
2701 R->block1[j_in_R] =
R->block0[j_in_R] =
s;
2710 WerrorS(
"ring order not implemented");
2718 WerrorS(
"ordering name must be a (string,intvec)");
2727 if (
R->block1[j_in_R] !=
R->N)
2738 R->block0[j_in_R] <=
R->N)
2740 R->block1[j_in_R] =
R->N;
2744 Werror(
"ordering incomplete: size (%d) should be %d",
R->block1[j_in_R],
R->N);
2748 if (
R->block0[j_in_R]>
R->N)
2750 Werror(
"not enough variables (%d) for ordering block %d, scanned so far:",
R->N,j_in_R+1);
2751 for(
int ii=0;ii<=j_in_R;ii++)
2780 WerrorS(
"ordering must be given as `list`");
2783 if (bitmask!=0) {
R->bitmask=bitmask;
R->wanted_maxExp=bitmask; }
2815 int ch = (int)(
long)L->
m[0].
Data();
2825 Warn(
"%d is invalid characteristic of ground field. %d is used.", ch,
l);
2828 #ifndef TEST_ZN_AS_ZP
2832 mpz_init_set_ui(modBase,(
long) ch);
2839 R->cf->has_simple_Inverse=1;
2860 int ch = (int)(
long)LL->
m[0].
Data();
2861 while ((ch!=
fftable[is_gf_char]) && (
fftable[is_gf_char])) is_gf_char++;
2862 if (
fftable[is_gf_char]==0) is_gf_char=-1;
2883 WerrorS(
"could not create the specified coefficient field");
2887 if( extRing->qideal !=
NULL )
2891 extParam.
r = extRing;
2898 extParam.
r = extRing;
2908 WerrorS(
"coefficient field must be described by `int` or `list`");
2914 WerrorS(
"could not create coefficient field described by the input!");
2926 #ifdef HAVE_SHIFTBBA
2929 R->isLPring=isLetterplace;
2934 if ((bitmask!=0)&&(
R->wanted_maxExp==0))
R->wanted_maxExp=bitmask;
2941 ideal q=(ideal)L->
m[3].
Data();
2947 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
2954 int par_perm_size=0;
2974 par_perm_size=
rPar(orig_ring);
2984 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
2988 perm=(
int *)
omAlloc0((orig_ring->N+1)*
sizeof(int));
2989 if (par_perm_size!=0)
2990 par_perm=(
int *)
omAlloc0(par_perm_size*
sizeof(
int));
2994 maFindPerm(orig_ring->names,orig_ring->N,orig_ring->parameter,orig_ring->P,
3003 else if (par_perm_size!=0)
3011 par_perm,par_perm_size);
3029 WerrorS(
"q-ideal must be given as `ideal`");
3078 ideal
id=(ideal)a->
Data();
3098 int n=(int)(
long)
b->Data();
3099 int d=(int)(
long)c->
Data();
3106 if ((d>n) || (d<1) || (n<1))
3111 int *choise = (
int*)
omAlloc(d*
sizeof(
int));
3115 temp=(ideal)id->
Data();
3130 p =
pCopy(temp->m[choise[
l-1]-1]);
3156 BOOLEAN minim=(int)(
long)
w->Data();
3158 int add_row_shift=0;
3164 add_row_shift = ww->
min_in();
3165 (*weights) -= add_row_shift;
3194 if ((fullres==
NULL) && (minres==
NULL))
3306 ideal F=(ideal)id->
Data();
3312 res->data=(
char *)iv;
3316 double wNsqr = (double)2.0 / (
double)n;
3318 x = (
int * )
omAlloc(2 * (n + 1) *
sizeof(int));
3320 for (
i = n;
i!=0;
i--)
3321 (*iv)[
i-1] =
x[
i + n + 1];
3339 res->data=(
void *)
b;
3365 spec.
mu = (int)(
long)(
l->m[0].Data( ));
3366 spec.
pg = (int)(
long)(
l->m[1].Data( ));
3367 spec.
n = (int)(
long)(
l->m[2].Data( ));
3375 for(
int i=0;
i<spec.
n;
i++ )
3378 spec.
w[
i] = (*mul)[
i];
3409 for(
int i=0;
i<spec.
n;
i++ )
3413 (*mult)[
i] = spec.
w[
i];
3423 L->
m[0].
data = (
void*)(
long)spec.
mu;
3424 L->
m[1].
data = (
void*)(
long)spec.
pg;
3425 L->
m[2].
data = (
void*)(
long)spec.
n;
3476 WerrorS(
"the list is too short" );
3479 WerrorS(
"the list is too long" );
3483 WerrorS(
"first element of the list should be int" );
3486 WerrorS(
"second element of the list should be int" );
3489 WerrorS(
"third element of the list should be int" );
3492 WerrorS(
"fourth element of the list should be intvec" );
3495 WerrorS(
"fifth element of the list should be intvec" );
3498 WerrorS(
"sixth element of the list should be intvec" );
3502 WerrorS(
"first element of the list should be positive" );
3505 WerrorS(
"wrong number of numerators" );
3508 WerrorS(
"wrong number of denominators" );
3511 WerrorS(
"wrong number of multiplicities" );
3515 WerrorS(
"the Milnor number should be positive" );
3518 WerrorS(
"the geometrical genus should be nonnegative" );
3521 WerrorS(
"all numerators should be positive" );
3524 WerrorS(
"all denominators should be positive" );
3527 WerrorS(
"all multiplicities should be positive" );
3531 WerrorS(
"it is not symmetric" );
3534 WerrorS(
"it is not monotonous" );
3538 WerrorS(
"the Milnor number is wrong" );
3541 WerrorS(
"the geometrical genus is wrong" );
3545 WerrorS(
"unspecific error" );
3581 ( fast==2 ? 2 : 1 ) );
3591 ( fast==0 || (*node)->weight<=smax ) )
3613 cmp =
pCmp( (*node)->mon,
f );
3636 (*node)->nf =
search->nf;
3640 while( cmp<0 &&
f!=(poly)
NULL );
3653 if( (*node)->weight<=(
Rational)1 ) pg++;
3654 if( (*node)->weight==smax ) z++;
3655 if( (*node)->weight>weight_prev ) n++;
3657 weight_prev = (*node)->weight;
3658 node = &((*node)->next);
3680 cmp =
pCmp( (*node)->mon,
f );
3693 while( cmp<0 &&
f!=(poly)
NULL );
3709 n = ( z > 0 ? 2*n - 1 : 2*n );
3724 ( fast==0 ||
search->weight<=smax );
3750 for( n1=0, n2=n-1; n1<n2; n1++, n2-- )
3753 (*den) [n2] = (*den)[n1];
3754 (*mult)[n2] = (*mult)[n1];
3762 if( fast==0 || fast==1 )
3766 for(
int n1=0, n2=n-1 ; n1<n2 && symmetric==
TRUE; n1++, n2-- )
3769 (*
den) [n1]!= (*
den)[n2] ||
3776 if( symmetric==
FALSE )
3786 (*L)->m[0].data = (
void*)(
long)
mu;
3803 (*L)->m[0].data = (
void*)(
long)
mu;
3804 (*L)->m[1].data = (
void*)(
long)pg;
3805 (*L)->m[2].data = (
void*)(
long)n;
3806 (*L)->m[3].data = (
void*)nom;
3807 (*L)->m[4].data = (
void*)
den;
3808 (*L)->m[5].data = (
void*)
mult;
3817 #ifdef SPECTRUM_DEBUG
3818 #ifdef SPECTRUM_PRINT
3819 #ifdef SPECTRUM_IOSTREAM
3820 cout <<
"spectrumCompute\n";
3821 if( fast==0 ) cout <<
" no optimization" << endl;
3822 if( fast==1 ) cout <<
" weight optimization" << endl;
3823 if( fast==2 ) cout <<
" symmetry optimization" << endl;
3825 fputs(
"spectrumCompute\n",stdout );
3826 if( fast==0 ) fputs(
" no optimization\n", stdout );
3827 if( fast==1 ) fputs(
" weight optimization\n", stdout );
3828 if( fast==2 ) fputs(
" symmetry optimization\n", stdout );
3872 #ifdef SPECTRUM_DEBUG
3873 #ifdef SPECTRUM_PRINT
3874 #ifdef SPECTRUM_IOSTREAM
3875 cout <<
"\n computing the Jacobi ideal...\n";
3877 fputs(
"\n computing the Jacobi ideal...\n",stdout );
3886 #ifdef SPECTRUM_DEBUG
3887 #ifdef SPECTRUM_PRINT
3888 #ifdef SPECTRUM_IOSTREAM
3891 fputs(
" ", stdout );
3902 #ifdef SPECTRUM_DEBUG
3903 #ifdef SPECTRUM_PRINT
3904 #ifdef SPECTRUM_IOSTREAM
3906 cout <<
" computing a standard basis..." << endl;
3908 fputs(
"\n", stdout );
3909 fputs(
" computing a standard basis...\n", stdout );
3917 #ifdef SPECTRUM_DEBUG
3918 #ifdef SPECTRUM_PRINT
3921 #ifdef SPECTRUM_IOSTREAM
3924 fputs(
" ",stdout );
3969 #ifdef SPECTRUM_DEBUG
3970 #ifdef SPECTRUM_PRINT
3971 #ifdef SPECTRUM_IOSTREAM
3972 cout <<
"\n computing the highest corner...\n";
3974 fputs(
"\n computing the highest corner...\n", stdout );
3979 poly hc = (poly)
NULL;
3983 if( hc!=(poly)
NULL )
3998 #ifdef SPECTRUM_DEBUG
3999 #ifdef SPECTRUM_PRINT
4000 #ifdef SPECTRUM_IOSTREAM
4003 fputs(
" ", stdout );
4013 #ifdef SPECTRUM_DEBUG
4014 #ifdef SPECTRUM_PRINT
4015 #ifdef SPECTRUM_IOSTREAM
4016 cout <<
"\n computing the newton polygon...\n";
4018 fputs(
"\n computing the newton polygon...\n", stdout );
4025 #ifdef SPECTRUM_DEBUG
4026 #ifdef SPECTRUM_PRINT
4035 #ifdef SPECTRUM_DEBUG
4036 #ifdef SPECTRUM_PRINT
4037 #ifdef SPECTRUM_IOSTREAM
4038 cout <<
"\n computing the weight corner...\n";
4040 fputs(
"\n computing the weight corner...\n", stdout );
4045 poly wc = ( fast==0 ?
pCopy( hc ) :
4050 #ifdef SPECTRUM_DEBUG
4051 #ifdef SPECTRUM_PRINT
4052 #ifdef SPECTRUM_IOSTREAM
4055 fputs(
" ", stdout );
4065 #ifdef SPECTRUM_DEBUG
4066 #ifdef SPECTRUM_PRINT
4067 #ifdef SPECTRUM_IOSTREAM
4068 cout <<
"\n computing NF...\n" << endl;
4070 fputs(
"\n computing NF...\n", stdout );
4079 #ifdef SPECTRUM_DEBUG
4080 #ifdef SPECTRUM_PRINT
4082 #ifdef SPECTRUM_IOSTREAM
4085 fputs(
"\n", stdout );
4110 WerrorS(
"polynomial is zero" );
4113 WerrorS(
"polynomial has constant term" );
4116 WerrorS(
"not a singularity" );
4119 WerrorS(
"the singularity is not isolated" );
4122 WerrorS(
"highest corner cannot be computed" );
4125 WerrorS(
"principal part is degenerate" );
4131 WerrorS(
"unknown error occurred" );
4148 WerrorS(
"only works for local orderings" );
4156 WerrorS(
"does not work in quotient rings" );
4202 WerrorS(
"only works for local orderings" );
4207 WerrorS(
"does not work in quotient rings" );
4266 else if(
l->nr > 5 )
4304 int mu = (int)(
long)(
l->m[0].Data( ));
4305 int pg = (int)(
long)(
l->m[1].Data( ));
4306 int n = (int)(
long)(
l->m[2].Data( ));
4317 if( n !=
num->length( ) )
4321 else if( n !=
den->length( ) )
4325 else if( n != mul->
length( ) )
4345 for(
i=0;
i<n;
i++ )
4347 if( (*
num)[
i] <= 0 )
4351 if( (*
den)[
i] <= 0 )
4355 if( (*mul)[
i] <= 0 )
4367 for(
i=0,
j=n-1;
i<=
j;
i++,
j-- )
4370 (*den)[
i] != (*den)[
j] ||
4371 (*mul)[
i] != (*mul)[
j] )
4381 for(
i=0,
j=1;
i<n/2;
i++,
j++ )
4383 if( (*
num)[
i]*(*den)[
j] >= (*num)[
j]*(*den)[
i] )
4393 for(
mu=0,
i=0;
i<n;
i++ )
4398 if(
mu != (
int)(long)(
l->m[0].Data( )) )
4407 for( pg=0,
i=0;
i<n;
i++ )
4409 if( (*
num)[
i]<=(*den)[
i] )
4415 if( pg != (
int)(long)(
l->m[1].Data( )) )
4444 WerrorS(
"first argument is not a spectrum:" );
4449 WerrorS(
"second argument is not a spectrum:" );
4482 int k = (int)(
long)second->
Data( );
4486 WerrorS(
"first argument is not a spectrum" );
4491 WerrorS(
"second argument should be positive" );
4517 BOOLEAN qh=(((int)(
long)
w->Data())==1);
4528 WerrorS(
"first argument is not a spectrum" );
4533 WerrorS(
"second argument is not a spectrum" );
4576 WerrorS(
"Ground field not implemented!");
4596 LP->
m= (int)(
long)(
v->Data());
4602 LP->
n= (int)(
long)(
v->Data());
4608 LP->
m1= (int)(
long)(
v->Data());
4614 LP->
m2= (int)(
long)(
v->Data());
4620 LP->
m3= (int)(
long)(
v->Data());
4623 Print(
"m (constraints) %d\n",LP->
m);
4624 Print(
"n (columns) %d\n",LP->
n);
4648 lres->
m[4].
data=(
void*)(
long)LP->
m;
4651 lres->
m[5].
data=(
void*)(
long)LP->
n;
4653 res->data= (
void*)lres;
4660 ideal gls = (ideal)(arg1->
Data());
4661 int imtype= (int)(
long)arg2->
Data();
4684 gls= (poly)(arg1->
Data());
4685 int howclean= (int)(
long)arg3->
Data();
4689 WerrorS(
"Input polynomial is constant!");
4698 rlist->
Init( r[0] );
4699 for(
int i=r[0];
i>0;
i--)
4714 WerrorS(
"Ground field not implemented!");
4721 unsigned long int ii = (
unsigned long int)arg2->
Data();
4746 if ( (vpos !=
i) && (
pGetExp( piter,
i ) != 0) )
4748 WerrorS(
"The input polynomial must be univariate!");
4756 number * pcoeffs= (number *)
omAlloc( (deg+1) *
sizeof( number ) );
4758 for (
i= deg;
i >= 0;
i-- )
4773 for (
i=deg;
i >= 0;
i--)
4781 roots->
solver( howclean );
4789 rlist->
Init( elem );
4793 for (
j= 0;
j < elem;
j++ )
4802 for (
j= 0;
j < elem;
j++ )
4806 rlist->
m[
j].
data=(
void *)dummy;
4819 res->data= (
void*)rlist;
4828 p= (ideal)arg1->
Data();
4829 w= (ideal)arg2->
Data();
4840 int tdg= (int)(
long)arg3->
Data();
4847 WerrorS(
"Last input parameter must be > 0!");
4855 if (
m != (
int)
pow((
double)tdg+1,(
double)n) )
4857 Werror(
"Size of second input ideal must be equal to %d!",
4858 (
int)
pow((
double)tdg+1,(
double)n));
4865 WerrorS(
"Ground field not implemented!");
4870 number *pevpoint= (number *)
omAlloc( n *
sizeof( number ) );
4871 for (
i= 0;
i < n;
i++ )
4880 WerrorS(
"Elements of first input ideal must not be equal to -1, 0, 1!");
4889 WerrorS(
"Elements of first input ideal must be numbers!");
4892 pevpoint[
i]=
nCopy( tmp );
4896 number *wresults= (number *)
omAlloc(
m *
sizeof( number ) );
4897 for (
i= 0;
i <
m;
i++ )
4906 WerrorS(
"Elements of second input ideal must be numbers!");
4921 res->data= (
void*)rpoly;
4936 else gls= (ideal)(
v->Data());
4942 else imtype= (int)(
long)
v->Data();
4947 ideal test_id=
idInit(1,1);
4951 if (gls->m[
j]!=
NULL)
4953 test_id->m[0]=gls->m[
j];
4957 WerrorS(
"Newton polytope not of expected dimension");
4971 unsigned long int ii=(
unsigned long int)
v->Data();
4979 else howclean= (int)(
long)
v->Data();
5008 WerrorS(
"Error occurred during matrix setup!");
5021 WerrorS(
"Unsuitable input ideal: Minor of resultant matrix is singular!");
5027 if ( interpolate_det )
5033 if ( interpolate_det )
5040 for (
i=0;
i < c;
i++)
pWrite(iproots[
i]->getPoly());
5042 for (
i=0;
i < c;
i++)
pWrite(muiproots[
i]->getPoly());
5046 arranger=
new rootArranger( iproots, muiproots, howclean );
5057 WerrorS(
"Solver was unable to find any roots!");
5063 for (
i=0;
i <
count;
i++)
delete iproots[
i];
5066 for (
i=0;
i <
count;
i++)
delete muiproots[
i];
5073 res->data= (
void *)listofroots;
5097 onepoint->
Init(elem);
5098 for (
j= 0;
j < elem;
j++ )
5114 listofroots->
m[
i].
data=(
void *)onepoint;
5122 listofroots->
Init( 0 );
5136 if (rg==
NULL)
return;
5160 Warn(
"deleting denom_list for ring change to %s",
IDID(
h));
5174 if ((rg!=
NULL) && (rg->idroot==
NULL))
5202 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5207 (*iv)[
i]= - (*iv)[
i];
5216 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5221 (*iv)[
i]= -(*iv)[
i];
5230 if((*iv)[
i]!=1) { all_one=
FALSE;
break; }
5236 (*iv2)[2]=iv->
length()-2;
5248 if((*iv)[
i]!=1) { all_one=
FALSE;
break; }
5254 (*iv2)[2]=iv->
length()-2;
5295 (*iv)[2] += (*iv2)[2];
5302 if (!change)
h=
h->next;
5310 int last = 0, o=0, n = 1,
i=0, typ = 1,
j;
5322 R->wanted_maxExp=(*iv)[2]*2+1;
5335 WerrorS(
"invalid combination of orderings");
5343 WerrorS(
"more than one ordering c/C specified");
5349 R->block0=(
int *)
omAlloc0(n*
sizeof(
int));
5350 R->block1=(
int *)
omAlloc0(n*
sizeof(
int));
5353 int *weights=(
int*)
omAlloc0((
R->N+1)*
sizeof(int));
5356 for (
j=0;
j < n-1;
j++)
5387 R->block0[n] =
last+1;
5390 R->wvhdl[n][
i-2] = (*iv)[
i];
5392 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5405 R->block0[n] =
last+1;
5407 else last += (*iv)[0];
5412 if (weights[
i]==0) weights[
i]=typ;
5424 const int s = (*iv)[2];
5434 const int s = (*iv)[2];
5436 if( 1 <
s ||
s < -1 )
return TRUE;
5452 R->block0[n] =
last+1;
5457 R->wvhdl[n][
i-2]=(*iv)[
i];
5459 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5461 last=
R->block0[n]-1;
5466 R->block0[n] =
last+1;
5469 if (
R->block1[n]-
R->block0[n]+2>=iv->
length())
5470 WarnS(
"missing module weights");
5471 for (
i=2;
i<=(
R->block1[n]-
R->block0[n]+2);
i++)
5473 R->wvhdl[n][
i-2]=(*iv)[
i];
5475 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5477 R->wvhdl[n][
i-2]=iv->
length() -3 -(
R->block1[n]-
R->block0[n]);
5480 R->wvhdl[n][
i-1]=(*iv)[
i];
5482 last=
R->block0[n]-1;
5487 R->block0[n] =
last+1;
5495 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5497 last=
R->block0[n]-1;
5503 if (Mtyp==0)
return TRUE;
5504 if (Mtyp==-1) typ = -1;
5508 R->wvhdl[n][
i-2]=(*iv)[
i];
5510 R->block0[n] =
last+1;
5513 for(
i=
R->block1[n];
i>=
R->block0[n];
i--)
5515 if (weights[
i]==0) weights[
i]=typ;
5525 Werror(
"Internal Error: Unknown ordering %d", (*iv)[1]);
5532 Werror(
"mismatch of number of vars (%d) and ordering (>=%d vars)",
5540 for(
i=1;
i<=
R->N;
i++)
5541 {
if (weights[
i]<0) {
R->OrdSgn=-1;
break; }}
5555 if (
R->block1[n] !=
R->N)
5566 R->block0[n] <=
R->N)
5568 R->block1[n] =
R->N;
5572 Werror(
"mismatch of number of vars (%d) and ordering (%d vars)",
5591 *
p = (
char*)sl->
name;
5659 WerrorS(
"parameter expected");
5666 for(
int i=pars-1;
i>=0;
i--)
5678 int ch = (int)(
long)pn->
Data();
5689 if ((ch<2)||(ch!=ch2))
5691 Warn(
"%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5694 #ifndef TEST_ZN_AS_ZP
5698 mpz_init_set_ui(modBase, (
long)ch);
5705 cf->has_simple_Inverse=1;
5718 if ((ch!=0) && (ch!=
IsPrime(ch)) && (pars == 1))
5730 if ((ch!=0) && (ch!=
IsPrime(ch)))
5732 WerrorS(
"too many parameters");
5740 WerrorS(
"parameter expected");
5746 extParam.
r =
rDefault( ch, pars, names);
5747 for(
int i=pars-1;
i>=0;
i--)
5760 && ((strcmp(pn->
name,
"real")==0) || (strcmp(pn->
name,
"complex")==0)))
5763 BOOLEAN complex_flag=(strcmp(pn->
name,
"complex")==0);
5766 float_len=(int)(
long)pnn->
Data();
5767 float_len2=float_len;
5771 float_len2=(int)(
long)pnn->
Data();
5806 else if ((pn->
name !=
NULL) && (strcmp(pn->
name,
"integer") == 0))
5810 unsigned int modExponent = 1;
5811 mpz_init_set_si(modBase, 0);
5818 mpz_set_ui(modBase, (
long) pnn->
Data());
5822 modExponent = (long) pnn->
Data();
5827 mpz_mul_ui(modBase, modBase, (
int)(
long) pnn->
Data());
5840 if ((mpz_cmp_ui(modBase, 1) == 0) && (
mpz_sgn1(modBase) < 0))
5842 WerrorS(
"Wrong ground ring specification (module is 1)");
5845 if (modExponent < 1)
5847 WerrorS(
"Wrong ground ring specification (exponent smaller than 1");
5852 if (modExponent > 1 &&
cf ==
NULL)
5854 if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
5865 WerrorS(
"modulus must not be 0 or parameter not allowed");
5871 info.exp= modExponent;
5880 WerrorS(
"modulus must not be 0 or parameter not allowed");
5886 info.exp= modExponent;
5897 extParam.
r = (ring)pn->
Data();
5910 WerrorS(
"Wrong or unknown ground field specification");
5916 Print(
"pn[%p]: type: %d [%s]: %p, name: %s", (
void*)
p,
p->Typ(),
Tok2Cmdname(
p->Typ()),
p->Data(), (
p->name ==
NULL?
"NULL" :
p->name) );
5938 WerrorS(
"Invalid ground field specification");
5962 WerrorS(
"name of ring variable expected");
6015 int *perm=(
int *)
omAlloc0((org_ring->N+1)*
sizeof(int));
6032 WerrorS(
"name of ring variable expected");
6042 for(;
i<org_ring->N;
i++)
6044 if (strcmp(org_ring->names[
i],
R->names[
j])==0)
6052 Werror(
"variable %d (%s) not in basering",
j+1,
R->names[
j]);
6065 for(
j=
R->block0[
i];j<=R->block1[
i];
j++)
6069 if (min_var==-1) min_var=perm[
j];
6077 R->block0[
i]=min_var;
6078 R->block1[
i]=max_var;
6082 R->wvhdl[
i]=(
int*)
omAlloc0((max_var-min_var+1)*
sizeof(int));
6083 for(
j=org_ring->block0[
i];j<=org_ring->block1[
i];
j++)
6087 R->wvhdl[
i][perm[
j]-
R->block0[
i]]=
6088 org_ring->wvhdl[
i][
j-org_ring->block0[
i]];
6114 R->order[
j-1]=
R->order[
j];
6115 R->block0[
j-1]=
R->block0[
j];
6116 R->block1[
j-1]=
R->block1[
j];
6118 R->wvhdl[
j-1]=
R->wvhdl[
j];
6126 while (
R->order[n]==0) n--;
6129 if (
R->block1[n] !=
R->N)
6140 R->block0[n] <=
R->N)
6142 R->block1[n] =
R->N;
6146 Werror(
"mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6147 R->N,
R->block1[n],n);
6153 R->OrdSgn = org_ring->OrdSgn;
6176 if ((r->ref<=0)&&(r->order!=
NULL))
6186 if (
j==0)
WarnS(
"killing the basering for level 0");
6191 while (r->idroot!=
NULL)
6194 killhdl2(r->idroot,&(r->idroot),r);
6241 Warn(
"deleting denom_list for ring change from %s",
IDID(
h));
6315 ideal I=(ideal)u->
Data();
6318 for(
i=I->nrows*I->ncols-1;
i>=0;
i--)
6330 switch (
p->language)
6339 if(
p->libname!=
NULL)
6340 Print(
",%s",
p->libname);
6355 tmp_in.
data=(
void*)(
long)(*aa)[
i];
6363 Werror(
"apply fails at index %d",
i+1);
6366 if (
i==0) { memcpy(
res,&tmp_out,
sizeof(tmp_out)); }
6371 memcpy(curr,&tmp_out,
sizeof(tmp_out));
6393 res->data=(
void *)
l;
6400 for(
int i=0;
i<=aa->
nr;
i++)
6403 tmp_in.
Copy(&(aa->
m[
i]));
6412 Werror(
"apply fails at index %d",
i+1);
6415 if (
i==0) { memcpy(
res,&tmp_out,
sizeof(tmp_out)); }
6420 memcpy(curr,&tmp_out,
sizeof(tmp_out));
6443 WerrorS(
"first argument to `apply` must allow an index");
6453 char assume_yylinebuf[80];
6455 int lev=(long)a->
Data();
6462 if (bo) {
WerrorS(
"syntax error in ASSUME");
return TRUE;}
6464 if (
b->Data()==
NULL) {
Werror(
"ASSUME failed:%s",assume_yylinebuf);
return TRUE;}
6476 char *ss=(
char*)
omAlloc(strlen(a)+strlen(
s)+30);
6478 int end_s=strlen(
s);
6479 while ((end_s>0) && ((
s[end_s]<=
' ')||(
s[end_s]==
';'))) end_s--;
6482 sprintf(
name,
"%s->%s",a,
s);
6484 int start_s=end_s-1;
6485 while ((start_s>=0) && (
s[start_s]!=
';')) start_s--;
6488 sprintf(ss,
"parameter def %s;return(%s);\n",a,
s);
6493 sprintf(ss,
"parameter def %s;%s;return(%s);\n",a,
s,
s+start_s+1);
6553 sprintf(
buf,
"wrong length of parameters(%d), expected ",t);
6555 sprintf(
buf,
"par. %d is of type `%s`, expected ",nr,
Tok2Cmdname(t));
6556 for(
int i=1;
i<=
T[0];
i++)
6561 if (
i<
T[0]) strcat(
buf,
",");
6571 if (type_list[0]==0)
return TRUE;
6574 if (
l!=(
int)type_list[0])
6579 for(
int i=1;
i<=
l;
i++,args=args->
next)
6581 short t=type_list[
i];
6585 || (t!=args->
Typ()))
Rational pow(const Rational &a, int e)
struct for passing initialization parameters to naInitChar
void atSet(idhdl root, char *name, void *data, int typ)
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
static int si_max(const int a, const int b)
static int si_min(const int a, const int b)
for(int i=0;i<=n;i++) degsf[i]
void mu(int **points, int sizePoints)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
unsigned char * proc[NUM_PROC]
poly singclap_resultant(poly f, poly g, poly x, const ring r)
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
matrix singclap_irrCharSeries(ideal I, const ring r)
int * Zp_roots(poly p, const ring r)
idhdl get(const char *s, int lev)
void show(int mat=0, int spaces=0) const
virtual number getSubDet()
virtual ideal getMatrix()
virtual IStateType initState() const
complex root finder for univariate polynomials based on laguers algorithm
gmp_complex * getRoot(const int i)
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
bool solver(const int polishmode=PM_NONE)
Linear Programming / Linear Optimization using Simplex - Algorithm.
BOOLEAN mapFromMatrix(matrix m)
matrix mapToMatrix(matrix m)
Class used for (list of) interpreter objects.
void CleanUp(ring r=currRing)
void Clean(ring r=currRing)
INLINE_THIS void Init(int l=0)
void delete_node(spectrumPolyNode **)
int mult_spectrum(spectrum &)
int mult_spectrumh(spectrum &)
Base class for solving 0-dim poly systems using u-resultant.
rootContainer ** specializeInU(BOOLEAN matchUp=false, const number subDetVal=NULL)
rootContainer ** interpolateDenseSP(BOOLEAN matchUp=false, const number subDetVal=NULL)
resMatrixBase * accessResMat()
vandermonde system solver for interpolating polynomials from their values
poly numvec2poly(const number *q)
number * interpolateDense(const number *q)
Solves the Vandermode linear system \sum_{i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
@ n_R
single prescision (6,6) real numbers
@ n_Q
rational (GMP) numbers
@ n_Znm
only used if HAVE_RINGS is defined
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
@ n_Zn
only used if HAVE_RINGS is defined
@ n_long_R
real floating point (GMP) numbers
@ n_Z2m
only used if HAVE_RINGS is defined
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
@ n_Z
only used if HAVE_RINGS is defined
@ n_long_C
complex floating point (GMP) numbers
short float_len2
additional char-flags, rInit
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
const char * par_name
parameter name
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
const unsigned short fftable[]
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
static FORCE_INLINE char * nCoeffName(const coeffs cf)
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
short float_len
additional char-flags, rInit
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Creation data needed for finite fields.
const CanonicalForm int s
const Variable & v
< [in] a sqrfree bivariate poly
const ExtensionInfo & info
< [in] sqrfree poly
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
void WerrorS(const char *s)
VAR char my_yylinebuf[80]
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
int iiTestConvert(int inputType, int outputType)
const char * Tok2Cmdname(int tok)
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge, ring tailRing)
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
void hKill(monf xmem, int Nvar)
void hDelete(scfmon ev, int ev_length)
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
void hRadical(scfmon rad, int *Nrad, int Nvar)
#define idDelete(H)
delete an ideal
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
STATIC_VAR int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
intvec * ivCopy(const intvec *o)
#define IMATELEM(M, I, J)
int IsCmd(const char *n, int &tok)
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
idhdl ggetid(const char *n)
void killhdl2(idhdl h, idhdl *ih, ring r)
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
VAR proclevel * procstack
idhdl packFindHdl(package r)
EXTERN_VAR omBin sleftv_bin
INST_VAR sleftv iiRETURNEXPR
char * iiGetLibProcBuffer(procinfo *pi, int part)
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
lists rDecompose(const ring r)
@ semicListWrongNumberOfNumerators
@ semicListFirstElementWrongType
@ semicListSecondElementWrongType
@ semicListFourthElementWrongType
@ semicListWrongNumberOfDenominators
@ semicListThirdElementWrongType
@ semicListWrongNumberOfMultiplicities
@ semicListFifthElementWrongType
@ semicListSixthElementWrongType
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
lists rDecompose_list_cf(const ring r)
int iiOpsTwoChar(const char *s)
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
BOOLEAN jjMINRES(leftv res, leftv v)
BOOLEAN killlocals_list(int v, lists L)
BOOLEAN iiParameter(leftv p)
STATIC_VAR BOOLEAN iiNoKeepRing
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
static void rRenameVars(ring R)
void iiCheckPack(package &p)
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
VAR BOOLEAN iiDebugMarker
ring rInit(leftv pn, leftv rv, leftv ord)
leftv iiMap(map theMap, const char *what)
int iiRegularity(lists L)
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
static void rDecomposeC_41(leftv h, const coeffs C)
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
BOOLEAN iiARROW(leftv r, char *a, char *s)
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
BOOLEAN syBetti1(leftv res, leftv u)
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
idhdl rDefault(const char *s)
static void rDecomposeC(leftv h, const ring R)
int exprlist_length(leftv v)
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
poly iiHighCorner(ideal I, int ak)
BOOLEAN spectrumfProc(leftv result, leftv first)
lists listOfRoots(rootArranger *self, const unsigned int oprec)
static void jjINT_S_TO_ID(int n, int *e, leftv res)
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
BOOLEAN jjCHARSERIES(leftv res, leftv u)
void rDecomposeCF(leftv h, const ring r, const ring R)
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
void list_error(semicState state)
BOOLEAN mpJacobi(leftv res, leftv a)
const char * iiTwoOps(int t)
BOOLEAN iiBranchTo(leftv, leftv args)
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
BOOLEAN iiTestAssume(leftv a, leftv b)
void iiSetReturn(const leftv source)
BOOLEAN iiAssignCR(leftv r, leftv arg)
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
spectrumState spectrumCompute(poly h, lists *L, int fast)
idhdl rFindHdl(ring r, idhdl n)
syStrategy syConvList(lists li)
BOOLEAN spectrumProc(leftv result, leftv first)
BOOLEAN iiDefaultParameter(leftv p)
void rComposeC(lists L, ring R)
BOOLEAN iiCheckRing(int i)
#define BREAK_LINE_LENGTH
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
ring rSubring(ring org_ring, sleftv *rv)
BOOLEAN kWeight(leftv res, leftv id)
static leftv rOptimizeOrdAsSleftv(leftv ord)
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
spectrum spectrumFromList(lists l)
static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
syStrategy syForceMin(lists li)
static void iiReportTypes(int nr, int t, const short *T)
void rDecomposeRing(leftv h, const ring R)
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
static BOOLEAN iiInternalExport(leftv v, int toLev)
static void rDecompose_23456(const ring r, lists L)
void copy_deep(spectrum &spec, lists l)
void killlocals_rec(idhdl *root, int v, ring r)
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
semicState list_is_spectrum(lists l)
static void killlocals0(int v, idhdl *localhdl, const ring r)
BOOLEAN semicProc(leftv res, leftv u, leftv v)
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
const char * lastreserved
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
BOOLEAN iiWRITE(leftv, leftv v)
void paPrint(const char *n, package p)
static resolvente iiCopyRes(resolvente r, int l)
BOOLEAN kQHWeight(leftv res, leftv v)
void rComposeRing(lists L, ring R)
BOOLEAN iiExport(leftv v, int toLev)
BOOLEAN jjBETTI(leftv res, leftv u)
void spectrumPrintError(spectrumState state)
lists getList(spectrum &spec)
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
void rDecomposeRing_41(leftv h, const coeffs C)
static BOOLEAN rComposeVar(const lists L, ring R)
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
VAR denominator_list DENOMINATOR_LIST
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
char * lString(lists l, BOOLEAN typed, int dim)
BOOLEAN lRingDependend(lists L)
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
matrix mpNew(int r, int c)
create a r x c zero-matrix
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
#define MATELEM(mat, i, j)
1-based access to matrix
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
ideal loNewtonPolytope(const ideal id)
EXTERN_VAR size_t gmp_output_digits
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
gmp_float sqrt(const gmp_float &a)
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
void report(const char *fmt, const char *name)
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nPrint(a)
only for debug, over any initalized currRing
#define SHORT_REAL_LENGTH
#define omFreeSize(addr, size)
#define omCheckAddr(addr)
#define omReallocSize(addr, o_size, size)
#define omCheckAddrSize(addr, size)
#define omFreeBin(addr, bin)
#define omFreeBinAddr(addr)
#define omRealloc0Size(addr, o_size, size)
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
#define __pp_Mult_nn(p, n, r)
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
static void p_Setm(poly p, const ring r)
static void p_Delete(poly *p, const ring r)
static unsigned pLength(poly a)
static poly p_Init(const ring r, omBin bin)
static poly p_Copy(poly p, const ring r)
returns a copy of p
static long p_Totaldegree(poly p, const ring r)
#define __p_Mult_nn(p, n, r)
void rChangeCurrRing(ring r)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Compatiblity layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
#define pIsConstant(p)
like above, except that Comp must be 0
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
#define pGetVariables(p, e)
#define pGetExp(p, i)
Exponent.
#define pCopy(p)
return a copy of the poly
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
void PrintS(const char *s)
void Werror(const char *fmt,...)
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
const char * rSimpleOrdStr(int ord)
int rTypeOfMatrixOrder(const intvec *order)
ring rAssure_HasComp(const ring r)
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
BOOLEAN rCheckIV(const intvec *iv)
rRingOrder_t rOrderName(char *ordername)
void rDelete(ring r)
unconditionally deletes fields in r
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
void rSetSyzComp(int k, const ring r)
static BOOLEAN rField_is_R(const ring r)
static int rBlocks(ring r)
static BOOLEAN rField_is_Zp_a(const ring r)
static BOOLEAN rField_is_Z(const ring r)
static BOOLEAN rField_is_Zp(const ring r)
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
static BOOLEAN rField_is_long_C(const ring r)
static ring rIncRefCnt(ring r)
static BOOLEAN rField_is_Zn(const ring r)
static int rPar(const ring r)
(r->cf->P)
static int rInternalChar(const ring r)
static BOOLEAN rIsLPRing(const ring r)
@ ringorder_a64
for int64 weights
@ ringorder_rs
opposite of ls
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
@ ringorder_IS
Induced (Schreyer) ordering.
static BOOLEAN rField_is_Q_a(const ring r)
static BOOLEAN rField_is_Q(const ring r)
static void rDecRefCnt(ring r)
static char const ** rParameter(const ring r)
(r->cf->parameter)
static BOOLEAN rField_is_long_R(const ring r)
static BOOLEAN rField_is_numeric(const ring r)
static BOOLEAN rField_is_GF(const ring r)
static short rVar(const ring r)
#define rVar(r) (r->N)
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
#define rField_is_Ring(R)
int status int void size_t count
int status int void * buf
BOOLEAN slWrite(si_link l, leftv v)
ideal idInit(int idsize, int rank)
initialise an ideal / module
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
BOOLEAN hasAxis(ideal J, int k, const ring r)
int hasOne(ideal J, const ring r)
BOOLEAN ringIsLocal(const ring r)
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
BOOLEAN hasLinearTerm(poly h, const ring r)
BOOLEAN hasConstTerm(poly h, const ring r)
INST_VAR sleftv sLastPrinted
BOOLEAN RingDependend(int t)
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
void syMinimizeResolvente(resolvente res, int length, int first)
void syKillComputation(syStrategy syzstr, ring r=currRing)
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
void syKillEmptyEntres(resolvente res, int length)
struct for passing initialization parameters to naInitChar
char name(const Variable &v)
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)